Какое общее свойство у элементов одной группы

Какое общее свойство у элементов одной группы thumbnail

Элементы главных и побочных подгрупп

Свойства элементов главной и побочной подгрупп существенно различаются. В то же время благодаря периодической системе мы находим много общего в свойствах всех элементов, образующих данную группу. 

Так, в VII группе имеются два элемента — хлор (VIIA группа) и марганец (VIIB группа). Хлор образует простое вещество — неметалл, газообразный при обычных условиях, очень ядовитый. Марганец — типичный металл со всеми свойствами металлов (твердый, пластичный, электропроводный). Что же объединяет эти несхожие элементы? Почему они находятся в одной группе периодической системы? Все дело в том, что и атомы хлора, и атомы марганца содержат по 7 валентных электронов:

Cl ;

Mn 1s2s2p3s3p.

Поэтому высшая степень окисления для этих элементов одна и та же, а именно +7. 

Хлор и марганец образуют высшие оксиды одного состава: и . Оба эти оксида кислотные, энергично взаимодействуют с водой с образованием кислот одного и того же состава:

ClO + НО → 2HClO    хлорная кислота,

MnO  + НО → 2HMnO    марганцевая кислота.

Оба оксида (и отвечающие им кислоты) очень неустойчивы и являются сильнейшими окислителями. 

И хлорная, и марганцевая кислота относятся к наиболее сильным кислотам. При нейтрализации кислот получаются однотипные соли — перхлораты и перманганаты, например KClO и KMnO. При небольшом нагревании обе соли легко разлагаются с выделением кислорода. Все это и позволяет рассматривать элементы хлор и марганец в одной группе периодической системы элементов Д. И. Менделеева.

Следует подчеркнуть, что закономерности изменения свойств по группам, описанные ниже, относятся только к элементам главных подгрупп.

Атомный радиус

Атомный радиус увеличивается с увеличением количества энергетических уровней, то есть сверху вниз по группе. У элементов, стоящих в одном периоде и обладающих равным количеством энергетических уровней, атомный радиус, на первый взгляд, меняться не должен. Однако вследствие взаимодействие ядра и электронов усиливается при движении по периоду слева направо, что приводит к незначительному сжатию атома — уменьшению его радиуса.

Какое общее свойство у элементов одной группы

Электроотрицательность

Определение

Способность атома элемента притягивать к себе электроны химической связи называют электроотрицательностью (ЭО).

Элементы-металлы легче отдают электроны, чем притягивают их, иными словами, они имеют низкую электроотрицательность — меньше 1,8. Элементы-неметаллы, наоборот, легче притягивают электроны и имеют высокие значения ЭО.

Какое общее свойство у элементов одной группы

Окислительно-восстановительные свойства соединений элементов. Металличность и неметалличность

Слова «металл» и «неметалл» применимы не только к химическим элементам, но и к простым веществам. Например, говоря, что простое вещество является металлом, мы подразумеваем не только что оно состоит из атомов элемента-металла, но и определенную общность физических (металлический блеск, пластичность) и химических (восстановитель) свойств. 

Напомним, что из известных на данный момент 116 химических элементов 98 являются металлами. Металлы расположены в главных подгруппах в левом нижем углу (относительно диагонали бор-астат) таблицы Менделеева и в побочных подгруппах. 

Атомы металлов на внешнем уровне содержат не более четырех электронов, как правило, от одного до трех. Отдавая эти электроны, они приобретают устойчивую оболочку ближайшего инертного газа.

Какое общее свойство у элементов одной группы

Таки образом, металлы в химических реакциях являются восстановителями — они легко отдают электроны и приобретают положительную степень окисления. В этом заключается их принципиальное отличие от элементов-неметаллов.

Поэтому очень часто говорят о металлических свойствах как синониме восстановительных свойств.

В наибольшей степени металлические свойства выражены у элементов главной подгруппы I группы периодической системы — щелочных металлов. Их атомы настолько легко отдают валентный электрон, что в природе эти элементы встречаются исключительно в виде соединений.

Поскольку сверху вниз возрастают атомные радиусы элементов, сила притяжения валентных электронов к ядру ослабевает и увеличивается легкость отдачи внешних электронов, то есть восстановительные (или металлические) свойства. 

