Какое количество информации содержится в сообщении я учусь в 9 классе

В одной из кодировок Unicode каждый символ кодируется 16 битами.
Определите размер в байтах следующего предложения в данной кодировке:
Я к вам пишу – чего же боле? Что я могу ещё сказать?
Это задание решали 13 тыс. раз. С ним справились 36% пользователей.
В одной из кодировок Unicode каждый символ кодируется 16 битами.
Определите размер в байтах следующего предложения в данной кодировке:
Слух обо мне пройдёт по всей Руси великой.
Это задание решали 6 тыс. раз. С ним справились 56% пользователей.
Статья, набранная на компьютере, содержит 10 страниц, на каждой странице 32 строки, в каждой строке 48 символов. В одном из представлений Unicode каждый символ кодируется 16 битами.
Определите информационный объём статьи в Кбайтах в этом варианте представления Unicode.
Это задание решали 4 тыс. раз. С ним справились 60% пользователей.
Статья, набранная на компьютере, содержит 20 страниц, на каждой странице 40 строк, в каждой строке 48 символов. В одном из представлений Unicode каждый символ кодируется двумя байтами.
Определите информационный объём статьи в Кбайтах в этом варианте представления Unicode.
Это задание решали 4 тыс. раз. С ним справились 70% пользователей.
В одной из кодировок Unicode каждый символ кодируется 16 битами.
Вова написал текст (в нём нет лишних пробелов):
«Чиж, грач, стриж, гагара, пингвин, ласточка, жаворонок, свиристель, буревестник, вертиголовка – птицы».
Ученик вычеркнул из списка название одной птицы. Заодно он вычеркнул ставшие лишними запятые и пробелы – два пробела не должны идти подряд.
При этом размер нового предложения в данной кодировке оказался на 12 байт меньше, чем размер исходного предложения.
Напишите в ответе вычеркнутое название птицы.
Это задание решали 4 тыс. раз. С ним справились 64% пользователей.
В одной из кодировок Unicode каждый символ кодируется 16 битами. Вова написал текст (в нём нет лишних пробелов):
«Чиж, грач, стриж, гагара, пингвин, ласточка, жаворонок, свиристель, буревестник, вертиголовка – птицы».
Ученик вычеркнул из списка название одной птицы. Заодно он вычеркнул ставшие лишними запятые и пробелы – два пробела не должны идти подряд. При этом размер нового предложения в данной кодировке оказался на 18 байт меньше, чем размер исходного предложения.
Напишите в ответе вычеркнутое название птицы.
Это задание решали 4 тыс. раз. С ним справились 73% пользователей.
В одной из кодировок Unicode каждый символ кодируется бит.
Определите информационный объём следующего предложения в данной кодировке.
Глаза – зеркало души.
- байт
- бит
- бит
- бит
Запишите цифру, соответствующую выбранному ответу.
Это задание решали 7 тыс. раз. С ним справились 68% пользователей.
В кодировке КОИ- каждый символ кодируется одним байтом.
Определите
информационный объём следующего предложения в данной кодировке.
Каков вопрос, таков и ответ.
- байт
- бит
- бит
- бит
Запишите одну цифру,
которая соответствует номеру правильного ответа.
Это задание решали 7 тыс. раз. С ним справились 63% пользователей.
В одной из кодировок Unicode каждый символ кодируется битами.
Вова написал текст (в нём нет лишних пробелов):
«Ёж, лев, слон, олень, тюлень, носорог, крокодил, аллигатор – дикие
животные».
Ученик вычеркнул из списка название одного из животных. Заодно он
вычеркнул ставшие лишними запятые и пробелы – два пробела не должны идти подряд.
При этом размер нового предложения в данной кодировке оказался
на байт меньше, чем размер исходного предложения.
Напишите в поле для ответа вычеркнутое название животного.
Это задание решали 24 тыс. раз. С ним справились 59% пользователей.
Это задание решали 19 тыс. раз. С ним справились 57% пользователей.
Это задание решали 33 тыс. раз. С ним справились 44% пользователей.
Источник
2015-09-07
Пример 1. В коробке 32 карандаша, все карандаши разного цвета. Наугад вытащили красный. Какое количество информации при этом было получено?
Решение.
