Какое свойство алгоритма называется массовостью

Статья расскажет о происхождении термина «Алгоритм» и о том, какими свойствами он обладает.

Алгоритмом называют определенную конечную последовательность действий (набор инструкций), выполнение которых приводит к достижению конкретной цели (решению поставленной задачи). В литературе по информатике, как и на просторах глобальной сети, можно найти множество общей теоретической информации относительно понятия и решения алгоритма. Достаточно запомнить основную мысль: достижение алгоритмического результата обеспечивается выполнением определенной последовательности действий (чаще всего, действий арифметических или логических).

История возникновения термина

Сегодня это понятие является фундаментальным и в математике, и в информатике. Однако сам термин возник задолго до появления компьютеров и прочих электронных средств вычислительной техники. Впервые об алгоритме заговорили в средние века — именно тогда европейские ученые ознакомились с методами вычисления арифметических действий, производимых в десятичной системе счисления азиатским математиком по имени Мухаммед ибн Муса аль-Хорезми (от имени этого математика и сформировался термин Algorithm). Сочинение аль-Хорезми перевели, а в последующие столетия появилось много трудов, посвященных вопросу обучения искусству счёта посредством цифр. Можно вспомнить описание алгоритма в европейской науке в те годы:

Также значение слова «алгоритм» сегодня нередко связывают со значениями таких слов, как «рецепт», «метод», «процесс», «инструкция».

Исполнитель и программа

Судя по историческим справкам, изначально речь шла о способе выполнения арифметических действий над десятичными числами. Прошли годы. Понятие стали применять при обозначении любой последовательности действий, которая приводит к получению требуемого результата. Причем алгоритмы существуют не сами по себе — они предназначаются для конкретного исполнителя. Кто может выступать таким исполнителем:
— человек;
— роботизированное/автоматизированное устройство, механизм;
— компьютер;
— язык программирования и т. д.

Отличительная черта исполнителя — способность выполнять команды, которые включены в алгоритм. Это становится возможным, благодаря описанию последнего на формальном языке, который исключает неоднозначность толкования. Множество команд задано изначально строго и является конечным. Действия, которые должен выполнить исполнитель, называют элементарными действиями, а сама запись алгоритмической последовательности на формальном языке — это программа. Разработка алгоритма в целях решения задачи — это алгоритмизация.

Главные характеристики

Выделяют следующие свойства алгоритма: массовость, дискретность, результативность, определенность, понятность, формальность, завершаемость. Будет не лишним рассмотреть их более подробно, дав каждому свойству алгоритма пояснение:
1. Массовость (универсальность). Благодаря этому свойству, алгоритм можно успешно применять к различным наборам исходных данных. Пусть существует запись некой абстрактной последовательности, выраженная формулой. Подставляя в эту формулу значения (каждый раз новые), пользователь будет получать верные решения в соответствии с определенным алгоритмом действий.
2. Дискретность (разрывность). Это свойство характеризует структуру. Каждая алгоритмическая последовательность действий делится на этапы (шаги), а процесс решения задачи — это последовательное исполнение простых шагов. Также дискретность обозначает, что для выполнения каждого этапа потребуется конечный временной отрезок (исходные данные преобразуются во времени в результат дискретно).
3. Определенность (точность, детерминированность) — это свойство указывает алгоритму, что каждый его шаг должен быть строго определенным, то есть различные толкования должны быть исключены. Строго определяется и порядок выполнения шагов. В результате каждый шаг определяется состоянием системы однозначно, когда четко понятно, какая команда станет выполняться на следующем шаге. Как итог — при любом исполнителе для одних и тех же исходных данных при выполнении одной и той же цепочки команд будет выдаваться одинаковый результат. Да, существуют вероятностные алгоритмы — в них на последующий шаг влияют как текущее состояние системы, так и генерируемое случайное число. Но при включении способа генерации рандомных чисел в перечень «исходных данных», вероятностный алгоритм превращается в подвид обычного.
4. Понятность. Должны быть включены лишь те команды, которые доступны и понятны исполнителю, то есть входят в систему его команд.
5. Формальность. Любой исполнитель действует формально и лишь выполняет инструкции, не вникая в смысл. Он не отвлекается от поставленной задачи и не рассуждает, зачем и почему они нужны. Рассуждениями занимается разработчик алгоритма, задача же исполнителя — просто исполнить предложенные команды и получить результат. «Приказы не обсуждают, а выполняют».
6. Завершаемость (конечность). Если исходные данные заданы корректно, алгоритм завершит свое действие и выдаст результат за конечное число шагов.
7. Результативность. Согласно этому свойству, любой алгоритм должен завершаться конкретными результатами.

