Какое количество бит информации содержится в сообщении выбранный из строя

Какое количество бит информации содержится в сообщении выбранный из строя thumbnail

2015-09-07

Пример 1. В коробке 32 карандаша, все карандаши разного цвета. Наугад вытащили красный. Какое количество информации при этом было получено?

Решение.

Так как вытаскивание карандаша любого цвета из имеющихся в коробке 32 карандашей является равновероятным, то число возможных событий равно 32.
N = 32, I = ?
N = 2I, 32 = 25, I = 5 бит.
Ответ: 5 бит.

Пример 2.В коробке 50 шаров, из них 40 белых и 10 чёрных. Определить количество информации в сообщении о вытаскивании наугад белого шара и чёрного шара.

Решение.

Вероятность вытаскивания белого шара
P1 = 40/50 = 0,8
Вероятность вытаскивания чёрного шара
P2 = 10/50 = 0,2
Количество информации о вытаскивании белого шара I1 = log2(1/0,8) = log21,25 = log1,25/log2 = 0,32 бит
Количество информации о вытаскивании чёрного шара I2 = log2(1/0,2) = log25 = log5/log2 » 2,32 бит
Ответ: 0,32 бит, 2,32 бит

Пример 3. В озере живут караси и окуни. Подсчитано, что карасей 1500, а окуней – 500. Сколько информации содержится в сообщениях о том, что рыбак поймал карася, окуня, поймал рыбу?

Решение.

События поимки карася или окуня не являются равновероятными, так как окуней в озере меньше, чем карасей.
Общее количество карасей и окуней в пруду 1500 + 500 = 2000.
Вероятность попадания на удочку карася
p1 = 1500/2000 = 0,75, окуня p2 – 500/2000 = 0,25.
I1 = log2(1/p1), I1 = log2(1/p2), где I1 и I2 – вероятности поймать карася и окуня соответственно.
I1 = log2(1 / 0,75) = 0,43 бит, I2 = log2(1 / 0,25) = 2 бит – количество информации в сообщении поймать карася и поймать окуня соответственно.
Количество информации в сообщении поймать рыбу (карася или окуня) рассчитывается по формуле Шеннона
I = – p1log2p1 – p2log2p2
I = – 0,75*log20,75 – 0,25*log20,25 = – 0,75*(log0,75/log2)-0,25*(log0,25/log2) =
= 0,604 бит = 0.6 бит.
Ответ: в сообщении содержится 0,6 бит информации.

Пример 4. Какое количество информации несет в себе сообщение о том, что нужная вам программа находится на одной из восьми дискет?

Решение.

Количество информации вычисляется по формуле: 2i = N, где i – искомая величина, N – количество событий. Следовательно, 23 =8.
Ответ: 3 бита.

Пример 5. Заполнить пропуски числами:

а) 5 Кбайт = __ байт = __ бит, б) __ Кбайт = __ байт = 12288 бит; в) __ Кбайт = __ байт = 2 13 бит; г) __Гбайт =1536 Мбайт = __ Кбайт; д) 512 Кбайт = 2__ байт = 2__ бит.

Решение.
а) 5 Кбайт = 5120 байт =40 960 бит,
б) 1,5 Кбайт = 1536 байт = 12 288 бит;
в) 1 Кбайт = 210 байт = 213 бит;
г) 1,5 Гбайт = 1536 Мбайт = 1 572 864 Кбайт;
д) 512 Кбайт = 219 байт = 222 бит.

Пример 6. Какова мощность алфавита, с помощью которого записано сообщение, содержащее 2048 символов, если его объем составляет 1/512 часть одного мегабайта?

Решение.

1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2i = N; 28 = 256 символов

Ответ:

1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2i = N; 28 = 256 символов.

Пример 7.Книга, набранная с помощью компьютера, содержит 150 страниц; на каждой странице – 40 строк, в каждой строке – 60 символов. Каков объем информации в книге?

Решение.

Мощность компьютерного алфавита равна 256. Один символ несет 1 байт информации.
Значит, страница содержит 40*60=2400 байт информации. Объем всей информации в книге: 2400*150 = 360 000 байт.
Ответ: 360 000 байт.

Пример 8. Для передачи секретного сообщения используется код, состоящий из десяти цифр. При этом все цифры кодируются одним и тем же (минимально возможным) количеством бит. Определите информационный объем сообщения длиной в 150 символов.

Решение.