Металлические (восстановительные) свойства элементов при движении по периоду убывают слева направо; а по группе убывают снизу вверх.

Элементы-металлы образуют генетический ряд химических соединений, в которых проявляются их металлические химические свойства: металлоксид металла () — гидроксид (основание . В сложных веществах проявление металлических свойств характеризуется понятием основность,  и говорят, что оксиды и гидроксиды проявляют основные свойства. Соответственно, основные свойства оксидов и гидроксидов металлов сверху вниз по подгруппе увеличиваются, а кислотные — уменьшаются. 

Элементы-неметаллы имеют на внешнем энергетическом уровне от четырех до семи электронов, при этом элементы восьмой группы образуют семейство инертных газов. Такие элементы имеют восемь электронов на внешнем энергетическом уровне, то есть такой уровень является завершенным, а сами элементы не вступают в химические реакции с другими элементами, то есть являются химически инертными.

Неметаллы в химических реакциях являются окислителями — они легко присоединяют электроны, отнимая их от атомов других элементов,  и приобретают отрицательный заряд.

Легче всего  принимают электроны те элементы, у которых число электронов на внешнем уровне больше четырех — до завершения внешнего уровня им более энергетически выгодно принять несколько электронов, чем отдать свои. В наибольшей степени свойства неметаллов проявляют галогены — элементы главной подгруппы VII группы.

Проследим закономерность изменения окислительных свойств по периоду на примере элементов второго периода:

3Li − 4Be − 5B − 6C − 7N − 😯 − 9F − 10Ne.

Литий и бериллий (типичные металлы) — окислительными свойствами не обладают. Неметаллы бор и углерода — очень слабые окислители. Например, они реагируют с углеродом только в электрической печи, где температура превышает 1500С.  С неметаллом азотом алюминий вступает в реакцию уже при 1000С, а с кислородом порошок алюминия реагирует при внесении в пламя горелки. Фтор окисляет порошкообразный алюминий уже при комнатной температуре. А вот завершающий второй период инертный газ неон вообще не вступает в химические реакции.

Таким образом, неметаллические (окислительные) свойства простых веществ при движении по периоду слева направо возрастают.

Элементы-неметаллы образуют генетический ряд химических соединений, в которых проявляются их неметаллические химические свойства: неметаллоксид неметалла () — гидроксид неметалла (кислородсодержащая кислота ). В сложных веществах проявление неметаллических свойств характеризуется понятием кислотность,  и говорят, что оксиды и гидроксиды проявляют кислотные свойства. Соответственно, кислотные свойства оксидов и гидроксидов неметаллов в высших степенях окисления сверху вниз по подгруппе уменьшаются, а основные — увеличиваются. 

Кислотные свойства оксидов и гидроксидов по периоду слева направо также возрастают. 

Но изменение окислительно-восстановительных свойств происходит постепенно. Так, металл бериллий, в отличие от типичного металла лития, взаимодействует не только с кислотами, но и со щелочами (что характерно для ряда неметаллов), а простое вещество графит, образованное элементом-неметаллом углеродом, подобно металлам, обладает металлическим блеском и проводит электрический ток. 

Энергия ионизации

Определение

Энергия ионизации — это наименьшая энергия, которая должна быть  затрачена на отрыв электрона от нейтрального атома. 

Какое общее свойство у элементов одной группы

Ионный радиус

Какое общее свойство у элементов одной группы

Диагональная периодичность

В заключение укажем, что химические элементы, расположенные в диагональном направлении периодической системы, также иногда могут проявлять близость многих физических и химических свойств. Это явление носит название диагонального сходства. Так, химические свойства лития и его соединений иногда оказываются гораздо ближе к свойствам магния, чем к свойствам остальных щелочных металлов. Аналогично свойства бериллия гораздо ближе к свойствам алюминия, чем к свойствам щелочноземельных металлов, а свойства бора ближе к свойствам кремния.

Какое общее свойство у элементов одной группы

Диагональное сходство можно объяснить, если принять во внимание характер изменения атомных радиусов по группам и периодам: уменьшение радиусов в периодах (слева направо) приблизительно компенсируется увеличением радиусов в группах (сверху вниз). Тем самым оказываются весьма близки атомные радиусы лития и магния, бериллия и алюминия и др.