Основные виды алгоритмов

В информатике и программировании выделяют много видов алгоритмов. Основные из них:
— линейные (команды выполняются последовательно, одна за одной);
— разветвляющиеся (есть условие, при проверке которого возможно разветвление на несколько параллельных ветвей);
— циклические (предусматривается многократное повторение одних и тех же действий).

Источники:
• https://math-it.petrsu.ru/users/semenova/Informatika/DOC/Sam_Izuch/Algoritm.pdf;
• https://www.sites.google.com/site/algoritmyvidyisvojstva/materialy/materialy-1.

Источник

Цель урока: Формирования у учащихся правильного понимания алгоритмов, их свойств, видов и практических навыков составления алгоритмов.

Задачи урока:

Дидактические: Обеспечить условия:

  • для изучения и закрепления основных понятия по теме;
  • для усвоения, закрепления темы.

Воспитательные: Обеспечить условия:

  • для воспитания чувства коллективизма и взаимопомощи, культуры общения;
  • для критического отношения к своему труду, умение оценивать его.

Развивающие: Обеспечить условия:

  • для развития мыслительной деятельности учащихся, умения анализировать, сравнивать, обобщать и делать выводы;
  • для развития самостоятельности, логического изложения мыслей.

Демонстрационный материал к уроку:

  1. Мультимедийная презентация
  2. Портрет Мухаммеда Бен Муссы аль-Хорезми.

Ход урока

  1. Организационный момент. (2 мин.)
  2. Актуализация знаний. Постановка учебной задачи. (3 мин.)
  3. Изложение нового материала. (30 мин.)
  4. Закрепление нового материала (10 мин.)

Какое свойство алгоритма называется массовостью

Понятие алгоритма

Появление алгоритмов связывают с зарождением математики.

Более 1000 лет назад (825 г.)ученый из города Хорезма Абдулла (или Абу Ждафар) Мухаммед бен Мусса аль-Хорезми создал книгу по математике, в тором описал способы выполнения арифметических действий над многозначными числами.

Алгоритм – описание последовательности действий, исполнение которых приводит к решению поставленной задачи за конечное число шагов.

Алгоритм понятное и точное предписание исполнителю выполнить конечную последовательность команд, приводящих от исходных данных к искомому результату.

Свойства алгоритма

  1. Дискретность
  2. Детерминированность
  3. Массовость
  4. Результативность
  5. Конечность
  6. Дискретность (от лат. Discretus–разделенный , прерывистый) – это свойство предполагает, что любой алгоритм должен состоять из последовательности шагов, следующих друг за другом.
  7. Детерминированность (от лат. Determinate – определенность, точность) – это свойство указывает, что любое действие в алгоритме должно быть строго и недвусмысленно определенно и описано для каждого случая.
  8. Массовость – это свойство подразумевает, что один и тот же алгоритм может применяться для решения целого класса задач, отличающихся исходными данными.
  9. Результативность (конечность) алгоритма – исполнение алгоритма должно закончиться за конечное число шагов.

Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке.

Пример: Алгоритм «Зарядка»

  1. Потянитесь, лежа в постели.
  2. Сядьте на кровати, поставив ноги на пол.
  3. Нагнитесь вперед, пытаясь достать руками пальцы ног.
  4. Выгните спину дугой.
  5. Сосчитайте до 10.
  6. Вернитесь в исходное положение.

При словесно-формульном способе алгоритм записывается в виде текста с формулами по пунктам, определяющим последовательность действий.

Пусть, например, необходимо найти значение следующего выражения:

у=2а-(х+6).