Так как вытаскивание карандаша любого цвета из имеющихся в коробке 32 карандашей является равновероятным, то число возможных событий равно 32.
N = 32, I = ?
N = 2I, 32 = 25, I = 5 бит.
Ответ: 5 бит.
Пример 2.В коробке 50 шаров, из них 40 белых и 10 чёрных. Определить количество информации в сообщении о вытаскивании наугад белого шара и чёрного шара.
Решение.
Вероятность вытаскивания белого шара
P1 = 40/50 = 0,8
Вероятность вытаскивания чёрного шара
P2 = 10/50 = 0,2
Количество информации о вытаскивании белого шара I1 = log2(1/0,8) = log21,25 = log1,25/log2 = 0,32 бит
Количество информации о вытаскивании чёрного шара I2 = log2(1/0,2) = log25 = log5/log2 » 2,32 бит
Ответ: 0,32 бит, 2,32 бит
Пример 3. В озере живут караси и окуни. Подсчитано, что карасей 1500, а окуней – 500. Сколько информации содержится в сообщениях о том, что рыбак поймал карася, окуня, поймал рыбу?
Решение.
События поимки карася или окуня не являются равновероятными, так как окуней в озере меньше, чем карасей.
Общее количество карасей и окуней в пруду 1500 + 500 = 2000.
Вероятность попадания на удочку карася
p1 = 1500/2000 = 0,75, окуня p2 – 500/2000 = 0,25.
I1 = log2(1/p1), I1 = log2(1/p2), где I1 и I2 – вероятности поймать карася и окуня соответственно.
I1 = log2(1 / 0,75) = 0,43 бит, I2 = log2(1 / 0,25) = 2 бит – количество информации в сообщении поймать карася и поймать окуня соответственно.
Количество информации в сообщении поймать рыбу (карася или окуня) рассчитывается по формуле Шеннона
I = – p1log2p1 – p2log2p2
I = – 0,75*log20,75 – 0,25*log20,25 = – 0,75*(log0,75/log2)-0,25*(log0,25/log2) =
= 0,604 бит = 0.6 бит.
Ответ: в сообщении содержится 0,6 бит информации.
Пример 4. Какое количество информации несет в себе сообщение о том, что нужная вам программа находится на одной из восьми дискет?
Решение.
Количество информации вычисляется по формуле: 2i = N, где i – искомая величина, N – количество событий. Следовательно, 23 =8.
Ответ: 3 бита.
Пример 5. Заполнить пропуски числами:
а) 5 Кбайт = __ байт = __ бит, б) __ Кбайт = __ байт = 12288 бит; в) __ Кбайт = __ байт = 2 13 бит; г) __Гбайт =1536 Мбайт = __ Кбайт; д) 512 Кбайт = 2__ байт = 2__ бит.
Решение.
а) 5 Кбайт = 5120 байт =40 960 бит,
б) 1,5 Кбайт = 1536 байт = 12 288 бит;
в) 1 Кбайт = 210 байт = 213 бит;
г) 1,5 Гбайт = 1536 Мбайт = 1 572 864 Кбайт;
д) 512 Кбайт = 219 байт = 222 бит.
Пример 6. Какова мощность алфавита, с помощью которого записано сообщение, содержащее 2048 символов, если его объем составляет 1/512 часть одного мегабайта?
Решение.
1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2i = N; 28 = 256 символов
Ответ:
1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2i = N; 28 = 256 символов.
Пример 7.Книга, набранная с помощью компьютера, содержит 150 страниц; на каждой странице – 40 строк, в каждой строке – 60 символов. Каков объем информации в книге?
Решение.
Мощность компьютерного алфавита равна 256. Один символ несет 1 байт информации.
Значит, страница содержит 40*60=2400 байт информации. Объем всей информации в книге: 2400*150 = 360 000 байт.
Ответ: 360 000 байт.
Пример 8. Для передачи секретного сообщения используется код, состоящий из десяти цифр. При этом все цифры кодируются одним и тем же (минимально возможным) количеством бит. Определите информационный объем сообщения длиной в 150 символов.
Решение.
Для кодировки одной из 10 цифр необходимо 4 бита. Это получаем из 23 < 10 < 24. Объём 150 символов получим 150*4=600(бит).
Ответ: 600 бит.
Пример 9.В кодировке Unicode на каждый символ отводится два байта. Определите информационный объем слова из двадцати четырех символов в этой кодировке.
