Какими свойствами обладают силы взаимодействия

Какими свойствами обладают силы взаимодействия thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 12 июня 2020;
проверки требуют 3 правки.

Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.

На сегодня достоверно известно существование четырёх фундаментальных взаимодействий (не считая поля Хиггса):

  • гравитационного;
  • электромагнитного;
  • сильного;
  • слабого.

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия.

Ведутся поиски других типов фундаментальных взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока какого-либо другого типа фундаментального взаимодействия не обнаружено (см. Пятая сила).

В теориях Великого объединения предполагается существование электроядерного взаимодействия. Также, возможно, нарушение CP-инвариантности вызывается сверхслабым взаимодействием.

Единственной гипотезой о количестве фундаментальных физических взаимодействий — почему в природе именно то количество взаимодействий, которое предполагают существующими — была высказана лишь относительно недавно в МГУ. Предполагается, что количество фундаментальных взаимодействий зависит от вида коэффициента затухания в рассматриваемых уравнениях колебаний. При этом некоммутативная структура этого коэффициента свидетельствует в пользу существования поля Хиггса в качестве фундаментального взаимодействия[1].

Сводная таблица[править | править код]

История[править | править код]

Ньютон в своём втором законе (1687 г.[3]) постулировал, что причиной изменения движения тел является сила. Физикам было известно множество самых разнообразных сил: сила тяжести, сила натяжения нити, сила сжатия пружины, сила столкновения тел, сила трения, сила сопротивления воздуха, сила взрыва и т. д.

Исследования XVIII—XIX веков привели к открытию атомарной структуры вещества, и стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку основной вид межатомного взаимодействия — электромагнитное, то, как оказалось, большинство этих сил — лишь различные проявления электромагнитного взаимодействия. Одно из исключений составляет, например, сила тяжести, причиной которой является гравитационное взаимодействие между телами, обладающими массой.

Таким образом, к началу XX века выяснилось, что все известные к тому моменту силы сводятся к двум фундаментальным взаимодействиям: электромагнитному и гравитационному.

В 1930-е годы физики обнаружили, что ядра атомов состоят из нуклонов (протонов и нейтронов). Стало понятно, что ни электромагнитные, ни гравитационные взаимодействия не могут объяснить, что удерживает нуклоны в ядре. Было постулировано существование нового фундаментального взаимодействия: сильного взаимодействия. Однако в дальнейшем оказалось, что и этого недостаточно, чтобы объяснить некоторые явления в микромире. В частности, было непонятно, что заставляет распадаться свободный нейтрон. Тогда было постулировано существование слабого взаимодействия, и этого оказалось достаточно для описания всех до сих пор наблюдавшихся явлений в микромире.

После открытия бозона Хиггса поле Хиггса стали иногда называть пятым фундаментальным взаимодействием[4].

Создание единой теории фундаментальных взаимодействий[править | править код]

Первой из теорий взаимодействий стала теория электромагнетизма, созданная Максвеллом в 1863 году. Затем в 1915 году Эйнштейн сформулировал общую теорию относительности, описывающую гравитационное поле. Появилась идея построения единой теории фундаментальных взаимодействий (которых на тот момент было известно только два), подобно тому как Максвеллу удалось создать общее описание электрических и магнитных явлений. Такая единая теория объединила бы гравитацию и электромагнетизм в качестве частных проявлений некоего единого взаимодействия.

В течение первой половины XX века ряд физиков предприняли многочисленные попытки создания такой теории, однако ни одной полностью удовлетворительной модели выдвинуто не было. Это, в частности, связано с тем, что общая теория относительности и теория электромагнетизма различны по своей сути. Тяготение описывается искривлением пространства-времени, и в этом смысле гравитационное поле условно нематериально (эмпирически недискретно), но, как и прочие формы взаимодействия, распространяется с предельно допустимой скоростью света (см. Скорость гравитации), в то время как электромагнитное поле являет все необходимые атрибуты материи.

Во второй половине XX столетия задача построения единой теории осложнилась необходимостью внесения в неё слабого и сильного взаимодействий, а также необходимостью квантования теории.

В 1967 году Саламом и Вайнбергом была создана теория электрослабого взаимодействия, объединившая электромагнетизм и слабые взаимодействия. Позднее в 1973 году была предложена теория сильного взаимодействия (квантовая хромодинамика). На их основе была построена Стандартная модель элементарных частиц, описывающая электромагнитное, слабые и сильное взаимодействия.