Для кодировки одной из 10 цифр необходимо 4 бита. Это получаем из 23 < 10 < 24. Объём 150 символов получим 150*4=600(бит).
Ответ: 600 бит.

Пример 9.В кодировке Unicode на каждый символ отводится два байта. Определите информационный объем слова из двадцати четырех символов в этой кодировке.

Решение.

I= K*i; I = 24*2 байт = 48 байт = 48*8бит = 384 бит.
Ответ: 384 бита.

Пример 10.В рулетке общее количество лунок равно 128. Какое количество информации мы получаем в зрительном сообщения об остановке шарика в одной из лунок?

Решение.

Количество информации вычисляется по формуле: 2i = N, где i – искомая величина, N – количество событий.
2i=128. Следовательно, i=7.
Ответ: 7 бит.

Скачать раздаточный материал

Источник

Источник

Единицы измерения информации

Для информации существуют свои единицы измерения информации.
Если рассматривать сообщения информации как последовательность знаков,
то их можно представлять битами, а измерять в байтах, килобайтах,
мегабайтах, гигабайтах, терабайтах и петабайтах.

Давайте разберемся с этим, ведь нам придется измерять объем памяти и быстродействие компьютера.

Бит

Единицей измерения количества информации является бит – это наименьшая (элементарная) единица.

1бит – это количество информации, содержащейся в сообщении, которое вдвое уменьшает неопределенность знаний о чем-либо.

Байт

Байт – основная единица измерения количества информации.

Байтом называется последовательность из 8 битов.

Байт – довольно мелкая единица измерения информации. Например, 1 символ – это 1 байт.

Производные единицы измерения количества информации

1 байт=8 битов

1 килобайт (Кб)=1024 байта =210 байтов

1 мегабайт (Мб)=1024 килобайта =210 килобайтов=220 байтов

1 гигабайт (Гб)=1024 мегабайта =210 мегабайтов=230 байтов

1 терабайт (Гб)=1024 гигабайта =210 гигабайтов=240 байтов

Запомните, приставка КИЛО в информатике – это не 1000, а 1024, то есть 210 .

Методы измерения количества информации

Итак, количество информации в 1 бит вдвое уменьшает неопределенность знаний. Связь же между количеством возможных событий N и количеством информации I определяется формулой Хартли:

Алфавитный подход к измерению количества информации

При этом подходе отвлекаются от содержания (смысла) информации и
рассматривают ее как последовательность знаков определенной знаковой
системы. Набор символов языка, т.е. его алфавит можно рассматривать как
различные возможные события. Тогда, если считать, что появление символов
в сообщении равновероятно, по формуле Хартли можно рассчитать, какое
количество информации несет в себе каждый символ:

Вероятностный подход к измерению количества информации

Этот подход применяют, когда возможные события имеют различные
вероятности реализации. В этом случае количество информации определяют
по формуле Шеннона:

.

, где

I – количество информации,

N – количество возможных событий,

Pi – вероятность i-го события.

Задача 1.

Шар находится в одной из четырех коробок. Сколько бит информации несет сообщение о том, в какой именно коробке находится шар.

Имеется 4 равновероятных события (N=4).

По формуле Хартли имеем: 4=2i. Так как 22=2i, то i=2. Значит, это сообщение содержит 2 бита информации.

Задача 2.

Чему равен информационный объем одного символа русского языка?

В русском языке 32 буквы (буква ё обычно не используется), то есть количество событий будет равно 32. Найдем информационный объем одного символа. I=log2 N=log2 32=5 битов (25=32).

Примечание. Если невозможно найти целую степень числа, то округление производится в большую сторону.

Задача 3.

Чему равен информационный объем одного символа английского языка?

Задача 4.

Световое табло состоит из лампочек, каждая из которых может
находиться в одном из двух состояний (“включено” или “выключено”). Какое
наименьшее количество лампочек должно находиться на табло, чтобы с его
помощью можно было передать 50 различных сигналов?

С помощью N лампочек, каждая из которых может находиться в одном из двух состояний, можно закодировать 2N сигналов.

25< 50 <26, поэтому пяти лампочек недостаточно, а шести хватит. Значит, нужно 6 лампочек.

Задача 5.

Метеостанция ведет наблюдения за влажностью воздуха.
Результатом одного измерения является целое число от 0 до 100, которое
записывается при помощи минимально возможного количества битов. Станция
сделала 80 измерений. Определите информационный объем результатов
наблюдений.

