Какое из перечисленных свойств присуще самоорганизующейся системе

Какое из перечисленных свойств присуще самоорганизующейся системе thumbnail

Самоорганизующиеся системы

Общей чертой, объединяющей классическое и неклассическое естествознание, является их предмет познания, в качестве которого выступают простые системы. Однако, такое понимание предмета познания является абстрагированным. Вселенная – это множество систем. Но лишь небольшая часть таких систем являются замкнутыми, то есть могут рассматриваться в качестве механизмов. Таких простых закрытых систем во Вселенной меньшинство. Большинство реальных систем являются открытыми и сложными. Это означает, что такие системы обмениваются с окружающей средой веществом и энергией.

Среди сложных систем особенно интересны самоорганизующиеся системы. К таким системам относятся наиболее значимые для человека биологические и социальные системы.

Теория сложных самоорганизующихся систем начала активно развиваться в 1970-е годы. В результате таких исследований возникло новое направление современного естествознания – синергетика.

Замечание 1

Синергетика, как и кибернетика, является междисциплинарным подходом. В кибернетике основной акцент ставится на процессы управления и обмена информацией, а в синергетике – на исследование принципов построения организации, ее становления, развития, самоусложнения.

Мир самоорганизующихся систем гораздо обширнее мира линейных, закрытых систем. Вместе с этим моделировать его гораздо сложнее. Для решения возникающих в таких системах нелинейных уравнений необходимо использование современных аналитических методов в сочетании с вычислительными экспериментами. Такие стороны мира, как многообразие путей развития, нестабильность благодаря синергетике открываются для точного математического моделирования. Синергетика раскрывает условия устойчивого развития и существования сложных структур, а также обеспечивает возможность моделирования катастрофических ситуаций и т.д.

Моделирование многих сложных самоорганизующихся систем осуществляется методами синергетики: начиная от морфогенеза в биологии до флаттера крыла самолета, от молекулярной физики до эволюции космических процессов и т.д. Основным вопросом синергетики является существование общих закономерностей, которые управляют формированием самоорганизующихся систем, их функций и структур.

Свойства самоорганизующихся систем

Поведение систем, которые рассматриваются синергетикой, описывается при помощи нелинейных уравнений, так как самоорганизующиеся системы являются нелинейными.

Нелинейные уравнения – это уравнения второго или большего порядка. Соответственно, такие системы характеризуются как неустойчивые и неравновесные. Вследствие неравновесности возникает избирательность системы. Причем, некоторые незначительные внешние воздействия способны оказывать на эволюцию системы большее влияние, чем более сильные, но неадекватные собственным тенденциям системы, воздействия.

Замечание 2

Другими словами, в нелинейных системах могут возникать ситуации, когда действия двух причин вызывают эффекты, не имеющие ничего общего с результатами действия этих причин по – отдельности.

Пороговый характер большинства процессов в самоорганизующихся систем является важнейшим следствием нелинейности поведения этих систем. Это означает, что при постепенном изменении внешних условий поведение системы меняется скачкообразно. То сеть в состояниях, когда система далека от равновесия, слабые флуктуации оказывают сильное влияние на систему. Они разрушают уже сложившуюся структуру и способствуют ее существенному изменению в качественном плане. Этим объясняется то, что являясь открытыми и неравновесными, нелинейные системы создают неоднородности в среде и поддерживают их. В этих условиях между средой и системой формируются отношения, имеющие обратную положительную связь. То есть система оказывает влияние на среду так, что в ней образуются определенные условия. Эти условия, в свою очередь, определяют изменения в самой этой системе.

Ярким примером этого является ситуация, в которой в процессе химической реакции либо какого-либо другого процесса образуется фермент, присутствие которого стимулирует производство этого самого фермента.

Диссипация энергии

В процессе взаимодействия открытых систем с внешней средой наблюдается диссипация энергии.

Определение 1

Диссипация энергии – это процесс перехода энергии упорядоченного процесса в энергию неупорядоченного процесса, а в результате – в тепловую энергию.

Диссипативными системами в общем случае называют такие системы, где энергия упорядоченного процесса переходит в энергию неупорядоченного, а в результате в энергию теплового движения.

В открытых системах с нелинейным течением процессом возможны термодинамически устойчивые неравновесные состояния, которые далеки от состояния термодинамического равновесия и характеризуются определенной временной и пространственной упорядоченностью, которая называется диссипативной ввиду того, что для ее существования требуется непрерывный обмен энергией и веществом с окружающей средой. При этом большое количество микропроцессов получает результирующую на макроуровне, существенно отличающуюся от происходящего с каждым отдельным элементом системы. Благодаря этому возникают новые структуры, которые характеризуются переходом от беспорядка к упорядоченности.