Экспериментальная проверка Стандартной модели заключается в обнаружении предсказанных ею частиц и их свойств. В настоящий момент открыты все элементарные частицы Стандартной модели.

Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: общей теорией относительности и Стандартной моделью. Их объединения пока достичь не удалось из-за трудностей создания квантовой теории гравитации. Для дальнейшего объединения фундаментальных взаимодействий используются различные подходы: теории струн, петлевая квантовая гравитация, а также М-теория.

См. также[править | править код]

  • Нерешённые проблемы современной физики
  • Пятая сила
  • Теории Великого объединения
  • Исключительно простая теория всего
  • Единая теория поля
  • Стандартная модель
    • Сильное взаимодействие
    • Электрослабое взаимодействие
    • Слабое взаимодействие
    • Гравитация
  • Люди: Исаак Ньютон, Джеймс Максвелл, Альберт Эйнштейн, Хидэки Юкава, Ричард Фейнман, Марри Гелл-Ман, Нисидзима, Шелдон Глешоу, Абдус Салам, Стивен Вайнберг, Герард ‘т Хоофт, Дэвид Гросс, Эдвард Виттен, Говард Джорджи.

Примечания[править | править код]

Ссылки[править | править код]

Источник

Фундаментальные силы (или фундаментальные взаимодействия) физики – это способы взаимодействия отдельных элементарных частиц друг с другом. Для каждого отдельного взаимодействия, наблюдаемого во Вселенной, можно выделить четыре типа взаимодействий:

  • Гравитационное
  • Электромагнитное
  • Слабое взаимодействие
  • Сильное взаимодействие

Гравитация

Из фундаментальных сил гравитация имеет самую дальнюю досягаемость, но она является самой слабой из сил. По сути, это сила, которая даже через пустоту миллионов километров пространства притягивает две массы друг к другу. Она удерживает планеты на орбите вокруг Солнца, а Луну на орбите вокруг Земли. Гравитация описывается в общей теории относительности, которая определяет ее как кривизну пространства-времени вокруг объекта массы.

Рис.1 Искривление пространства-времени вокруг любого массивного объекта определяется сочетанием массы и расстояния до центра массы (Источник: medium.com)

Электромагнетизм

Электромагнетизм – это взаимодействие частиц с электрическим зарядом. Заряженные частицы в состоянии покоя взаимодействуют посредством электростатических сил, а в движении они взаимодействуют посредством как электрических, так и магнитных сил.

Долгое время электрические и магнитные силы считались различными силами, но в конце концов были объединены Джеймсом Клерком Максвеллом в 1864 году по его уравнениям. В 1940-х годах квантовая электродинамика объединила электромагнетизм с квантовой физикой.

Электромагнетизм, пожалуй, самая распространенная сила в нашем мире, поскольку она может влиять на вещи на разумном расстоянии и с изрядной силой.

Рис.2 Молния – это электростатический разряд, который движется между двумя заряженными областями. Его принцип основан на действии электромагнитной силы (Фото: digiato.com)

Слабое взаимодействие

Слабое взаимодействие – очень мощная сила, действующая в масштабах атомного ядра, вызывающая такие явления, как радиоактивный распад. Она была объединена с электромагнетизмом как единое взаимодействие, называемое “электрослабым”.

Слабое взаимодействие происходит только при очень малых, субатомных расстояниях, меньше диаметра протона.

Важными примерами явлений, связанных со слабым взаимодействием, можно назвать бета-распад (тип радиоактивного распада, при котором электрон, позитрон и нейтрино испускаются из атомного ядра) и синтез гелия из водорода, который приводит в действие термоядерный процесс Солнца. Кроме того, распад фермионов делает возможным радиоуглеродное датирование.

Рис.3 Радиоактивный бета-распад обусловлен слабым взаимодействием, которое превращает нейтрон в протон, электрон и электронный антинейтрино (Источник: Википедия).

Сильное взаимодействие

Самая мощная из сил – которая, помимо прочего, удерживает нуклоны (протоны и нейтроны) связанными вместе. Например, в атоме гелия она удерживает вместе два протона, несмотря на то, что их положительные электрические заряды заставляют их отталкивать друг друга.