В данном случае алфавитом является множество чисел от 0 до 100, всего
101 значение. Поэтому информационный объем результатов одного измерения
I=log2101. Но это значение не
будет целочисленным, поэтому заменим число 101 ближайшей к нему степенью
двойки, большей, чем 101. это число 128=27.  Принимаем для одного измерения I=log2128=7 битов. Для 80 измерений общий информационный объем равен 80*7 = 560 битов = 70 байтов.

Задача 6.

Определите количество информации, которое будет получено
после подбрасывания несимметричной 4-гранной пирамидки, если делают один
бросок.

Пусть при бросании 4-гранной несимметричной пирамидки вероятности отдельных событий будут равны: p1=1/2, p2=1/4, p3=1/8, p4=1/8.

Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:

I = -[1/2 * log2(1/2) + 1/4 * log2(1/4) + 1/8 * log(1/8) + 1/8 * log(1/8)] = 14/8 битов = 1,75 бита.

Задача 7.

В книге 100 страниц; на каждой странице – 20 строк, в каждой
строке – 50 символов. Определите объем информации, содержащийся в книге.

Задача 8.

Оцените информационный объем следующего предложения:

Тяжело в ученье – легко в бою!

Так как каждый символ кодируется одним байтом, нам только нужно
подсчитать количество символов, но при этом не забываем считать знаки
препинания и пробелы. Всего получаем 30 символов. А это означает, что
информационный объем данного сообщения составляет 30 байтов или 30 * 8 = 240 битов.

Источник

Практические задания по информатике (11 группа)

Содержание

Стр.

Тема 1

СР №1

Содержательный и алфавитный подходы к измерению информации.

2-5

Тема 2

СР №2

Перевод чисел из одной системы счисления в другую.

6

Тема 3

СР №3

Тема 4

СР №4

Тема 5

СР №5

Тема 6

СР №6

Практическое задание №1 по теме «Содержательный и алфавитный подходы к измерению информации».

Примеры решения задач на тему «Содержательный подход к измерению информации»

Задача 1. Какое количество информации содержится в неинформационном сообщении?

Решение: N=0 => 2i=0 => i=«пустое множество»

Задача 2. Найти количество информации в однозначном сообщении.

Решение: N=1 => 2i=1 => i=0 бит

Задача 3. Измерить количество информации при ответе на вопрос: «Какие завтра намечаются осадки?»

Решение: N=4 => 2i=4 => i=2 бит

Задача 4. Какое количество информации потребуется для кодирования одного шахматного поля?

Решение: N=8*8=64 => 2i=64 => i=6 бит

Задача 5. Получено сообщение, объемом 10 бит. Какое количество сообщений возможно составить из полученных данных?

Решение: i=10 => 210=1024 => N=1024 сообщения

Задача 6. Какое количество слов получится из фразы в 8 бит?

Решение: i=8 => 28=256 => N=256 слов

Задача 7. В корзине лежит 16 шаров разного цвета. Сколько информации несет сообщение, что достали белый шар?

Решение: N=16 => 2i=16 => i=4

Задача 8. Сообщение о том, что ваш друг живет на 6 этаже несет 4 бита информации. Сколько этажей в доме.

Решение: i=4 => 24=16 => N=16 этажей

Задача 9. За четверть ученик получил 100 оценок. Сообщение о том, что он получил четверку, несет 2 бита информации. Сколько четверок ученик получил за четверть?

Решение: i =2 => 22=4 => N=4 отметки. Это очевидно. Отметки «2», «3», «4», «5». Всего получено 100 отметок, а вот сколько из них четверок, не понятно даже ёжику.

Примеры решения задач на тему «Алфавитный подход к измерению информации»

Задача 1. Для записи текста использовался 256-символьный алфавит. Каждая страница содержит 32 строки по 64 символа в строке. Какой объем информации содержат 5 страниц этого текста?

Решение: N=256, => 2i = 256, => i=8 bit

k=32*64*5 символов

I=i*k=8*32*64*5 bit = 8*32*64*5/8 b = 32*64*5/1024 kb = 10 kb

Задача 2. Можно ли уместить на одну дискету книгу, имеющую 432 страницы, причем на каждой странице этой книги 46 строк, а в каждой строке 62 символа?