Все вышеупомянутые закономерности изменения свойств условно отражены в схеме ниже:

Какое общее свойство у элементов одной группы

Какое общее свойство у элементов одной группы

Сравнение строения и свойств элементов VIIА и VIIB групп

Чтобы увидеть, как изменяются свойства элементов по периоду рассмотрим строение и свойства типичных металлов  и неметаллов –  представителей IA и VIIA -группы. Кроме того, рассмотрим также свойства элементов побочных IB и  VIIB -групп и сравним их между собой.

Какое общее свойство у элементов одной группы

К седьмой группе главной подгруппы Периодической системы относятся элементы семейства галогенов. В длиннопериодном варианте ПС эта группа 17. Элементы этой группы обладают строением и свойствами типичных неметаллов, то есть имеют небольшой радиус и 7 электронов на внешнем уровне, поэтому относятся к p-элементам.

Типичным представителем галогенов является хлор. Электронная конфигурация этого элемента отвечает электронной формуле или .  Это означает, что валентными являются 7 внешних электронов – 2 s-электрона и 5р-электронов, которые образуют 3 пары и имеют один неспаренный электрон. Поэтому, образуя связь с менее электроотрицательными элементами (водородом или металлами), хлор отнимает у них 1 электрон и достраивает тем самым свой незавершенный уровень. При этом хлор проявляет свойства окислителя и имеет в соединениях степень окисление -1.

Нужно помнить, что хлор расположен в третьем периоде, поэтому имеет три энергетических уровня, а, значит на третьем, внешнем уровне у него имеются вакантные (незанятые) d-орбитали. При переходе в возбужденное состояние электроны с s- и р-подуровней могут перескакивать на более высокий d-энергетический подуровень:

В этом случае “распаренными” получаются 3, 5 или 7 электронов. Поэтому в соединениях с более электроотрицательными элементами, а именно с кислородом, хлор может проявлять степени окисления  +1; +3; +5 или +7. В этих степенях окисления он образует оксиды и соответствующие им кислородсодержащие кислоты:

HCL- хлороводородная, соли – хлориды

HClO – хлорноватистая (кислотный оксид , соли — гипохлориты), очень слабая кислота, неустойчивая, окислитель:

хлористая (кислотный оксид , соли — хлориты), неустойчивая; 

хлорноватая (кислотный оксид — , соли – хлораты, – бертоллетова соль), в свободном виде не получена, «живет» только в растворах, сильный окислитель:

хлорная (кислотный оксид — , соли  –  перхлораты

Все кислородсодержащие кислоты хлора являются сильными окислителями. Их свойства изменяются следующим образом:

с увеличением степени окисления хлора увеличивается сила кислородсодержащих кислот и их окислительные свойства.

 В то же время, в минимальной степени окисления (-1) хлор образует сильную кислоту HCl, но не является в ней окислителем.

Рассмотрим теперь особенности строения и свойств элементов  IA группы (в длиннопериодном варианте ПС это тоже группа I) на примере натрия. Элементы этой группы являются типичными металлами, то есть обладают большим радиусом, имеют всего 1 валентный электрон, то есть относятся к s-элементам, и в химических реакциях являются типичными восстановителями. Элементы этой группы называются щелочными металлами.

Какое общее свойство у элементов одной группы

Натрий находится с хлором в одном периоде, имеет электронную конфигурацию или . то есть различия с атомом натрия заключается только в числе внешних валентных электронов. Имея один неспаренный электрон на внешнем уровне, натрий обладает свойствами восстановителя, то есть легко отдает валентный электрон на образование связи, а хлор, обладая свойствами окислителя, легко присоединяет этот электрон. Поэтому при образовании молекулы хлорида натрия валентный электрон натрия полностью переходит к хлору и образуется соединение с ионным типом связи:

Какое общее свойство у элементов одной группы

Теперь рассмотрим и сравним свойства элементов побочных подгрупп  IB и  VIIB -групп. К IB-группе, или в длиннопериодном варианте XI группы, относятся металлы подгруппы меди: Cu, Ag, Au. Особенностью строения этих элементов является наличие заполненного предвнешнего  (n-1)d-подуровня, которое происходит за счёт перескока электрона с ns-подуровня. Причина возможности такого “перескока” электрона объясняется высокой энергетической устойчивостью полностью заполненного d-подуровня  и более высокой, по сравнению с 4s, энергией 3d-подуровня (вспомните порядок заполнения подуровней).  