По сути, сильное взаимодействие позволяет частицам, называемым глюонами (элементарные безмассовые частицы, переносчики сильного взаимодействия), связывать кварки, создавая в первую очередь нуклоны. Глюоны также могут взаимодействовать с другими глюонами, что дает сильному взаимодействию теоретически бесконечное расстояние, хотя все его основные проявления находятся на субатомном уровне.

Рис. 4 Сильное взаимодействие удерживает два антипротона (Источник: physicsworld.com)

Объединение фундаментальных сил

Многие физики полагают, что все четыре фундаментальные силы, по сути, являются проявлениями единой базовой (или объединенной) силы, которая пока не обнаружена. Подобно тому, как электричество, магнетизм и слабая сила были объединены в электрослабое взаимодействие, ученые работают, чтобы объединить все фундаментальные силы вместе.

Современная квантово-механическая интерпретация этих сил заключается в том, что частицы не взаимодействуют напрямую, а скорее проявляются виртуальными частицами, которые опосредуют реальные взаимодействия. Все силы, кроме силы тяжести, были объединены в эту “Стандартную модель” взаимодействия.

Объединение гравитации с тремя другими фундаментальными силами называется квантовой гравитацией. Это предполагает существование виртуальной частицы, называемой гравитоном, которая была бы опосредующим элементом в гравитационных взаимодействиях. Поскольку до настоящего времени гравитоны обнаружены не были, то и теория квантовой гравитации не стала универсальной.

Читать: https://skytechnews.ru/fundamentalnye-sily-fiziki/

Источник

Представьте себе, что вы поднимаете гирю, действуя на нее рукой с некоторой силой Fгр, направленной вверх (рис. 89). В этом случае вы почувствуете, что гиря тоже действует на вашу руку. При этом гиря будет тянуть вашу руку вниз с силой Fрг.

Индексы «г» (гиря) и «р» (рука) в записи Fгр означают, что эта сила действует на гирю (первый индекс) со стороны руки (второй индекс). Соответственно индексы «р» и «г» в записи силы Fрг означают, что эта сила действует на руку (первый индекс) со стороны гири (второй индекс). Такую систему обозначения сил взаимодействия двух тел мы будем использовать и в дальнейшем.

Взаимодействие тел и возникающие при этом силы

Оказывается, силы в природе всегда возникают парами. Если первое тело действует на второе, то второе тело действует на первое. Таким образом, действие двух тел друг на друга всегда имеет взаимный характер. При этом говорят, что два тела взаимодействуют друг с другом. Отметим, что силы взаимодействия приложены к разным телам.

Эти силы подчиняются конкретным правилам, которые Ньютон сформулировал в виде фундаментального закона природы. В настоящее время этот закон называют третьим законом Ньютона.

Два тела взаимодействуют друг с другом с силами:
1) равными по модулю;
2) противоположными по направлению;
3) лежащими на одной прямой.

Строго говоря, в третьем законе Ньютона также сказано, что силы взаимодействия двух тел всегда являются силами одной природы. Но об этом мы поговорим с вами позднее, когда изучим виды существующих в природе сих.

Подчеркнем еще раз, что силы, о которых говорится в третьем законе Ньютона, приложены к равным телам, т. е. к телам, которые взаимодействуют друг с другом. Поэтому эти силы не могут уравновесить друг друга.

Силы взаимодействия двух тел приложены к разным телам и поэтому не уравновешивают друг друга.

Обратим внимание на то, что, в отличие от второго закона Ньютона, в котором речь идет об одном теле, в третьем законе речь идет о двух взаимодействующих друг с другом телах.

Применим третий закон Ньютона к силам, изображенным на рис. 89.

В соответствии с первым пунктом |Fрг| = |Fгр|. То есть модуль силы, с которой на руку действует гиря, равен модулю силы, с которой на гирю действует рука.

В соответствии со вторым пунктом Fгр = -Fрг. Действительно, сила Fгр, с которой рука действует на гирю, направлена вверх, а сила Fрг, с которой гиря действует на руку, направлена в противоположную сторону – вниз.