Решение: Т. к. речь идет о книге, напечатанной в электронном виде, то мы имеем дело с компьютерным языком. Тогда N=256, => 2i = 256, => i=8 bit

k = 46*62*432 символов

I = i*k = 8*46*62*432 bit = 8*46*62*432/8 b = 46*62*432/1024 kb = 1203,1875 kb = 1,17 Mb

Т. к. объем дискеты 1,44 Mb, а объем книги 1,17 Mb, то она на дискету уместится.

Задача 3. Скорость информационного потока – 20 бит/с. Сколько минут потребуется для передачи информации объемом в 10 килобайт.

Решение: t = I/v = 10 kb/ 20 бит/c = 10*1024 бит/ 20 бит/c = 512 c = 8,5 мин

Задача 4. Лазерный принтер печатает со скоростью в среднем 7 Кбит в секунду. Сколько времени понадобится для распечатки 12-ти страничного документа, если известно, что на одной странице в среднем по 45 строк, в строке 60 символов.

Решение: Т. к. речь идет о документе в электронном виде, готовым к печати на принтере, то мы имеем дело с компьютерным языком. Тогда N=256, => 2i = 256, => i=8 bit

K = 45*60*12 символов

I = i*k = 8*45*60*12 bit = 8*45*60*12/8 b = 45*60*12/1024 kb = 31,6 kb

t = I/v = 31,6 kb/ 7 Кбит/c = 31,6*8 kбит/ 7 Кбит/c = 36 c

Задача 5. Автоматическое устройство осуществило перекодировку информационного сообщения на русском языке, из кодировки Unicode, в кодировку КОИ-8. При этом информационное сообщение уменьшилось на 480 бит. Какова длина сообщения?

Решение: Объем 1 символа в кодировке КОИ-8 равен 1 байту, а в кодировке Unicode – 2 байтам.

Пусть x – длина сообщения, тогда IКОИ-8 = 1*x b, а IUnicode = 2*x b.

Получаем 2*x8 bит – 1*x*8 бит = 480 бит, 8x = 480, х = 60 символов в сообщении.

Задача 6. Найдите х, если 4х бит=32 Кбайт.

Решение: 4х бит = 32 Кбайт

4х бит = 32 * 1024 байт

4х бит = 32 * 1024 * 8 бит

22х бит = 25 * 210 * 23 бит

22х бит = 218 бит

2х = 18

Х = 9

Задачи для самостоятельного решения

Задача 1. Имеется 2 текста на разных языках. Первый текст использует 32-символьный алфавит и содержит 200 символов, второй – 16-символьный алфавит и содержит 250 символов. Какой из текстов содержит большее количество информации и на сколько бит?

Задача 2. За 45 секунд был распечатан текст. Подсчитать количество страниц в тексте, если известно, что в среднем на странице 5о строк по 75 символов в каждой,  скорость печати лазерного принтера 8 Кбит/сек., 1 символ – 1 байт. Ответ округлить до целой части.

Задача 3. Найдите х, если 16х бит=128 Кбайт.?

Задача 4. Для записи сообщения использовался 64-х символьный алфавит. Каждая страница содержит 30 строк. Все сообщение содержит 8775 байтов информации и занимает 6 страниц. Сколько символов в строке?

Задача 5. ДНК человека (генетический код) можно представить себе как некоторое слово в четырехбуквенном алфавите, где каждой буквой помечается звено цепи ДНК (нуклеотид). Сколько информации в битах содержит цепочка ДНК человека, содержащая примерно 1,5×1023 нуклеотидов?

Задача 6. Сообщение, записанное буквами 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?

Задача 7. Жители планеты Принтер используют алфавит из 256 знаков, а жители планеты Плоттер — из 128 знаков. Для жителей какой планеты сообщение из 10 знаков несет больше информации и на сколько?

Задача 8. Для кодирования нотной записи используется 7 значков-нот. Каждая нота кодируется одним и тем же минимально возможным количеством бит. Чему равен информационный объем сообщения, состоящего из 180 нот?

Задача 9. За четверть ученик получил 100 оценок. Сообщение о том, что он получил четверку, несет 2 бита информации. Сколько четверок ученик получил за четверть? 

Задача 10 (ЕГЭ). В велокроссе участвуют 119 спортсменов. Специальное устройство регистрирует прохождение каждым из участников промежуточного финиша, записывая его номер с использованием минимально возможного количества бит, одинакового для каждого спортсмена. Каков информационный объем сообщения, записанного устройством, после того как промежуточный финиш прошли 70 велосипедистов?

