Какими свойством обладает разбиение плоскости на две полуплоскости

§1. Контрольные вопросы
Вопрос 1. Приведите примеры геометрических фигур.
Ответ. Примеры геометрических фигур: треугольник, квадрат, окружность.
Вопрос 2. Назовите основные геометрические фигуры на плоскости.
Ответ. Основными геометрическими фигурами на плоскости являются точка и прямая.
Вопрос 3. Как обозначаются точки и прямые?
Ответ. Точки обозначаются прописными латинскими буквами: A, B, C, D, … . Прямые обозначаются строчными латинскими буквами: a, b, c, d, … .
Прямую можно обозначать двумя точками, лежащими на ней. Например, прямую a на рисунке 4 можно обозначить AC, а прямую b можно обозначить BC.
Рис.4
Вопрос 4. Сформулируйте основные свойства принадлежности точек и прямых.
Ответ. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.
Через любые две точки можно провести прямую, и только одну.
Вопрос 5. Объясните, что такое отрезок с концами в данных точках.
Ответ.Отрезком называется часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными её точками. Эти точки называются концами отрезка. Отрезок обозначается указанием его концов. Когда говорят или пишут: “отрезок AB”, то подразумевают отрезок с концами в точках A и B.
Вопрос 6. Сформулируйте основное свойство расположения точек на прямой.
Ответ. Из трёх точек на прямой одна и только одна лежит между двумя другими.
Вопрос 7. Сформулируйте основные свойства измерения отрезков.
Ответ. Каждый отрезок имеет определённую длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
Вопрос 8. Что называется расстоянием между двумя данными точками?
Ответ. Длину отрезка AB называют расстоянием между точками A и B.
Вопрос 9. Какими свойствами обладает разбиение плоскости на две полуплоскости?
Ответ. Разбиение плоскости на две полуплоскости обладает следующим свойством. Если концы какого-нибудь отрезка принадлежат одной полуплоскости, то отрезок не пересекает прямую. Если концы отрезка принадлежат разным полуплоскостям, то отрезок пересекает прямую.
Вопрос 10. Сформулируйте основное свойство расположения точек относительно прямой на плоскости.
Ответ. Прямая разбивает плоскость на две полуплоскости.
Вопрос 11. Что такое полупрямая или луч? Какие полупрямые называются дополнительными?
Ответ.Полупрямой или лучом называется часть прямой, которая состоит из всех точек этой прямой, лежащих по одну сторону от данной её точки. Эта точка называется начальной точкой полупрямой. Различные полупрямые одной и той же прямой, имеющие общую начальную точку, называются дополнительными.
Вопрос 12. Как обозначаются полупрямые?
Ответ. Полупрямые, так же как и прямые, обозначаются строчными латинскими буквами.
Вопрос 13. Какая фигура называется углом?
Ответ. Углом называется фигура, которая состоит из точки – вершины угла – и двух различных полупрямых, исходящих из этой точки, – сторон угла.
Вопрос 14. Как обозначается угол?
Ответ. Угол обозначается либо указанием его вершины, либо указанием его сторон, либо указанием трёх точек: вершины и двух точек на сторонах угла. Слово «угол» иногда заменяют знаком.
Вопрос 15. Какой угол называется развёрнутым?
Ответ. Если стороны угла являются дополнительными полупрямыми одной прямой, то угол называется развёрнутым.
Вопрос 16. Объясните, что означает выражение: «Полупрямая проходит между сторонами угла”.
Ответ.
Мы будем говорить, что луч проходит между сторонами данного угла, если он исходит из его вершины и пересекает какой-нибудь отрезок с концами на сторонах угла.
Вопрос 17. В каких единицах измеряются углы и с помощью какого инструмента? Объясните, как проводится измерение.
Ответ.Углы измеряются в градусах при помощи транспортира.
Вопрос 18. Сформулируйте основные свойства измерения углов.
Ответ. Каждый угол имеет определённую градусную меру, большую нуля. Развёрнутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
Вопрос 19. Сформулируйте основные свойства откладывания отрезков и углов.
Ответ. На любой полупрямой от её начальной точки можно отложить отрезок заданной длины, и только один. От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один.
Вопрос 20. Что такое треугольник?
Ответ.
Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — сторонами.
Вопрос 21. Что такое угол треугольника при данной вершине?
Ответ. Углом треугольника ABC при вершине A называется угол, образованный полупрямыми AB и AC. Так же определяются углы треугольника при вершинах B и C.
Вопрос 22. Какие отрезки называются равными?
Ответ. Отрезки называются равными, если их длины равны.
Вопрос 23. Какие углы называются равными?
Ответ. Углы называются равными, если их градусные меры равны.
Вопрос 24. Какие треугольники называются равными?
Ответ. Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны. При этом соответствующие углы должны лежать против соответствующих сторон.
Вопрос 25. Как на рисунке отмечаются у равных треугольников соответствующие стороны и углы?
Ответ.На чертеже равные отрезки обычно отмечают одной, двумя или тремя чёрточками, а равные углы — одной, двумя или тремя дужками.