Как вы уже знаете, два тела могут взаимодействовать друг с другом не только при касании, но и на расстоянии. Например, кусок железа и магнит (рис. 90), расположенные на разных тележках, притягиваются друг к другу. При этом силы их взаимодействия удовлетворяют третьему закону Ньютона: они равны по модулю, противоположны по направлению и лежат на одной прямой.

Действие противоположно направленных сил

Со временем мы убедимся в том, что с помощью второго и третьего законов Ньютона можно вывести большинство законов механики и решать практически все механические задачи. Уже в следующей главе, посвященной видам сил в механике, вы увидите, насколько эффективно использование законов Ньютона.

Поясним, как надо использовать законы Ньютона при решении задач, на следующем простом примере.

На рис. 91 изображен локомотив, толкающий перед собой вагон массой m = 40 т по горизонтальному участку железнодорожного пути. В результате действия локомотива вагон движется по рельсам с ускорением, модуль которого |a| = 1 м/с2. Найдем силу Fлв, действующую на локомотив со стороны вагона, считая, что в горизонтальном направлении других действий на вагон нет.

С какой силой действует на локомотив вагон

Решение. Выберем систему отсчета, связанную с рельсами: направим ось X по ходу движения локомотива. Поскольку рельсы неподвижны относительно Земли, связанную с ними систему отсчета можно считать инерциальной. Будем считать вагон и локомотив точечными телами. Направление ускорения вагона совпадает с положительным направлением оси X. Поэтому значение a этого ускорения положительно, а значение Fвл силы, действующей на вагон со стороны локомотива, согласно второму закону Ньютона удовлетворяет соотношению m · a = Fвл. Следовательно,

Fвл = m · a = 40000 кг · 1 м/с2 = 40 кН.

Теперь можно определить силу Fлв, действующую на локомотив со стороны вагона. Согласно третьему закону Ньютона модуль этой силы равен найденному нами значению Fвл. Направлена же сила Fлв противоположно силе Fвл, т. е. противоположно направлению ускорения a вагона.

Итоги
Если первое тело действует на второе, то второе тело при этом действует на первое. Про такие тела говорят, что они взаимодействуют друг с другом.

Третий закон Ньютона.
Два тела взаимодействуют друг с другом с силами:
1) равными по модулю;
2) противоположными по направлению;
3) лежащими на одной прямой.

Кратко этот закон может быть записан в виде: F12 = -F21, где F12 – сила, действующая на первое тело со стороны второго тела, F21 – сила, действующая на второе тело со стороны первого.

Силы, о которых говорится в третьем законе Ньютона, приложены к разным телам, т. е. к телам, которые взаимодействуют друг с другом. Поэтому эти силы не могут уравновешивать друг друга.

Вопросы

  1. Приведите примеры взаимодействующих тел.
  2. Сформулируйте третий закон Ньютона.
  3. Какими свойствами обладают силы взаимодействия?
  4. Могут ли силы взаимодействия уравновесить друг друга?
  5. Чему равна сумма сил взаимодействия двух тел?

Упражнения

  1. Определите силу (модуль и направление), с которой давит на спинку сиденья водитель массой m = 80 кг, если его автомобиль разгоняется по прямолинейному горизонтальному участку дороги с ускорением a = 4 м/с2. Считайте, что в горизонтальном направлении на водителя действует только спинка сиденья.
  2. Определите, с какой силой действует на ремень безопасности водитель массой m = 100 кг, если после нажатия на педаль тормоза его автомобиль сбрасывает скорость от 108 км/ч до нуля за 6 с на прямолинейном горизонтальном участке дороги. Считайте, что в горизонтальном направлении на водителя действует только ремень безопасности.

Источник

mkt1

Нас окружают разнообразные предметы. Мы можем увидеть, что это либо твердые тела, либо жидкости, либо газы. Возникает масса вопросов обо всем, что нас окружает. Ответы на многие вопросы дает молекулярно-кинетическая теория.

Молекулярно-кинетическая теория – это совокупность воззрений, используемых для описания наблюдаемых и измеряемых свойств вещества на основе изучения свойств атомов и молекул данного вещества, их взаимодействия и движения.

Основные положения молекулярно-кинетической теории

  • Все тела состоят из частиц – атомов, молекул, ионов.
  • Все частицы находятся в непрерывном хаотическом тепловом движении.
  • Между частицами любого тела существуют силы взаимодействия – притяжения и отталкивания.