Задача 11. Словарный запас некоторого языка составляет 256 слов, каждое из которых состоит точно из 4 букв. Сколько букв в алфавите языка?

Задача 12 (ЕГЭ). Сколько информации несет сообщение о том, что было угадано число в диапазоне целых чисел от 684 до 811?

Задача 13. В некоторой стране автомобильный номер длиной 7 символов составляется из заглавных букв (всего используется 26 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер – одинаковым и минимально возможным количеством байт. Определите объем памяти, необходимый для хранения 20 автомобильных номеров.

Задача 14. Каждая клетка поля 8×8 кодируется минимально возможным и одинаковым количеством бит. Решение задачи о прохождении ‘конем’ поля записывается последовательностью кодов посещенных клеток. Каков объем информации после 11 сделанных ходов? (Запись решения начинается с начальной позиции коня).

Задача 15. Информационное сообщение объемом 1,5 килобайта содержит 3072 символа. Сколько символов содержит алфавит, с помощью которого было записано это сообщение?

Задача 16. Мощность алфавита равна 64. Сколько Кбайт памяти потребуется, чтобы сохранить 128 страниц текста, содержащего в среднем 256 символов на каждой странице?

Задача 17. Конфеты находятся в одной из 10 коробок. Определить информационную неопределенность.

Задача 18. Тетрадь лежит на одной из двух полок – верхней или нижней. Сколько бит несет в себе сообщение, что она лежит на нижней полке?

Задача 19. Шарик находится в одной из трех урн: А, В или С. Определить информационную неопределенность.

Задача 20. Шарик находится в одной из 32 урн. Сколько единиц информации будет содержать сообщение о том, где он находится?

Задача 21. Сколько вопросов следует задать и как их нужно сформулировать, чтобы узнать с какого из 16 путей отправляется ваш поезд?

Задача 22. Какое количество информации получит первый игрок после первого хода второго игрока в игре “крестики – нолики” на поле 4 х 4?

Задача 23. После реализации одного из возможных событий получили количество информации равное 15 бит. Какое количество возможных событий было первоначально?

Задача 24. Определить стратегию угадывания одной карты из колоды из 32 игральных карт (все четыре шестерки отсутствуют), если на вопросы будут даны ответы “да” или “нет”.

Задача 25. При игре в кости используется кубик с шестью гранями. Сколько бит информации получает игрок при каждом бросании кубика?

Задача 26. Сообщение о том, что ваш друг живет на 6 этаже несет 4 бита информации. Сколько этажей в доме.

Задача 27. Информационная емкость сообщения о том, что из корзины, где лежало некоторое количество разноцветных шаров, достали зеленый шар, несет в себе 0, 375 байта информации. Сколько в корзине было шаров.

Задача 28. В библиотеке 16 стеллажей. На каждом стеллаже по 8 полок Библиотекарь сказал Оле, что интересующая ее книга находится на 3 стеллаже, на 2-й сверху полке. Какое количество информации получила Оля?

Задача 29. В мешке находятся 30 шаров, из них 10 белых и 20 черных. Какое количество информации несет сообщение о том, что достали белый шар, черный шар?

Задача 30. В классе 30 человек. За контрольную работу по математике получено 6 пятерок, 15 четверок, 8 троек и 1 двойка. Какое количество информации в сообщении о том, что Иванов полу­чил четверку?

Задача 31. В корзине лежат 32 клубка шерсти. Среди них – 4 красных. Сколько информации несет сообщение о том, что достали клубок красной шерсти?

Задача 32. В коробке лежат 64 цветных карандаша. Сообщение о том, что достали белый карандаш, несет 4 бита информации. Сколько белых карандашей было в корзине?

Задача 33. В ящике лежат перчатки (белые и черные). Среди них – 2 пары черных. Сообщение о том, что из ящика достали пару черных перчаток, несет 4 бита информации. Сколько всего пар перчаток было в ящике?

Практическое задание №2 по теме «Перевод чисел из одной системы счисления в другую».

· Переведите в десятичную систему счисления: 2213; 1207; 34,15; E41A,1216.

· Перевести десятичные дроби в двоичную систему счисления. В двоичной записи числа сохранить 6 знаков: 0,654; 0,321; 0,6135; 0,9876.

· Десятичное число 10,2 перевели в восьмеричную систему счисления. Определить 1998 цифру после запятой.

· Число 25341 записано числами восьмеричной, шестеричной и шестнадцатеричной систем счисления. Найти его десятичное значение.