Вопрос 26. Объясните по рисунку 23 существование треугольника, равного данному.
Ответ.
Пусть мы имеем треугольник ABC и луч a (рис. 23, а). Переместим треугольник ABC так, чтобы его вершина A совместилась с началом луча a, вершина B попала на луч a, а вершина C оказалась в заданной полуплоскости относительно луча a и его продолжения. Вершины нашего треугольника в этом новом положении обозначим A1,B1,C1 (рис. 23, б).
Треугольник A1B1C1 равен треугольнику ABC.
Вопрос 27. Какие прямые называются параллельными? Какой знак используется для обозначения параллельности прямых?
Ответ.Две прямые называются параллельными, если они не пересекаются. Для обозначения параллельности прямых используется знак
Вопрос 28. Сформулируйте основное свойство параллельных прямых.
Ответ. Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.
Вопрос 29. Приведите пример теоремы.
Ответ. Если прямая, не проходящая ни через одну из вершин треугольника, пересекает одну из его сторон, то она пересекает только одну из двух других сторон.
Источник
Гипермаркет знаний>>Математика>>Математика 7 класс>>Математика:Полуплоскости
Полуплоскости
Посмотрите на рисунок 9. Прямая а разбивает плоскость на две полуплоскости. Это разбиение обладает следующим свойством. Если концы какого-нибудь отрезка принадлежат одной полуплоскости, то Отрезок не пересекает прямую. Если концы отрезка принадлежат разным полуплоскостям, то отрезок пересекает прямую.
На рисунке 9 точки А и В лежат в одной из полуплоскостей, на которые прямая а разбивает плоскость. Поэтому отрезок АВ не пересекает прямую а. Точки С и D лежат в разных полуплоскостях. Поэтому отрезок CD пересекает прямую а.
Основным свойством расположения точек относительно прямой на плоскости мы будем называть следующее свойство:
IV. Прямая разбивает плоскость на две полуплоскости.
Задача (17). Даны прямая и три точки А, В, С, не лежащие на этой прямой. Известно, что отрезок АВ пересекает прямую, а отрезок АС не пересекает ее.
Пересекает ли прямую отрезок ВС? Объясните ответ.
Решение. Прямая разбивает плоскость на две полуплоскости (рис. 10).
Точка А принадлежит одной из них. Отрезок АС не пересекает прямую. Значит, точка С лежит в той же полуплоскости, что и точка А.
Отрезок АВ пересекает прямую. Значит, точка В лежит в другой полуплоскости.
Таким образом, точки В и С лежат в разных полуплоскостях. А это значит, что отрезок ВС пересекает нашу прямую.
А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений
Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь – Образовательный форум.
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний – Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов –
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других “взрослых” тем.
Разработка – Гипермаркет знаний 2008-
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email:
Источник
Гипермаркет знаний>>Математика>>Математика 10 класс>>Математика:Разбиение пространства плоскостью на два полупространства
Разбиение пространства плоскостью на два полупространства
Теорема 15.4. Плоскость разбивает пространство на два полупространства. Если точки X и Y принадлежат одному полупространству, то отрезок XY не пересекает плоскость. Если же точки X uY принадлежат разным полупространствам, то отрезок XY пересекает плоскость.
Доказательство (не для запоминания). Пусть — данная плоскость. Отметим точку А, не лежащую в плоскости
. Такая точка существует по аксиоме C1.
Разобьем все точки пространства, не лежащие в плоскости , на два полупространства следующим образом. Точку X отнесем к первому полупространству, если отрезок АХ не пересекает плоскость
, и ко второму полупространству, если отрезок АХ пересекает плоскость
. Покажем, что это разбиение пространства обладает свойствами, указанными в теореме.
Пусть точки X и Y принадлежат первому полупространству. Проведем через точки А, X и Y плоскость , . Если плоскость
, не пересекает плоскость
, то отрезок XY тоже не пересекает эту плоскость.
Допустим, что плоскость , пересекает плоскость
( рис. 319). Так как плоскости различны, то их пересечение происходит по некоторой прямой а.
Прямая а разбивает плоскость , на две полуплоскости. Точки X и Y принадлежат одной полуплоскости, именно той, в которой лежит точка А.
Поэтому отрезок XY не пересекает прямую а, а значит и плоскость .
Если точка X и Y принадлежат второму полупространству, то плоскость , заведомо пересекает плоскость
, так как отрезок АХ пересекает плоскость а.
Точки X и Y принадлежат одной полуплоскости разбиением плоскости , прямой а. Следовательно отрезок XY не пересекает прямую а, значит и плоскость
.
Если , наконец, точка Х пренадлежит одному полупространству, а точка Y – другому, то плоскость , пересекает плоскость
, а точки X и Y лежат в разных полуплоскостях плоскости
, относительно прямой а. Поэтому отрезок XY пересекает прямую а, а значит и плоскость
. Теорема доказана.