Решение.
I= K*i; I = 24*2 байт = 48 байт = 48*8бит = 384 бит.
Ответ: 384 бита.
Пример 10.В рулетке общее количество лунок равно 128. Какое количество информации мы получаем в зрительном сообщения об остановке шарика в одной из лунок?
Решение.
Количество информации вычисляется по формуле: 2i = N, где i – искомая величина, N – количество событий.
2i=128. Следовательно, i=7.
Ответ: 7 бит.
Скачать раздаточный материал
Источник
Источник
Набор символов знаковой системы (алфавит) можно рассматривать как различные возможные состояния (события).
Тогда, если считать, что появление символов в сообщении равновероятно, количество возможных событийN можно вычислить как N=2i
Количество информации в сообщении I можно подсчитать умножив количество символов K на информационный вес одного символа i
Итак, мы имеем формулы, необходимые для определения количества информации в алфавитном подходе:
Если к этим задачам добавить задачи на соотношение величин, записанных в разных единицах измерения, с использованием представления величин в виде степеней двойки мы получим 9 типов задач.
Рассмотрим задачи на все типы. Договоримся, что при переходе от одних единиц измерения информации к другим будем строить цепочку значений. Тогда уменьшается вероятность вычислительной ошибки.
Задача 1. Получено сообщение, информационный объем которого равен 32 битам. чему равен этот объем в байтах?
Решение: В одном байте 8 бит. 32:8=4
Ответ: 4 байта.
Задача 2. Объем информацинного сообщения 12582912 битов выразить в килобайтах и мегабайтах.
Решение: Поскольку 1Кбайт=1024 байт=1024*8 бит, то 12582912:(1024*8)=1536 Кбайт и
поскольку 1Мбайт=1024 Кбайт, то 1536:1024=1,5 Мбайт
Ответ:1536Кбайт и 1,5Мбайт.
Задача 3. Компьютер имеет оперативную память 512 Мб. Количество соответствующих этой величине бит больше:
1) 10 000 000 000бит 2) 8 000 000 000бит 3) 6 000 000 000бит 4) 4 000 000 000бит Решение: 512*1024*1024*8 бит=4294967296 бит.
Ответ: 4.
Задача 4. Определить количество битов в двух мегабайтах, используя для чисел только степени 2.
Решение: Поскольку 1байт=8битам=23битам, а 1Мбайт=210Кбайт=220байт=223бит. Отсюда, 2Мбайт=224бит.
Ответ: 224бит.
Задача 5. Сколько мегабайт информации содержит сообщение объемом 223бит?
Решение: Поскольку 1байт=8битам=23битам, то
223бит=223*223*23бит=210210байт=210Кбайт=1Мбайт.
Ответ: 1Мбайт
Задача 6. Один символ алфавита “весит” 4 бита. Сколько символов в этом алфавите?
Решение:
Дано:
i=4 | По формуле N=2i находим N=24, N=16 |
Найти: N – ? |
Ответ: 16
Задача 7. Каждый символ алфавита записан с помощью 8 цифр двоичного кода. Сколько символов в этом алфавите?
Решение:
Дано:
i=8 | По формуле N=2i находим N=28, N=256 |
Найти:N – ? |
Ответ: 256
Задача 8. Алфавит русского языка иногда оценивают в 32 буквы. Каков информационный вес одной буквы такого сокращенного русского алфавита?
Решение:
Дано:
N=32 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i– ? |
Ответ: 5
Задача 9. Алфавит состоит из 100 символов. Какое количество информации несет один символ этого алфавита?
Решение:
Дано:
N=100 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i– ? |
Ответ: 5
Задача 10. У племени “чичевоков” в алфавите 24 буквы и 8 цифр. Знаков препинания и арифметических знаков нет. Какое минимальное количество двоичных разрядов им необходимо для кодирования всех символов? Учтите, что слова надо отделять друг от друга!