Словесно-формульным способом алгоритм решения этой задачи может быть записан в следующем виде:

  1. Ввести значения а и х.
  2. Сложить х и 6.
  3. Умножить а на 2.
  4. Вычесть из 2а сумму (х+6).
  5. Вывести у как результат вычисления выражения.

При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

Какое свойство алгоритма называется массовостью

Виды алгоритма

Линейный алгоритм – это такой, в котором все операции выполняются

последовательно одна за другой.

Пример: Алгоритм посадки дерева.

  1. Выкопать в земле ямку;
  2. Опустить в ямку саженец;
  3. Засыпать ямку с саженцем землей;
  4. Полить саженец водой.

Разветвляющийся алгоритм – это алгоритм в котором выполняется либо одна, либо другая группа действий в зависимости от истинности или ложности условия.

Полная форма

Если <условие>, то <действие 1>, иначе <действие 2>

Неполная форма

Если <условие>, то <действия>

Пример: Если на улице дождь, то останемся дома, а если нет то идем гулять.

Циклический алгоритм – действия повторяются до тех пор, пока выполняется заданное условие.

Цикл с известным числом повторений

Цикл с известным числом повторений часто называют «циклом ДЛЯ»

Пример: Алгоритм «Упражнение для глаз»

  1. Возьмите карандаш.
  2. Установите его в исходное положение у кончика носа
  3. Повторите 10 раз, следя за движение карандаша:
    • Переместите карандаш на расстояние вытянутой руки;
    • Верните карандаш в исходное положение
  4. Положите карандаш
  5. Конец алгоритма

Цикл с постусловием

Цикл с неизвестным числом повторений, в тором выход из цикла осуществляется при выполнении условия, принято называть «циклом с постусловием» или «циклом ПРИ»

Алгоритм «Пульс»

  1. Удобно положите левую руку ладонью вверх.
  2. Два пальца правой руки положите на запястье левой руки.
  3. Заметьте положение секундной стрелки
  4. Сосчитайте очередной удар
  5. Посмотрите на часы
  6. Если секундная стрелка прошла полный круг, то закончите действия, иначе перейдите к п.4

Конец алгоритма

Цикл с предусловием

Цикл с известным числом повторений, в котором цикл продолжается, пока выполняется условие, принято называть «циклом с предусловием» или «циклом ПОКА»

Алгоритм «Бочка»

  1. Подойдите к бочке
  2. Если бочка неполна (есть место для воды) , то перейдите к п.3, иначе конец алгоритма.
  3. Наберите ведро воды
  4. Вылейте ведро в бочку
  5. Перейдите к п.2.

Конец алгоритма

Задания для закрепление материала

  1. Последовательность действий ученика 6 класса Васи: «Если Павлик дома, будем решать задачи по математике. В противном случае следует позвонить Марине и вместе готовить доклад по биологии. Если же Марины нет дома, то надо сесть за сочинение.»
  2. Последовательность действий ученика 6 класса Васи: «Если Павлик дома, будем решать задачи по математике. В противном случае следует позвонить Марине и вместе готовить доклад по биологии. Если же Марины нет дома, то надо сесть за сочинение.»
  3. Составить блок-схему действий школьника, которому перед вечерней прогулкой следует выполнить домашнее задание по математике.

Источник

Алгоритм. Свойства алгоритмов.
Блок-схемы. Алгоритмические языки

Код ОГЭ: 1.3.1. Алгоритм, свойства алгоритмов, способы записи алгоритмов.
Блок-схемы. Представление о программировании

Понятие алгоритма является одним из основных понятий вычислительной математики и информатики.

■  Алгоритм
строго определенная последовательность действий для некоторого исполнителя, приводящая к поставленной цели или заданному результату за конечное число шагов.

Любой алгоритм составляется в расчете на конкретного исполнителя с учетом его возможностей. Исполнитель — субъект, способный исполнять некоторый набор команд. Совокупность команд, которые исполнитель может понять и выполнить, называется системой команд исполнителя.

Для выполнения алгоритма исполнителю недостаточно только самого алгоритма. Выполнить алгоритм — значит применить его к решению конкретной задачи, т. е. выполнить запланированные действия по отношению к определенным входным данным. Поэтому исполнителю необходимо иметь исходные (входные) данные — те, что задаются до начала алгоритма.