А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений
Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать
Содержание урока
конспект урока
опорный каркас
презентация урока
акселеративные методы
интерактивные технологии
Практика
задачи и упражнения
самопроверка
практикумы, тренинги, кейсы, квесты
домашние задания
дискуссионные вопросы
риторические вопросы от учеников
Иллюстрации
аудио-, видеоклипы и мультимедиа
фотографии, картинки
графики, таблицы, схемы
юмор, анекдоты, приколы, комиксы
притчи, поговорки, кроссворды, цитаты
Дополнения
рефераты
статьи
фишки для любознательных
шпаргалки
учебники основные и дополнительные
словарь терминов
прочие
Совершенствование учебников и уроков
исправление ошибок в учебнике
обновление фрагмента в учебнике
элементы новаторства на уроке
замена устаревших знаний новыми
Только для учителей
идеальные уроки
календарный план на год
методические рекомендации
программы
обсуждения
Интегрированные уроки
Если у вас есть исправления или предложения к данному уроку, напишите нам.
Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь – Образовательный форум.
Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки
© Автор системы образования 7W и Гипермаркета Знаний – Владимир Спиваковский
При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов –
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других “взрослых” тем.
Разработка – Гипермаркет знаний 2008-
Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email:
Источник
15
2 ответа:
0
0
Прямая разбивает плоскость на две полуплоскость.Это концы какого- нибудь отрезка принадлежит одной полуплоскости,то отрезок не пересекает прямую.Если концы отрезка принадлежат разным полуплоскостям,то отрезок пересекает прямую.
Одним свойством расположения точек относительно прямой на плоскости мы будем называть следующее свойство:прямая разбивает плоскость на две полуплоскости.
0
0
Прямая разбивает плоскость на две полуплоскости. Это разбиение обладает следующим свойством. Если концы какого-нибудь отрезка принадлежат одной полуплоскости, то отрезок не пересекает прямую. Если концы отрезка принадлежат разным полуплоскостям, то отрезок пересекает прямую.
Читайте также
В параллелограмме АВСД ВМ и ВК – высоты. ВМ=56 см, ВК=60 см, КМ=52 см.
Углы между соответственно перпендикулярными прямыми равны.
ВМ⊥АД, ВК⊥СД, значит ∠МВК=∠ВАД.
В треугольнике ВМК по теореме косинусов cos(∠МВК)=(ВМ²+ВК²-КМ²)/(2·ВМ·ВК)=(56²+60²-52²)/(2·56·60)=0.6.
sin²α=1-cos²α.
sin²(∠ВАД)=1-0.6²=0.64,
sin(∠ВАД)=0.8.
Пусть АВ=х, АД=у.
Площадь параллелограмма: S=ху·sinα=0.8ху.
Также S=х·ВК=60х и S=у·ВМ=56у.
1) 0.8ху=60х,
у=60/0.8=75.
АД=75 см – это ответ.
2) 0.8ху=56у,
х=56/0.8=70.
АВ=70 см – это ответ.
Параллель емес себеби 67 градус вертикаль болганда 123 градус пен 67 (123+67) косылганда 180 градус шыкпайды.Осыдан теорема тутас бурыш косындысы 180 ге тен болу керек,ал бунда 180 ге тен емес тутас бурыш
Так как угол М=90 градусов по условию), угол ОАМ=90 градусов(радиус , проведённый в точку касания), АМ=МВ-отрезки касательных, проведённых из одной точки, значит ОАМВ- квадрат.
Р(ЕМF)=EM+MF+EF
EM+MF=5+5=10
EF=√(5²+5²)=5√2
P(EMF)=10+5√2
1. Треугольник АВС равнобедренный, значит углы ВАС и ВСА равны.
2. Треугольник DCE равнобедренный, значит углы DCE DEC равны.
3. Углы BCA и DCE равны как вертикальные при пересечении двух прямых. Значит углы DEC и BAC равны (п. 1, 2)
Пустыня в тусклом, жарком свете.За нею — розовая мгла.Там минареты и мечети,Их росписные купола.
Там шум реки, базар под сводом,Сон переулков, тень садов —И, засыхая, пахнут мёдомНа кровлях лепестки цветов.
Иван Бунин
*****
Налево – шаг, направо – шаг:
Кругом – сплошной песок!
Пустыня – это не пустяк
Ни вдоль, ни поперёк.
Внутри пустыни – пустота.
Она ничем не занята
Ни летом, ни зимою.
Одни барханы – там и тут,
Да иногда качнёт верблюд
Горбатою спиною.
За шагом – шаг, за шагом – шаг…
Пройти пустыню – не пустяк.
Ступаю осторожно…
Тут можно три часа бродить,
Зато уж ноги промочить
В пустыне невозможно.
И горло больше не болит,
И вообще – здоровый вид
Да только мама говорит:
– Ну на сегодня хватит!
Вот сорванец!..
И как ты мог
Пойти в пустыню без сапог?!
А вдруг потоп! А вдруг поток…
Лежи-ка ты в кровати!
Евсеева Е.
Источник