Решение:
Дано:
N=24+8=32 | По формуле N=2i находим 32=2i, 25=2i,i=5 |
Найти: i– ? |
Ответ: 5
Задача 11. Книга, набранная с помощью компьютера, содержит 150 страниц. На каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге? Ответ дайте в килобайтах и мегабайтах
Решение:
Дано:
K=360000 | Определим количество символов в книге 150*40*60=360000. Один символ занимает один байт. По формуле I=K*iнаходим I=360000байт 360000:1024=351Кбайт=0,4Мбайт |
Найти: I– ? |
Ответ: 351Кбайт или 0,4Мбайт
Задача 12. Информационный объем текста книги, набранной на компьютере с использованием кодировки Unicode, — 128 килобайт. Определить количество символов в тексте книги.
Решение:
Дано:
I=128Кбайт,i=2байт | В кодировке Unicode один символ занимает 2 байта. Из формулыI=K*i выразимK=I/i,K=128*1024:2=65536 |
Найти: K– ? |
Ответ: 65536
Задача 13.Информационное сообщение объемом 1,5 Кб содержит 3072 символа. Определить информационный вес одного символа использованного алфавита
Решение:
Дано:
I=1,5Кбайт,K=3072 | Из формулы I=K*i выразимi=I/K,i=1,5*1024*8:3072=4 |
Найти: i– ? |
Ответ: 4
Задача 14.Сообщение, записанное буквами из 64-символьного алфавита, содержит 20 символов. Какой объем информации оно несет?
Решение:
Дано:
N=64, K=20 | По формуле N=2i находим 64=2i, 26=2i,i=6. По формуле I=K*i I=20*6=120 |
Найти: I– ? |
Ответ: 120бит
Задача 15. Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если его объем составил 1/16 часть мегабайта?
Решение:
Дано:
N=16, I=1/16 Мбайт | По формуле N=2i находим 16=2i, 24=2i,i=4. Из формулы I=K*i выразим K=I/i, K=(1/16)*1024*1024*8/4=131072 |
Найти: K– ? |
Ответ: 131072
Задача 16. Объем сообщения, содержащего 2048 символов,составил 1/512 часть мегабайта. Каков размер алфавита, с помощью которого записано сообщение?
Решение:
Дано:
K=2048,I=1/512 Мбайт | Из формулы I=K*i выразим i=I/K, i=(1/512)*1024*1024*8/2048=8. По формулеN=2iнаходим N=28=256 |
Найти: N– ? |
Ответ: 256
Задачи для самостоятельного решения:
- Каждый символ алфавита записывается с помощью 4 цифр двоичного кода. Сколько символов в этом алфавите?
- Алфавит для записи сообщений состоит из 32 символов, каков информационный вес одного символа? Не забудьте указать единицу измерения.
- Информационный объем текста, набранного на компьюте¬ре с использованием кодировки Unicode (каждый символ кодируется 16 битами), — 4 Кб. Определить количество символов в тексте.
- Объем информационного сообщения составляет 8192 бита. Выразить его в килобайтах.
- Сколько бит информации содержит сообщение объемом 4 Мб? Ответ дать в степенях 2.
- Сообщение, записанное буквами из 256-символьного ал¬фавита, содержит 256 символов. Какой объем информации оно несет в килобайтах?
- Сколько существует различных звуковых сигналов, состоящих из последовательностей коротких и длинных звонков. Длина каждого сигнала — 6 звонков.
- Метеорологическая станция ведет наблюдение за влажностью воздуха. Результатом одного измерения является целое число от 20 до 100%, которое записывается при помощи минимально возможного количества бит. Станция сделала 80 измерений. Определите информационный объем результатом наблюдений.
- Скорость передачи данных через ADSL-соединение равна 512000 бит/с. Через данное соединение передают файл размером 1500 Кб. Определите время передачи файла в секундах.
- Определите скорость работы модема, если за 256 с он может передать растровое изображение размером 640х480 пикселей. На каждый пиксель приходится 3 байта. А если в палитре 16 миллионов цветов?
Тема определения количества информации на основе алфавитного подхода используется в заданиях А1, А2, А3, А13, В5 контрольно-измерительных материалов ЕГЭ.
Источник
Задачи по теме “Количество информации”
Пример 1. В коробке 32 карандаша, все карандаши разного цвета. Наугад вытащили красный. Какое количество информации при этом было получено?
Решение.
Так как вытаскивание карандаша любого цвета из имеющихся в коробке 32 карандашей является равновероятным, то число возможных событий равно 32.
N = 32, I = ?
N = 2I, 32 = 25, I = 5 бит.