Какое общее свойство у элементов одной группы

Строением энергетических уровней объясняется химическая инертность простых веществ, образованных этими элементами, которые называют “благородными металлами”. Если медь и серебро при обычных условиях медленно окисляются на воздухе, а также могут вступать во взаимодействие с соединениями серы, например сероводородом, то золото при нормальных условиях не реагирует с химическими веществами. Исключение составляет “царская водка” – смесь концентрированной соляной и азотной кислот.

Для сравнения осталось рассмотреть строение и свойства элементов VIIB-подгруппы, или VII группы в длиннопериодном варианте ПС. Эта подгруппа называется подгруппой марганца и включает три элемента: Mn-магранец, Tc – технеций, Re – рений Рассмотри особенности строения этих элементов на примере марганца. Электронная конфигурация марганца отображается электронной формулой или . Как видно из формулы, у марганца не заполнен предвнешний уровень, на котором находится 5 электронов из 10-ти возможных. Для марганца характерны степени окисления +2, +4 и +7, что связано с более устойчивой конфигурацией и . 

Простое вещество- марганец, металл серебристо-белого цвета, широко использующийся в металлургии. Марганец образует следующие оксиды: MnO, , , (не выделен в свободном состоянии) и марганцевый ангидрид . Оксиды низших валентностей (II, III) носят основной характер, высших – кислотный. Кислотным оксидам соответствуют кислоты и образованные ими соли:

Манганаты — соли нестойких, несуществующих в свободном состоянии кислородных кислот марганца в степенях окисления V, VI и VII:

    Все соли марганца, особенно перманганаты, являются сильными окислителями. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. Необходимо запомнить:

    Степени окисления марганца:

    В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).

    Источник

    ЭлементLiNaKRbCsFr
    Порядковый номер31119375587
    Атомная масса (относительная)6,9422,9839,0985,46132,9223
    Плотность (н.у.), г/см30,5340,9710,8561,531,871,87
    tпл, °C1809763392818
    tкип, °C1339882773668667640
    Энергия ионизации, кДж/моль513,3495,8418,8403,0375,7380
    Электронная формула[He]2s1[Ne]3s1[Ar]4s1[Kr]5s1[Xe]6s1[Rn]7s1
    Электроотрицательность (по Поллингу)0,980,930,820,820,790,7

    Электронные формулы инертных газов:

    • He – 1s2;
    • Ne – 1s22s22p6;
    • Ar – 1s22s22p63s23p6;
    • Kr – [Ar]3d104s24p6;
    • Xe – [Kr]4d105s25p6;
    • Rn – [Xe]4f145d106s26p6.

    атомы лития и натрия

    Соединения щелочных металлов:

    • Оксиды
    • Гидроксиды
    • Соли

    В 1 группу(Ia группу по старой классификации) периодической таблицы химических элементов Д. И. Менделеева входят 6 металлов: литий, натрий, калий, рубидий, цезий, франций (см. таблицу выше). Эти металлы принято называть щелочными, поскольку при взаимодействии с водой эти металлы (и их оксиды) образуют щелочи.

    Самым распространенным из щелочных металлов в земной коре является натрий (2,3% по массе), далее идут калий (2,1%), рубидий (0,009%), литий (0,002%), цезий (0,0003%). Щелочные металлы по причине их высокой активности в природе в свободном виде не встречаются.

    Природные соединения и минералы, богатые натрием и калием:

    • NaCl – галит;
    • KCl – сильвит;
    • KCl·NaCl – сильвинит;
    • K[AlSiO3O8] – ортоклаз.

    Все атомы элементов 1(Ia) группы на внешнем энергетическом уровне имеют по одному валентному s-электрону (см. Электронная конфигурация атомов), с которым в химических соединениях достаточно легко “расстаются” с целью завершения внешнего энергетического уровня, который становится в таком случае устойчивым, по аналогии с завершенным энергетическим уровнем инертных газов.

    Таким образом, отдавая “ненужный” электрон щелочные металлы в химических соединениях проявляют степень окисления +1.