· Перевести десятичные дроби в двоичную систему счисления. В двоичной записи числа сохранить 6 знаков: 0,555; 0,333; 0,1213; 0,453.

· Запишите десятичный эквивалент числа 10101, если считать его написанным во всех системах счисления – от двоичной до девятеричной включительно.

· Перевести число 123,7030125 из десятичной в восьмеричную систему счисления, сохранив 4 знака после запятой.

· Перевести десятичные дроби в шестнадцатеричную систему счисления. В двоичной записи числа сохранить 6 знаков: 0,8455; 0,225; 0,1234; 0,455.

· В каких системах счисления справедливы равенства: 2*2=10; 2*3=11; 3*3=13?

· Перевести десятичное число 315, 1875 в восьмеричную и 16-ричную системы счисления. Сделать проверку обратным переводом.

· Придумайте пословицы, поговорки, расхожие выражения со словами «один» и «ноль».

· Переведите в десятичную систему счисления по схеме Горнера: 12078; 3F116; 100112; 3419; 3418; 3416; 34116.

· Выполнить действия сложения, умножения и вычитания в 16-ричной и двоичной системе счисления и проверить результат переводом в десятичные числа:

a.  1Е16 и 2,A16;

b.  1011,112 и 111,112.

· В учебном центре имеются ПК двух типов. Всего 214 компьютеров, из них 120 первого типа и 44 – второго. В какой системе счисления записаны эти числа?

· В бумагах чудака-математика была найдена его автобиография. Она начиналась следующими словами: «Я окончил курс университета 44 лет от роду. Спустя год, 100-летним молодым человеком, я женился на 34-летней девушке. Незначительная разница в возрасте – всего 11 лет – способствовала тому, что мы жили общими интересами и мечтами. Спустя немного лет у меня уже была маленькая семья из 10 детей. Жалованья я получал в месяц всего 2000 рублей, из которых 1/100 приходилось отдавать сестре, так что мы с детьми жили на 1430 рублей в месяц». Чем объяснить странные противоречия в числах приведенной автобиографии? Проверьте ваши предположения.

· Какое минимальное основание должна иметь система счисления, если в ней могут быть записаны числа:

a.  10, 21, 201, 1201;

b.  403, 561, 666, 125;

c.  22, 984, 1010, А219?

· В каких системах счисления 10 – число нечетное?

·  Переведите: 13,B16→X2; 110012→X16; 347,018→X2; 110012→X8.

·  Переведите двоичные числа в восьмеричную и 16-ричную системы счисления:

o  011101; ,101; 111001; 111;

o  011; ,00111; 001; 111.

·  Перевести восьмеричные числа в двоичную систему счисления:

o  256; 0,345; 24,025; 0,25;

o  657; 76,025; 0,344; 345,77.

·  Перевести шестнадцатеричные числа в двоичную систему счисления:

o  1AC7; 0,2D1; 2F8C; F0CFF;

o  FACC; 0,FFD; FDA,12F; DDFF, A.

·  Перевести число 2А, В16 в четверичную систему счисления.

·  Трехзначное 16-ричное число увеличилось в семь раз после перестановки последней цифры в конец числа. Найдите значение исходного числа.

·Выполнить действия.

o  1123*2,13;

o  578*112;

o  44A,116+.

o  538*3,58;

o  141,А,12;

o  123*2,23.

·  Перевести десятичное число 93,45 в троичную, семеричную и девятеричную системы счисления, оставляя в дробях 4 значащих цифры после запятой.

·  Перевести десятичное число 36,75 в двоичную, шестеричную и шестнадцатеричную системы счисления, оставляя в дробях 4 значащих цифры после запятой.

·  Сравнить 0,3458 и 0, 3456.

·  Сравнить 0,1112 и 0,11110.

·  Запишите десятичное значение максимального четырехразрядного четверичного числа.

·  Запишите десятичное значение максимального шестиразрядного троичного числа.

·  В каких Р-ичных системах счисления 2P+2P=4P?

·  В каких Р-ичных системах счисления 2P*2P=10P?

·  Во сколько раз увеличится число 3256, если приписать к нему справа один ноль?

·  Существуют ли системы счисления с основаниями P и Q, в которых 12P>21Q? Если да, то привести пример.

·  Во сколько раз увеличится число 324, если приписать к нему справа три нуля?

·  Существует ли такая система счисления, в которой 3+4=7, 3*4=13 и 39+29=70?

Источник