В результате выполнения алгоритма исполнитель должен получить искомый результат — выходные данные, которые исполнитель выдает как результат выполненной работы. В процессе работы исполнитель может создавать и использовать данные, не являющиеся выходными, — промежуточные данные.

Свойства алгоритмов

Алгоритм должен обладать определенными свойствами. Наиболее важные свойства алгоритмов:

  • Дискретность. Процесс решения задачи должен быть разбит на последовательность отдельных шагов — простых действий, которые выполняются одно за другим в определенном порядке. Каждый шаг называется командой (инструкцией). Только после завершения одной команды можно перейти к выполнению следующей.
  • Конечность. Исполнение алгоритма должно завершиться за конечное число шагов; при этом должен быть получен результат.
  • Понятность. Каждая команда алгоритма должна быть понятна исполнителю. Алгоритм должен содержать только те команды, которые входят в систему команд его исполнителя.
  • Определенность (детерминированность). Каждая команда алгоритма должна быть точно и однозначно определена. Также однозначно должно быть определено, какая команда будет выполняться на следующем шаге. Результат выполнения команды не должен зависеть ни от какой дополнительной информации. У исполнителя не должно быть возможности принять самостоятельное решение (т. е. он исполняет алгоритм формально, не вникая в его смысл). Благодаря этому любой исполнитель, имеющий необходимую систему команд, получит один и тот же результат на основании одних и тех же исходных данных, выполняя одну и ту же цепочку команд.
  • Массовость. Алгоритм предназначен для решения не одной конкретной задачи, а целого класса задач, который определяется диапазоном возможных входных данных.

Способы представления алгоритмов:

  • словесная запись (на естественном языке). Алгоритм записывается в виде последовательности пронумерованных команд, каждая из которых представляет собой произвольное изложение действия;
  • блок–схема (графическое изображение). Алгоритм представляется с помощью специальных значков (геометрических фигур) — блоков;
  • формальные алгоритмические языки. Для записи алгоритма используется специальная система обозначений (искусственный язык, называемый алгоритмическим);
  • псевдокод. Запись алгоритма на основе синтеза алгоритмического и обычного языков. Базовые структуры алгоритма записываются строго с помощью элементов некоторого базового алгоритмического языка.

Словесная запись алгоритма

Произвольное изложение этапов алгоритма на естественном языке имеет свои недостатки. Словесные описания строго не формализуемы, поэтому может быть нарушено свойство определенности алгоритма: исполнитель может неточно понять описание этапа алгоритма. Словесная запись достаточно многословна. Сложные задачи трудно представить в словесной форме.

■  Пример 1. Записать в словесной форме правило деления обыкновенных дробей.

Решение.
Шаг 1. Числитель первой дроби умножить на знаменатель второй дроби.
Шаг 2. Знаменатель первой дроби умножить на числитель второй дроби.
Шаг 3. Записать дробь, числителем которой являет результат выполнения шага 1, знаменателем — результат выполнения шага 2.

Описанный алгоритм применим к любым двум обыкновенным дробям. В результате его выполнения будут получены выходные данные — результат деления двух дробей (исходных данных).

Формальные исполнители алгоритма

Формальный исполнитель — это исполнитель, который выполняет все команды алгоритма строго в предписанной последовательности, не вникая в его смысл, не внося ничего в алгоритм и ничего не отбрасывая. Обычно под формальным исполнителем понимают технические устройства, автоматы, роботов и т. п. Компьютер можно считать формальным исполнителем.

Программы на языке произвольного формального исполнителя могут состоять только из элементарных команд, которые входят в его систему (которые исполнитель «понимает»).

Исполнитель может иметь свою среду (например, систему координат, клеточное поле и др.). Среда исполнителя — это совокупность объектов, над которыми он может выполнять определенные действия (команды), и связей между этими объектами. Алгоритмы в этой среде выполняются исполнителем по шагам.

■ Пример 2. Исполнитель Крот имеет следующую систему команд:

  1. вперед k — продвижение на указанное число шагов вперед;
  2. поворот s — поворот на s градусов по часовой стрелке;
  3. повторить m [команда1 … командаN] — повторить m раз серию указанных команд.