Ответ: 5 бит.
Пример 2.В коробке 50 шаров, из них 40 белых и 10 чёрных. Определить количество информации в сообщении о вытаскивании наугад белого шара и чёрного шара.Решение.
Вероятность вытаскивания белого шара
P1 = 40/50 = 0,8
Вероятность вытаскивания чёрного шара
P2 = 10/50 = 0,2
Количество информации о вытаскивании белого шара I1 = log2(1/0,8) = log21,25 = log1,25/log2 = 0,32 бит
Количество информации о вытаскивании чёрного шара I2 = log2(1/0,2) = log25 = log5/log2 » 2,32 бит
Ответ: 0,32 бит, 2,32 бит
Пример 3. В озере живут караси и окуни. Подсчитано, что карасей 1500, а окуней – 500. Сколько информации содержится в сообщениях о том, что рыбак поймал карася, окуня, поймал рыбу? Решение.
События поимки карася или окуня не являются равновероятными, так как окуней в озере меньше, чем карасей.
Общее количество карасей и окуней в пруду 1500 + 500 = 2000.
Вероятность попадания на удочку карася
p1 = 1500/2000 = 0,75, окуня p2 – 500/2000 = 0,25.
I1 = log2(1/p1), I1 = log2(1/p2), где I1 и I2 – вероятности поймать карася и окуня соответственно.
I1 = log2(1 / 0,75) = 0,43 бит, I2 = log2(1 / 0,25) = 2 бит – количество информации в сообщении поймать карася и поймать окуня соответственно.
Количество информации в сообщении поймать рыбу (карася или окуня) рассчитывается по формуле Шеннона
I = – p1log2p1 – p2log2p2
I = – 0,75*log20,75 – 0,25*log20,25 = – 0,75*(log0,75/log2)-0,25*(log0,25/log2) =
= 0,604 бит = 0.6 бит.
Ответ: в сообщении содержится 0,6 бит информации.
Пример 4. Какое количество информации несет в себе сообщение о том, что нужная вам программа находится на одной из восьми дискет?Решение.
Количество информации вычисляется по формуле: 2i = N, где i – искомая величина, N – количество событий. Следовательно, 23 =8.
Ответ: 3 бита.
Пример 5. Заполнить пропуски числами:
а) 5 Кбайт = __ байт = __ бит,
б) __ Кбайт = __ байт = 12288 бит;
в) __ Кбайт = __ байт = 2 13 бит;
г) __Гбайт =1536 Мбайт = __ Кбайт;
д) 512 Кбайт = 2__ байт = 2__ бит.
Решение.
а) 5 Кбайт = 5120 байт =40 960 бит,
б) 1,5 Кбайт = 1536 байт = 12 288 бит;
в) 1 Кбайт = 210 байт = 213 бит;
г) 1,5 Гбайт = 1536 Мбайт = 1 572 864 Кбайт;
д) 512 Кбайт = 219 байт = 222 бит.
Пример 6. Какова мощность алфавита, с помощью которого записано сообщение, содержащее 2048 символов, если его объем составляет 1/512 часть одного мегабайта?Решение.
1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2i = N; 28 = 256 символовОтвет: 1) 1/512 Мб * 1024 = 2 Кб * 1024 = 2048 байт
2) К = 2048 символов, следовательно, i = 1 байт = 8 бит
3) 2i = N; 28 = 256 символов.
Пример 7.Книга, набранная с помощью компьютера, содержит 150 страниц; на каждой странице – 40 строк, в каждой строке – 60 символов. Каков объем информации в книге? Решение.
Мощность компьютерного алфавита равна 256. Один символ несет 1 байт информации.
Значит, страница содержит 40*60=2400 байт информации. Объем всей информации в книге: 2400*150 = 360 000 байт.
Ответ: 360 000 байт.
Пример 8. Для передачи секретного сообщения используется код, состоящий из десяти цифр. При этом все цифры кодируются одним и тем же (минимально возможным) количеством бит. Определите информационный объем сообщения длиной в 150 символов. Решение.
Для кодировки одной из 10 цифр необходимо 4 бита. Это получаем из 23 4. Объём 150 символов получим 150*4=600(бит).
Ответ: 600 бит.
Пример 9.В кодировке Unicode на каждый символ отводится два байта. Определите информационный объем слова из двадцати четырех символов в этой кодировке. Решение.