Читайте также:  Какие свойства алмаза и графита

Свойство диссипативности связано с понятием параметров порядка. Самоорганизующиеся системы характеризуются большим количеством параметром, которые улавливают воздействие окружающей среды неодинаково. В процессе течения времени в системе появляется несколько ведущих параметром, к которым подстраиваются остальные. Эти параметры системы называются параметрами порядка. Соотношения, которые связывают параметры порядка, являются гораздо проще математических моделей, которые описывают в целом систему детально, так как параметры порядка показывают содержание оснований неравновесной системы. Выявление параметров порядка является одной из главнейших задач, которые решаются в процессе изучения самоорганизующихся систем.

Источник

Второй пункт неправильный….открытосто ..это свойство саморганизующейся системы. . )

[ссылка заблокирована по решению администрации проекта]

Аннотация
В основе современной биологической картины мира лежит представление о том, что мир живого – это грандиозная система высокоорганизованных систем. Любая система состоит из совокупности элементов и связей между ними, которые объединяют данную совокупность элементов в единое целое. Биологическим системам свойственны свои специфические элементы и особенные типы связей между ними. Сначала об элементах и компонентах биологических систем. В них выражена дискретная составляющая живого. Живые объекты, системы в природе относительно обособлены друг от друга. Любая особь многоклеточного животного состоит из клеток, а любая клетка и одноклеточные существа – из определенных органелл. Органеллы образуются дискретными, обычно высокомолекулярными, органическими веществами. Биологические системы предельно индивидуализированы.
Введение
Развитие системы происходит за счет внутренних механизмов, в результате процессов самоорганизации и за счет внешних управляющих воздействий. Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М. , 1991. С. 271
М. Эйгеном на основе неравновесной термодинамики и теории информации разработана концепция самоорганизации материи. Эйген ограничивается моделированием добиологической эволюции макромолекул, но развитые им идеи и методы имеют более общее принципиальное значение. Так же как и работы школы Пригожина, работы Эйгена вышли за рамки частных наук и имеют общенаучное методологическое значение.
Согласно теории Эйгена, самоорганизация не является очевидным свойством материи, которое обязательно проявляется при любых обстоятельствах. Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М. , 1991. С. 279
Должны быть выполнены определенные внутренние и внешние условия, прежде чем такой процесс станет неизбежным. Самоорганизация начинается с флуктуации. Для возникновения процесса самоорганизации необходимы инструктивные свойства системы на микроуровне.
Инструкция требует информации, которая кодирует определенные функции. Для самоорганизованных систем интерес представляет функция воспроизведения или сохранения ее собственного информационного содержания. Для возникновения эволюции существенно не количество информации, а инструктирующие свойства информации; важно не количество, а ценность информации, которая непосредственно связана с ее используемостью.
1. Мир живого как система систем.
Среди живых систем нет двух одинаковых особей, популяций, видов и др. Это способствует их адаптации к внешней среде.
Вместе с тем сложная организация немыслима без целостности. Целостность системы означает несводимость свойств системы к сумме свойств ее элементов. Целостность порождается структурой системы, типом связей между ее элементами. Биологические системы отличаются высоким уровнем целостности. Пригожин И. , Стенгерс И. Время. Хаос и Квант. М. , 1994 С. 93
Живые системы – открытые системы, постоянно обменивающиеся веществом, энергией и информацией со средой. Обмен веществом, энергией и информацией происходит и между частями (подсистемами) системы. Для живых систем характерны отрицательная энтропия (увеличение упорядоченности) , способность к самоорганизации.
Динамические процессы в биологических системах, их самоорганизация, устойчивость и переходы из стационарного состояния в нестационарное обеспечиваются различными механизмами саморегуляции. Саморегуляция – это внутреннее свойство биологических систем автоматически поддерживать на некотором необходимом уровне параметры протекающих в них проц

Источник

К свойствам процесса самоорганизации относятся следующие:

1. Самоорганизующаяся система сохраняет состояние термодинамического равновесия.

2. Негаэнтропийный характер самоорганизующейся системы обеспечивается использованием информации.

3. Самоорганизующаяся система обладает функциональной активностью, выражающейся в противодействии внешним силам.

4. Самоорганизующаяся система обладает выбором линии поведения.

5. Целенаправленность действий.

6. Гомеостаз и связанная с ним адаптивность системы.