Какой след оставит за собой исполнитель после выполнения следующей последовательности команд?

Повторить 5 [вперед 10 поворот 72]

Решение. Команда вынуждает исполнителя 5 раз повторить набор действий: пройти 10 шагов вперед и повернуть на 72° по часовой стрелке. Так как поворот происходит на один и тот же угол, то за весь путь исполнитель повернет на 5 х 72° = 360°. Поскольку все отрезки пути одинаковой длины и сумма внешних углов любого многоугольника составляет 360°, то в результате будет оставлен след в форме правильного пятиугольника со стороной в 10 шагов исполнителя.

Заметим, что если увеличить количество повторов серии команд, то исполнитель будет повторно передвигаться по тем же отрезкам (произойдет повторное движение по тому же пятиугольнику).

Какое свойство алгоритма называется массовостью

■ Пример 3.  В системе команд предыдущего исполнителя Крот сформировать алгоритм вычерчивания пятиступенчатой лестницы (длина ступеньки — 10 шагов исполнителя).

Решение. За каждый шаг цикла должно происходить 4 действия: движение вперед на 10 шагов исполнителя, поворот на 90° по часовой стрелке, еще 10 шагов вперед и поворот на 90° против часовой стрелки (= 270° по часовой). В результате за один шаг цикла формируется ломаная из двух отрезков длиной 10 под прямым углом. За пять таких шагов сформируется 5–ступенчатая лестница (ломаная будет содержать 10 звеньев).

Повторить 5 [вперед 10 поворот 90 вперед 10 поворот 270]

Блок–схема

Блок–схема — наглядный способ представления алгоритма. Блок–схема отображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий. Определенному типу действия соответствует определенная геометрическая фигура блока. Линии, соединяющие блоки, определяют очередность выполнения действий. По умолчанию блоки соединяются сверху вниз и слева направо. Если последовательность выполнения блоков должна быть иной, используются направленные линии (стрелки).

Основные элементы блок–схемы алгоритма:

Основные элементы блок–схемы алгоритма:

Общий вид блок–схемы алгоритма:

Общий вид блок–схемы алгоритма:

■ Пример 4.  Алгоритм целочисленных преобразований представлен в виде фрагмента блок–схемы. Знаком := в нем обозначен оператор присваивания некоторого значения указанной переменной. Запись X := 1 означает, что переменная Х принимает значение 1.

Определить результат работы алгоритма для исходных данных Х = 7, Y = 12.

Какое свойство алгоритма называется массовостью

Решение.

  1. Блок ввода данных определит исходные значения переменных Х и Y (7 и 12 соответственно).
  2. В первом условном блоке осуществляется сравнение значений Х и Y. Поскольку условие, записанное в блоке, неверно (7 < 12), происходит переход по линии «нет».
  3. Во втором условном блоке выполняется второе сравнение, которое для исходных данных оказывается верным. Происходит переход по линии «да».
  4. Вычисляется результат выполнения алгоритма: X := 0, Y := 1.

Ответ: X := 0, Y := 1.

Алгоритмические языки

Алгоритмический язык — это искусственный язык (система обозначений), предназначенный для записи алгоритмов. Он позволяет представить алгоритм в виде текста, составленного по определенным правилам с использованием специальных служебных слов. Количество таких слов ограничено. Каждое служебное слово имеет точно определенный смысл, назначение и способ применения. При записи алгоритма служебные слова выделяют полужирным шрифтом или подчеркиванием.

В алгоритмическом языке используются формальные конструкции, но нет строгих синтаксических правил для записи команд. Различные алгоритмические языки различаются набором служебных слов и формой записи основных конструкций.

Алгоритмический язык, конструкции которого однозначно преобразуются в команды для компьютера, называется языком программирования. Текст алгоритма, записанный на языке программирования, называется программой.