I= K*i; I = 24*2 байт = 48 байт = 48*8бит = 384 бит.
Ответ: 384 бита.
Пример 10.В рулетке общее количество лунок равно 128. Какое количество информации мы получаем в зрительные сообщения об остановке шарика в одной из лунок? Решение.
Количество информации вычисляется по формуле: 2i = N, где i – искомая величина, N – количество событий.
2i=128. Следовательно, i=7.
Ответ: 7 бит.
Источник
Тема: Измерение информации. Объемный подход.
Цель работы: Научится решать задачи на определение количества информации содержащейся в сообщении с помощью алфавитного подхода.
Порядок выполнения работы
- Ознакомится с теоретическим материалом.
- Решить задачи
- Выполнить самостоятельную работу.
Теоретический материал.
Алфавитный подход к измерению информации позволяет определить количество информации, заключенной в тексте. Алфавитный подход является объективным, т. е. он не зависит от субъекта (человека), воспринимающего текст.
Множество символов, используемых при записи текста, называется алфавитом. Полное количество символов в алфавите называется мощностью (размером) алфавита. Если допустить, что все символы алфавита встречаются в тексте с одинаковой частотой (равновероятно), то количество информации, которое несет каждый символ, вычисляется по формуле:
2i= N,
где N — мощность алфавита.
Один символ из алфавита мощностью 256 (28) несет в тексте 8 битов информации. Такое количество информации называется байтом. Алфавит из 256 символов используется для представления текстов в компьютере.
1 байт = 8 битов.
Если весь текст состоит из К символов, то при алфавитном подходе размер содержащейся в нем информации равен:
I = K i,
где i — информационный вес одного символа в используемом алфавите.
Для измерения информации используются и более крупные единицы:
1 Кбайт (килобайт) = 210 байт = 1024 байта
1 Мбайт (мегабайт) = 210 Кбайт = 1024 Кбайта
1 Гбайт (гигабайт) = 210 Мбайт — 1024 Мбайта
Пример. Книга, набранная с помощью компьютера, содержит 150 страниц; на каждой странице — 40 строк, в каждой строке — 60 символов. Каков объем информации в книге?
Решение. Мощность компьютерного алфавита равна 256.
Один символ несет 1 байт информации. Значит, страница содержит 40 • 60 = 2400 байт информации.
Объем всей информации в книге (в разных единицах):
2400 • 150 = 360 000 байт.
360000/1024 = 351,5625 Кбайт.
351,5625/1024 = 0,34332275 Мбайт.
Решение задач.
Задача 1. Алфавит племени Мульти состоит из 8 букв. Какое количество информации несет 1 буква этого алфавита?
Задача 2. Алфавит племени Мульти состоит из 8 букв. Какое количество информации несет слово из пяти букв?
Задача 3. Информационный объем одного символа некоторого сообщения из алфавита племени Пульти равен 6 битам. Сколько символов входит в алфавит этого племени, с помощью которого пультяне составили это сообщение?
Задача 4. Сообщение, составленное с помощью 32 – символьного алфавита, содержит 80 символов. Другое сообщение составлено с использованием 64 – символьного алфавита и содержит 70 символов. Сравните объемы информации, содержащейся в сообщениях.
Задача 5. Сообщение, записанное буквами из 128 – символьного алфавита, содержит 30 символов. Какой объем информации оно несет?
Задача 6. Сколько килобайтов составляет сообщение из 512 символов 16 – символьного алфавита?
Задача 7. Для записи текста использовался 256 – символьный алфавит. Каждая страница содержит 30 строк по 70 символов в строке. Какой объем информации содержат 5 страниц текста?
Задача 8. Поле для игры в крестики-нолики содержит 64 клетки. Первый игрок ставит крестик в любую клетку. Какое количество информации получит второй игрок при первом ходе первого игрока?
Задача 9. Какое количество информации получит пользователь при сообщении, что нужная ему программа находится на одном из 128 дисков?
Задача 10. В некоторой стране алфавит содержит 8 символов. Найдите информационный вес каждого символа этого алфавита.
Задача 11. Сообщение занимает 3 страницы по 25 строк. В каждой строке записано по 60 символов. Сколько символов в использованном алфавите, если все сообщение содержит 1125 байтов?