Механизм, обеспечивающий организационный процесс

Рассмотрим механизм, обеспечивающий организационный процесс. Пусть имеется некоторая система с направленным на нее внешним воздействием — вход системы. Вместе с вещественно-энергетическим потоком в нее попадает информация, представляющая собой собственную упорядоченность этого потока.

Читайте также:  На каких биологических свойствах основаны оба вида отбора

Эта информация оценивается в особом блоке — механизме управления. Здесь же вырабатывается программа ответного действия. В результате система реагирует на воздействие извне. В выходном вещественно-энергетическом потоке также имеется информационная составляющая. Часть ее по каналу обратной связи поступает на вход системы и снова попадает в механизм оценки и переработки информации. В результате система получает сведения об эффективности ее ответной реакции и изменяет направление и интенсивность действия, если это нужно для самостабилизации.

Таким путем многократного самоконтроля системы, получившие название «самоорганизующиеся», настраиваются на внешние факторы, достигают равновесия с условиями среды существования и тем самым сохраняют себя.

ХАРАКТЕРИСТИКИ ПРОЦЕССА САМООРГАНИЗАЦИИ

Можно выделить три основные характеристики процесса самоорганизации:

? гомеостаз;

? обратная связь;

? информация.

Гомеостаз

Слово «гомеостаз» произошло от двух греческих слов: homois — подобный, одинаковый, сходный (например, всем известна гомеопатия — лечение подобным) и stasis — неподвижность, состояние. Это относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма. Понятие «гомеостаз» применяют к биоценозам (сохранение постоянства видового состава и числа особей), в генетике, кибернетике. Таким образом, гомеостаз — это стремление живой системы сохранить стабильность своей организации, рода, популяции.

Гомеостаз присущ любому существу, любой живой системе. Стремление к гомеостазу — мощнейший фактор эволюции, открывает прямое влияние на интенсивность естественного отбора.

Разрушение организации живой системы означает ее гибель. Живое всегда стремится сохранить свою стабильность — это факт эмпирический. Для неживой материи стремление сохранить свой гомеостаз выражен в принципе Ле Шателье, который является следствием закона сохранения (см. ТЕМУ 11.7)

Однако диалектика развития неоднократно демонстрирует нам неоднозначность результатов и противоречивый характер любых утверждений типа «только так и не иначе». Устойчивость, доведенная до предела, прекращает свое развитие. Чересчур стабильные формы — тоже тупиковые формы, развитие которых прекращается. Чрезмерная адаптация или специализация столь же опасна для совершенствования, как и его неспособность к адаптации. То есть стремление к гомеостазу должно компенсироваться другими тенденциями, определяющими рост разнообразия.

Обратная связь

Важнейшей характеристикой процесса самоорганизации является обратная связь. Механизм обратной связи — это реакция системы на внешнее воздействие. Более точно можно сказать, что механизм обратной связи — это механизм, определяющий изменение состояния, являющийся реакцией на внешнее воздействие и определяющийся этой реакцией.

Существуют отрицательные обратные связи, которые поддерживают гомеостаз, т.е. компенсируют внешнее воздействие, и положительные обратные связи, которые ухудшают стабильность системы.

Стремление к гомеостазу формирует механизмы не только отрицательных, но и положительных обратных связей, так как оно компенсируется тенденцией разнообразия. Одна из таких тенденций порождается принципом минимума диссипации энергии (рассеяния энергии), уже рассмотренном ранее (см. ТЕМУ 10.5). Это является таким же эмпирическим обобщением, как и принцип сохранения гомеостаза.

Уже неоднократно говорилось о том, что живые системы — это всегда открытые системы (закупоренное в консервную банку со временем протухает). Живым системам свойствен метаболизм, т.е. обмен энергией и веществом с внешним миром (обмен веществ), без которого они существовать не могут. Одной из ведущих тенденций развития живых систем является стремление в наибольшей степени использовать энергию внешней среды, уменьшая тем самым свою локальную энтропию — меру хаоса.

Это тоже является эмпирическим фактом: так же, как и стремление сохранить гомеостаз, живому свойственно стремление так изменить систему, направить эволюционный процесс в такую сторону, чтобы увеличить способность системы усваивать внешнюю энергию и вещество.

Таким образом, одной из особенностей любого из важнейших эволюционных процессов, протекающих в живом мире, является противоречие между тенденциями к стабильности, т.е. сохранению гомеостаза, и укреплению отрицательных обратных связей, и тенденциями к поиску новых, более рациональных способов использования внешней энергии и вещества, т.е. укреплению положительных обратных связей. Способы решения этих противоречий могут быть различными, и это обстоятельство ответственно за самые разнообразные организационные формы материального мира.