Псевдокод

Псевдокод занимает промежуточное положение между естественным языком и языками программирования. Пример псевдокода — учебный алгоритмический язык. Алфавит учебного алгоритмического языка является открытым. Существенным достоинством этого языка является то, что его служебные слова, конструкции и правила записи алгоритма весьма схожи с теми, что применяются в распространенных языках программирования. Благодаря этому учебный алгоритмический язык позволяет легче освоить основы программирования.

Служебные слова учебного алгоритмического языка:

Служебные слова учебного алгоритмического языка:

Стандартная структура алгоритма

Представление алгоритма на алгоритмическом языке (в том числе и языке программирования) состоит из двух частей. Первая часть — заголовок — задает название алгоритма и включает описание переменных, которые используются в нем. Вторая часть — тело алгоритма — содержит последовательность команд алгоритма.

Общий вид записи алгоритма на учебном алгоритмическом языке:

Какое свойство алгоритма называется массовостью

В начале заголовка записывается служебное слово алг, после чего указывается имя алгоритма. Описание переменных, являющихся аргументами алгоритма и его результатами, приводится после названия в круглых скобках.

В следующих строках конкретизируют, какие именно переменные являются аргументами алгоритма (входными данными), а какие — его результатами (выходными данными). Для этого после служебного слова арг приводится список имен переменных–аргументов; в следующей строке после служебного слова рез приводится список имен переменных–результатов.

Между служебными словами нач и кон размещается тело алгоритма — конечная последовательность команд, выполнение которых предписывает алгоритм. Команды алгоритма записывают одну за одной в отдельных строках. В случае необходимости можно записать две или более команд в одной строке, тогда соседние команды разделяют точкой с запятой. Если в алгоритме применяются промежуточные переменные, их описание приводят в начальной строке тела алгоритма рядом со словом нач.

Примеры заголовков алгоритмов:

В первом примере алгоритм имеет название Объем_шара, один вещественный аргумент Радиус и один вещественный результат Объем. Во втором примере алгоритм под названием Choice имеет три аргумента — целые M и N и логический b, а также два результата — вещественные Var1 и Var2.

Пример алгоритма вычисления гипотенузы прямоугольного треугольника:

Какое свойство алгоритма называется массовостью

На вход алгоритму даются два вещественных аргумента a и b (величины катетов), результатом является вещественная переменная с (гипотенуза). Для ее расчета используется функция вычисления квадратного корня sqrt.

Описание величин и действия над ними

При описании алгоритма необходимо указать названия (обозначения) всех величин, которые будут в нем найдены или использованы.

При представлении алгоритма решения в виде блок–схемы выбранные обозначения величин приводятся отдельно от блок–схемы (как объяснение к ней). Если алгоритм представлен на языке программирования, то характеристика обрабатываемых величин включается в программу. Учебный алгоритмический язык также предусматривает описание величин, используемых в алгоритме.

Все величины в алгоритме разделяют на постоянные (константы) и переменные. Константа не может изменять свои значения в процессе работы алгоритма. Переменная может приобретать различные значения, которые сохраняются до тех пор, пока она не получит новое значение. Переменным величинам назначают имена. Таким образом, переменная — это именуемая величина, которая в процессе выполнения алгоритма может приобретать и хранить различные значения.

В алгоритмическом языке не существует специальных правил именования переменных. Однако их названия не должны совпадать со служебными словами алгоритмического языка. Во многих языках программирования для имен можно использовать только латинские буквы, цифры, знак подчеркивания. Имена обязательно должны начинаться с буквы, при этом строчные и прописные буквы в именах не различаются. В одном алгоритме не могут существовать разные объекты с одинаковыми именами. Все имена являются уникальными. Имена переменных и констант стараются выбирать так, чтобы они напоминали их смысл. Например, имена переменных и констант: S, p12, result, итог.

При представлении алгоритма на алгоритмическом языке именуются не только величины, но и сам алгоритм, и другие объекты. Имя алгоритма выбирают так же, как и имена переменных.

Величина — переменная, с которой связывается определенное множество значений. Этой величине присваивается имя (в языках программирования его называют идентификатор).

Значение — то, чему равна переменная в конкретный момент. Значение переменной можно задать двумя способами: присваиванием и с помощью процедуры ввода.