    Нетрудно заметить, что с ростом порядкового номера щелочного металла увеличивается не только общее кол-во электронов (энергетических уровней), но также и радиус атома, что в свою очередь, обуславливает уменьшение энергии ионизации (соответственно усиление металлических свойств элемента) в направлении от лития к францию (по мере увеличения радиуса атома щелочного элемента) – франций со своим s-электроном расстается гораздо легче, чем литий. Говоря другими словами, с ростом радиуса атома (номера элемента) возрастает реакционная (восстановительная) способность щелочного металла.

    Физические свойства щелочных металлов

    Многие физические свойства щелочных металлов обусловлены металлическими связями, возникающими между атомами этих металлов по причине их низкой энергии ионизации:

    • щелочные металлы имеют серебристо-белый цвет;
    • низкую плотность;
    • низкую температуру плавления (температуры плавления уменьшаются в подгруппе сверху-вниз);
    • обладают высокой пластичностью;
    • высокой электро- и теплопроводностью.

    Химические свойства щелочных металлов

    Как уже было сказано выше, щелочные металлы очень легко вступают в химические реакции с другими элементами, отдавая при этом “ненужный” валентный электрон (см. Валентность) и превращаясь в положительно заряженный ион (катион).

    Щелочные металлы легко реагируют со многими простыми веществами:

    • с кислородом щелочные металлы образуют оксиды (Li), пероксиды (Na), суперпероксиды:
      4Li + O2 = 2Li2O; 2Na + O2 = Na2O2; K + O2 = KO2;
    • с серой образуют сульфиды:
      2Na+S = Na2S
    • с водородом образуют гидриды:
      2Na+H2 = 2NaH
    • взаимодействуют с галогенами (F, Cl, Br, I), образуя галогениды:
      2Li + F2 = 2LiF;
    • бурно реагируют с водой (активность возрастает с ростом атомного номера – натрий воспламеняется, а рубидий взрывается):
      2Na + 2H2O = 2NaOH + H2;
    • бурно реагируют с кислотами:
      • с соляной и разбавленной серной реагируют с выделением водорода:
        2K + H2SO4(рзб) = K2SO4 + H2;
      • с концентрированной серной восстанавливают серу до степени окисления -2:
        8Na + 5H2SO4(кнц) = 4Na2SO4 + H2S + 4H2O;
      • с разбавленной азотной продуктом восстановления является нитрат аммония (ст. ок. -4) или аммиак:
        8Na + 10HNO3(рзб) = 8NaNO3 + NH4NO3 + 3H2O;
      • с концентрированной азотной продуктом восстановления является оксид азота (I):
        8Na + 10HNO3(кнц) = 8NaNO3 + N2O + 5H2O.

    Щелочные металлы окрашивают пламя в следующие цвета:

    • Li – светло-красный;
    • Na – желтый;
    • K – сине-фиолетовый;
    • Rb – темно-красный;
    • Cs – бледно-голубой.

    Получение и применение щелочных металлов

    Промышленным способом щелочные металлы получают электролизом расплавов хлоридов (гидроксидов) этих металлов.

    NaCl → Na++Cl- (700°C)
    Na++e- → Na0 (катод)
    2Cl–2e- → Cl20 (анод)
    2NaCl → 2Na+Cl2↑

    Металлотермические методы получения щелочных металлов (рубидий и цезий получают в вакуумной среде):

    • 3LiO + 2Al = Al2O3 + 3Li;
    • Na + KCl = NaCl + K;
    • 2RbCl + Ca = 2Rb + CaCl2;
    • 2CsCl + Mg = 2Cs + MgCl2.

    Применение щелочных металлов:

    • Li:
      • придает легкость сплавам, его применяют при производстве медных, магниевых и алюминиевых сплавов;
      • в металлургии при помощи лития удаляют из металлических расплавов шлаки, содержащие азот, кислород и серу;
      • в органическом синтезе.
    • Na:
      • в качестве наполнителей газоразрядных ламп;
      • в качестве теплоносителя в ядерных реакторах;
      • в органическом и неорганическом синтезе;
      • в металлургии при производстве металлов и сплавов.
    • K:
      • для получения металлов;
      • в качестве теплоносителя в ядерных реакторах;
      • в фотоэлементах в качестве преобразователя световой энергии в электрическую.
    • Rb, Cs:
      • в источниках инфракрасного излучения;
      • в фотоэлементах.

    Источник