Таким образом, в молекулярно-кинетической теории объектом исследования является система, состоящая из большого количества частиц – макросистема. Для объяснения поведения такой системы законы механики не применимы. Поэтому основным методом исследования является статистический метод изучения свойств вещества.

Для объяснения и предсказания явлений важно знать основные характеристики молекул:

  1. Размеры

mkt2

Оценка размера молекулы может быть сделана как размер кубика a в котором содержится одна молекула, исходя из плотности твердых или жидких веществ и массы одной молекулы:

mkt3

  1. Масса молекул

Отношение массы вещества m к числу молекул N в данном веществе:

  1. Относительная молекулярная масса

Отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода:

  1. Количество вещества

Количество вещества равно отношению числа частиц N в теле (атомов – в атомарном веществе, молекул – в молекулярном) к числу молекул в одном моле веществаNА:

mkt4

  1. Постоянная Авогадро

Количество молекул, содержащихся в 1 моль вещества.

  1. Молярная масса

Молярной массой вещества называют массу вещества, взятого в количестве 1 моля.

В Международной системе единиц молярная масса вещества выражается в кг/моль.

  1. Взаимодействие (количественно на основе опытов)

mkt5

Для взаимодействия молекул характерно одновременно и притяжение, и отталкивание: на расстояниях r<r0 доминирует отталкивание, на расстоянии r>r0 – притяжение, причем оно быстро убывает. На расстоянии r0 система двух молекул обладает минимумом потенциальной энергии (сила взаимодействия равна нулю) – это состояние устойчивого равновесия

Молекулярно-кинетическая теория дает возможность понять, почему вещество может находиться в газообразном, жидком и твердом состояниях. С точки зрения МКТ агрегатные состояния различаются по значению среднего расстояния между молекулами и характеру движения молекул друг относительно друга.

Основные положения молекулярно-кинетической теории неоднократно подтверждались различными физическими экспериментами. Например, исследованием:

А) Диффузии

Б) Броуновского движения

Краткие итоги

Молекулярно-кинетическая теория объясняет строение и свойства тел на основе движения и взаимодействия атомов, молекул и ионов. В основе МКТ лежат три положения, которые полностью подтверждены экспериментально и теоретически:

1) все тела состоят из частиц – молекул, атомов, ионов;

2) частицы находятся в непрерывном хаотическом тепловом движении;

3) между частицами любого тела существуют силы взаимодействия – притяжения и отталкивания.

Молекулярное строение вещества подтверждается непосредственным наблюдением молекул в электронных микроскопах, а также растворением твердых веществ в жидкостях, сжимаемостью и проницаемостью вещества. Тепловое движение – броуновским движением и диффузией. Наличие межмолекулярного взаимодействия прочностью и упругостью твердых тел, поверхностным натяжением жидкостей.

Опорный конспект к уроку:

опорный конспект основные положения мкт

Вопросы для самоконтроля по блоку «Основные положения молекулярно-кинетической теории и их опытное обоснование»

  1. Сформулируйте основные положения молекулярно-кинетической теории.
  2. Какие наблюдения и эксперименты подтверждают основные положения молекулярно-кинетической теории?
  3. Что такое молекула? атом?
  4. Что называют относительной молекулярной массой? Какая формула выражает это понятие?
  5. Что называют количеством вещества? Какая формула выражает это понятие? Какова единица количества вещества?
  6. Что называют постоянной Авогадро?
  7. Что такое молярная масса вещества? Какая формула выражает смысл этого понятия? Какова единица молярной массы?
  8. Какова природа межмолекулярных сил?
  9. Какими свойствами обладают силы молекулярного взаимодействия?
  10. Как силы взаимодействия зависят от расстояния между ними?
  11. Опишите характер движения молекул в газах, жидкостях и твердых телах.
  12. Каков характер упаковки частиц у газов, жидкостей и твердых тел?
  13. Каково среднее расстояние между молекулами у газов, жидкостей и твердых тел?
  14. Перечислите основные свойства газов, жидкостей, твердых тел.
  15. Что называют броуновским движением?
  16. О чем свидетельствует броуновское движение?
  17. Что называют диффузией? Приведите примеры диффузии в газах, жидкостях и твердых телах.
  18. 18. Как зависит скорость диффузии от температуры тел?

Источник