Тип переменной определяет диапазон всех значений, которые может принимать данная переменная, и допустимые для нее операции. Существует несколько предопределенных типов переменных. К стандартным типам относятся числовые, литерные и логические типы.

Числовой тип предназначен для обработки числовых данных. Различают целый и вещественный числовые типы. Целый тип в учебном алгоритмическом языке обозначается служебным словом цел, к нему относятся целые числа некоторого определенного диапазона. Они не могут иметь дробной части, даже нулевой. Число 123,0 является не целым, а вещественным числом. Вещественные величины относятся к вещественному типу данных и обозначаются в учебном алгоритмическом языке служебным словом вещ. Такие величины могут отображаться двумя способами: в форме с фиксированной запятой (например, 0,0511 или –712,3456) и с плавающей запятой (те же примеры: 5,11*10-2 и –7,123456*102).

Над числовыми данными можно выполнять арифметические операции и операции сравнения.

обозначение операций

Над целыми числами можно также выполнять две операции целочисленного деления div и mod. Операция div обозначает деление с точностью до целых чисел (остаток от деления игнорируется). Операция mod позволяет узнать остаток при делении с точностью до целых чисел. Например, результатом операции 100 div 9 будет число 11, а результатом 100 mod 9 — число 1.

Литерный тип представляет собой символы и строки, он дает возможность работать с текстом. Литерные величины — это произвольные последовательности символов. Эти последовательности заключаются в двойные кавычки: «результат», «sum_price». В качестве символов могут быть использованы буквы, цифры, знаки препинания, пробел и некоторые другие специальные знаки (возможными символами могут быть символы таблицы ASCII). В учебном алгоритмическом языке литерные величины обозначаются лит.

Над литерными величинами возможны операции сравнения и слияния. Сравнение литерных величин производится в соответствии с их упорядочением: «a» < «b», «b» < «с» и т. д. Слияние (конкатенация) литерных величин приводит к образованию новой величины: «пол» + «е» образует «поле».

Логический тип определяет логические переменные, которые могут принимать только два значения — истина (True) или ложь (False). Над логическими величинами можно выполнять все стандартные логические операции.

Команды учебного алгоритмического языка

Учебный алгоритмический язык использует следующие команды для реализации алгоритма:

Какое свойство алгоритма называется массовостью

ОПЕРАЦИЯ ПРИСВАИВАНИЯ

Ко всем типам величин может быть применена операция присваивания, которая обозначается знаком «:=» и служит для вычисления выражения, стоящего справа, и присваивания его значения переменной, указанной слева. Например, если переменная H имела значение 12, а переменная М — значение 3, то после выполнения оператора присваивания H := М + 10 значение переменной H изменится и станет равным 13.

Вычисления в операторе присваивания выполняются справа налево: сначала необходимо вычислить значение выражения справа от знака присваивания. Поэтому допустимы конструкции вида H := Н + 10. В этом случае сначала будет вычислено выражение в правой части (12 + 10), а его результат будет присвоен в качестве нового значения переменной Н (значение 22).

Для оператора присваивания обязательно должны быть определены значения всех переменных в его правой части. Кроме того, типы данных в левой и правой части должны соответствовать друг другу.

ВВОД И ВЫВОД ДАННЫХ

В процессе работы алгоритма происходит обработка исходных данных для получения выходных (результирующих) данных. В процессе этого преобразования могут быть найдены некоторые промежуточные результаты. Входные данные должны быть переданы алгоритму («введены»), а по окончании работы алгоритм должен вывести результат.

При записи алгоритма с помощью блок–схемы ввод и вывод данных отображаются с помощью блоков ввода/вывода (параллелограммов). При этом только указывается перечень данных для ввода или вывода, а сам процесс не детализируется.

Описание алгоритма средствами псевдокода может вовсе не предусматривать команды ввода или вывода данных. В заголовке алгоритма указывается, какие данные являются аргументами, какие — результатами работы алгоритма. Считается, что аргументы будут предоставлены до выполнения алгоритма, результаты будут выведены после его выполнения, и описывается лишь процесс превращения аргументов в результаты.

В записи алгоритма с помощью учебного алгоритмического языка для операций ввода/вывода используются команды ввод и вы?