Здесь хочется также отметить, что распространена теория двойственной обратной связи, согласно которой обратная связь в природных системах представлена в двух формах: информационной и неинформационной. Считается, что неинформационный тип распространен в неживой природе, а информационный появляется, начиная с органического уровня материи. Организация систем в живом мире порождает совершенно иной, новый тип механизмов развития, неизвестный в неживой природе, содержащий механизмы обратной связи. Это и есть та главная особенность, которая отличает живое от неживого. Однако некоторые прокариоты и вирусоподобные существа, традиционно относимые к живому миру, по-видимому, все-таки лишены способности формировать петли обратной связи. Поэтому уместнее здесь перейти к третьей характеристике — информации.

Читайте также:  Какие физические свойства характерны для металлов чем они обусловлены

Информация

Содержание понятия информации тесно связано с понятием отражения, которое уже было рассмотрено (см. ТЕМУ 14.). В общем случай информация означает отражение взаимодействующих тел. В результате воздействия одного объекта на другой запечатлеваются форма тела, структура, черты поведения.

Таким образом, информация — это отраженная структура, воспроизводящая структуру оригинала. Растительный мир, животный мир, мыслящий человек и человеческое общество — это гигантская иерархия систем с информационной самоорганизацией.

Читайте также:

Рекомендуемые страницы:

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-03
Нарушение авторских прав и Нарушение персональных данных

Источник

Системы, которые под действием окружения обретают пространственную, временную или функциональную структуру, называют самоорганизующимися.Синергетика ищет пути теоретического моделирования самых сложных систем, способных к самоорганизации и саморазвитию. Основные свойства самоорганизующихся систем – открытость, нелинейность, диссипативность и сложность.

Открытость. Эволюция Вселенной показывает, что в открытой системе энтропия уменьшается. В открытых, неравновесных и необратимых системах ключевую роль могут играть флуктуационные процессы. Иногда флуктуация может стать настолько сильной, что существующая организация разрушается.

Нелинейность. Во Вселенной доминируют не стабильность и равновесие, а нелинейность, неустойчивость и неравновесность. В нелинейных системах процессы часто носят пороговый характер и могут меняться скачкообразно. В состояниях, далеких от равновесия, очень слабые возмущения могут усиливаться до гигантских волн, разрушающих сложившуюся структуру и способствующих ее радикальному качественному изменению. Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородность в среде. В таких условиях, между системой и окружением могут возникнуть обратные положительные связи.

Неустойчивые системы, при возникновении флуктуаций способны усиливать их, и в результате система выходит из стационарного состояния. Критерием эволюции (развития) системы является величина ∆s<0, т.е. уменьшение энтропии. Это неравенство указывает направление развития системы к новому устойчивому стационарному состоянию.

Диссипативность. Открытые, сложные и неравновесные системы, могут приобретать особое динамическое состояние – диссипативность (лат. диссипатио – разгонять, рассеивать). Прирост энтропии за единицу времени в единице объема в открытых системах называется функцией диссипации, а системы, в которых функция диссипации отлична от нуля, названы диссипативными. В таких системах, постепенно упорядоченное движение переходит в неупорядоченное. Практически все физические системы являются такими, так кактрение приводит к диссипации энергии. Благодаря, диссипативности в системе могут спонтанно возникать новые типы структур, совершаться переходы от хаоса и беспорядка к порядку и организации.

Принцип локального равновесия и теорема о минимуме производства энтропии в равновесных состояниях были положены в основу современной термодинамики необратимых процессов, а их автор И. Пригожинстал лауреатом Нобелевской премии по химии в 1977 г.

Вопросы для самоконтроля

1. Каких систем называются самоорганизующимися системами?

2. Какими основными свойствами обладают самоорганизующиеся системы?

3. Как меняется энтропия, в открытой,самоорганизующейся системе?

4. Где доминируют нелинейность, неустойчивость и неравновесность?

5. В каких системах процессы часто меняться скачкообразно?

6. В каких состояниях могут, возникнут большие флуктуации, разрушающие структуру?

7. Между какими системами могут возникнуть обратные положительные связи?

8. Что является критерием эволюции системы?

9. Что означает диссипативность?

10. Что называют функцией диссипации?

11. Что происходит в системе, где есть трения?

12. Что происходит в системе в результате диссипации энергии?

13. Кто является автором теоремы о минимуме производства энтропии?

14. Когда Пригожин получил Нобелевскую премию, в области химии?

Источник