Задача 12. В алфавите 32 символа. Записали сообщение, которое содержит 140 символов. Какое количество информации несёт данное сообщение?
Задача 13. Объём информационного сообщения 720 бит. В сообщении 180 символов. Какова мощность алфавита, с помощью которого записано это сообщение?
Задача 14. Информационное сообщение объёмом 4 Кбайт состоит из 4096 символов. Каков информационный вес символа используемого алфавита? Сколько символов содержит алфавит, с помощью которого записано это сообщение?
Задача 15. Пользователь вводил текст с клавиатуры 10 минут. Какова его скорость ввода информации, если информационный объем полученного текста равен 1 Кбайт?
Задача 16. Исследователь наблюдает изменение параметра, который может принимать одно из семи значений. Значения записываются при помощи минимального количества бит. Исследователь зафиксировал 120 значений. Определите информационный объем результатов наблюдения.
Самостоятельная работа
№ задачи | Номер варианта | |||
1 | 2 | 3 | 4 | |
1 | 1 | 5 | 9 | 13 |
2 | 2 | 6 | 10 | 14 |
3 | 3 | 7 | 11 | 15 |
4 | 4 | 8 | 12 | 16 |
- Племя Мульти имеет 32-символьный алфавит. Племя Пульти использует 64-символьный алфавит. Вожди племен обменялись письмами. Письмо племени Мульти содержало 80 символов, а письмо племени Пульти — 70 символов. Сравните объемы информации, содержащейся в письмах.
- Алфавит племени Мульти состоит из 32 символов. Члены племени используют в своей речи и письме только слова длиной 8 символов, причем все слова начинаются или с символа А, или с символа О, остальные буквы в слове могут быть любыми. Какое количество информации несёт одно слово этого племени?
- Алфавит племени Мульти состоит из 32 символов. Члены племени используют в своей речи и письме только слова длиной 8 символов, причем все слова начинаются или с символа А, или с символа О, или с символа В, или с символа К, остальные буквы в слове могут быть любыми. Какое количество информации несёт сообщение этого племени, состоящее из 20 слов?
- Словарный запас племени Пульти составляют 256 слов одинаковой длины. Каждая буква алфавита несет 2 бита информации. Какова длина слова этого племени?
- Словарный запас племени Пульти составляют 1024 слова из 5 букв. Какое количество информации несет одна буква из алфавита этого племени?
- Информационное сообщение объемом 1,5 Кбайт содержит 3072 символа. Сколько символов содержит алфавит, при помощи которого было записано это сообщение?
- Объем сообщения, содержащего 1024 символа, составил 1/512 часть мегабайта. Каков размер алфавита, с помощью которого записано сообщение?
- Сколько символов содержит сообщение, записанное с помощью 16-символьного алфавита, если объем его составил 1/16 часть мегабайта?
- Сколько килобайт составляет сообщение, содержащее 12288 битов?
- Сколько килобайт составит сообщение из 384 символов 16-сим- вольного алфавита?
- Для записи текста использовался 256-символьный алфавит. Каждая страница содержит 30 строк по 70 символов в строке. Какой объем информации содержат 5 страниц текста?
- Сообщение занимает 3 страницы по 25 строк. В каждой строке записано по 60 символов. Сколько символов в использованном алфавите, если все сообщение содержит 1125 байт?
- Для записи сообщения использовался 64-символьный алфавит. Каждая страница содержит 30 строк. Все сообщение содержит 8775 байт информации и занимает 6 страниц. Сколько символов в строке?
- Сообщение занимает 2 страницы и содержит 1/16 Кбайт информации. На каждой станице записано 256 символов. Какова мощность использованного алфавита?
- Два сообщения содержат одинаковое количество символов. Количество информации в первом тексте в 1,5 раза больше, чем во втором. Сколько символов содержат алфавиты, с помощью которых записаны сообщения, если известно, что число символов в каждом алфавите не превышает 10 и на каждый символ приходится целое число битов?
- Два сообщения содержат одинаковое количество информации. Количество символов в первом тексте в 2,5 раза меньше, чем во втором. Сколько символов содержат алфавиты, с помощью которых записаны сообщения, если известно, что размер каждого алфавита не превышает 32 символов и на каждый символ приходится целое число битов?
Источник