Какое свойство делает титановые сплавы особенно ценными по созданию летательных аппаратов

Какое свойство делает титановые сплавы особенно ценными по созданию летательных аппаратов thumbnail

D) 0,8

10. Какие железоуглеродистые сплавы называют чугунами?

А) содержащие углерода более 0,8%

В) содержащие углерода более 4,3%

С) содержащие углерода более 0,02%

D) содержащие углерода более 2,14%

Тестовое задание.

К теме «Термическая обработка металлов и сплавов»

1. Какой температуре отвечают критические точки А3, железоуглеродистых сталей.

А) 727 0С

В) 727…1147 0С в зависимости от содержания углерода

С) 727…911 0С в зависимости от содержания углерода

D) 1147 0С

2. Что означает точка Ас3?

А) температурную точку начала распада мартенсита

В) температурную точку начала превращения аустенита в мартенсит

С) температуру критической точки перехода перлита в аустенит при неравномерном нагреве.

D) температуру критической точки, выше которой при неравномерном нагреве доэвтектоидные стали приобретают аустенитную структуру

3. Что такое закаливаемость?

А) Глубина проникновения закаленной зоны.

В) Процесс образования мартенсита

С) Способность металла быстро прогреваться на всю глубину

D) Способность металла повышать твердость при закалке

4. Чем достигается сквозная прокаливаемость крупных деталей

А) Многократной закалкой

В) Применением при закалке быстродействующих охладителей

С) Обработкой после закалки холодом.

D) Применением для их изготовления легированных сталей.

5. Как называется термическая обработки, состоящая в нагреве закаленной стали ниже А1, выдержке и последующем охлаждении?

А) Отжиг

В) Аустенизация

С) Отпуск

D) Нормализация

6. При каком виде отпуска закаленное изделие приобретает наибольшую пластичность?

А) При низком отпуске

В) При высоком отпуске

С) Пластичность стали является ее природной характеристикой и не зависит от вида отпуска.

D) При среднем отпуске

7. Как называется термическая обработка, состоящая из закалки и высокого отпуска?

А) Нормализация

В) Улучшение

С) Сфероидизация

D) Полная закалка

8. Как называется обработка, состоящая в длительной выдержке закаленного сплава при комнатной температуре или при высоком нагреве?

А) Рекристаллизация

В) Нормализация

С) Высокий отпуск

D) Старение

9. Как называется обработка, состоящая в насыщении поверхности стали углеродом?

А) Цементация

В) Нормализация

С) Улучшение

D) Цианирование

10. Что такое карбюризатор?

А) Вещество, служащее источником углерода при цементации.

В) Карбиды легирующих элементов.

С) Устройство для получения топливовоздушной среды

D) Смесь углекислых солей.
Тестовое задание.

К теме «Классификация и маркировка сталей и сплавов»

1. Какая из приведенных в ответах сталей относится к заэвтектоидным?

А) ст. 1 кп

В) У 10А

С) 10 пс

D) А 11

2. Какой из признаков может характеризовать кипящую сталь?

А) Низкое содержание кремния

В) Высокая пластичность отливки

С) Низкая пластичность

D) Низкое содержание марганца

3. Какую сталь называют кипящей (сталь 3кп)?

А) Сталь, обладающую повышенной прочностью

В) Сталь, доведенную до температуры кипения.

С) Сталь, раскисленную марганцем, кремнием и алюминием

D) Сталь, раскисленную только марганцем

4. К какой категории по качеству принадлежит Сталь 6сп?

А) К высококачественным сталям

В) К особовысококачественным сталям

С) К качественным сталям

D) К сталям обыкновенного качества

5. К какой категории по качеству принадлежит сталь 0,8 кп?

А) К сталям обыкновенного качества

В) К качественным сталям

С) К высококачественным сталям

D) К особовысококачественным сталям

6. Какие стали называются автоматными?

А) Стали, предназначенные для изготовления ответственных пружин, работающих в автоматических устройствах.

В) Стали, длительно работающие при цикловом знакопеременном нагружении

С) Стали с улучшенной обрабатываемостью резанием, имеющие повышенное содержание серы или дополнительно легированные свинцом, селеном или кальцием.

D) Инструментальные стали, предназначенные для изготовления металлорежущего инструмента, работающего на станках – автоматах

7. К какой группе материалов относится сплав марки А 20?

А) К углеродистым инструментальным сталям

В) К углеродистым качественным конструкционным сталям

С) К сталям с высокой обрабатываемостью резанием

D) К сталям обыкновенного качества

8. К какой группе материалов относится сплав марки АС40? Каков его химический состав?

А) Высококачественная конструкционная сталь. Содержит около 0.4% углерода и около 1% кремня.

В) Антифрикционный чугун. Химический состав в марке не отображен.

С) Конструкционная сталь, легированная азотом и кремнием. Содержит около 0.4% углерода.

D) Автоматная сталь. Содержит около 0.4% углерода, повышенное кол-во серы, легированная свинцом

9. Какие металлы называют жаростойкими?

А) Металлы, способные сопротивляться часто чередующемся нагреву и охлаждению.

В) Металлы, способные сопротивляться коррозионнаму воздействию газа при высоких температурах.

С) Металлы, способные сохранять структуру мартенсита при высоких температурах.

D) Металлы, способные длительное время сопротивляться деформированию и разрушению при повышенных температурах.

10. Какие металлы называют жаропрочными?

А) Металлы, способные сохранять структуру мартенсита при высоких температурах.

В) Металлы, способные сопротивляться коррозионному воздействию газа при высоких температурах.

С) Металлы, способные длительное время сопротивляться деформированию и разрушению при повышенных температурах.

D) Металлы, способные сопротивляться часто чередующимся нагреву и охлаждению.
Тестовое задание.

К теме «Цветные металлы и сплавы»

1. Каким из приведенных в ответах свойств характеризуется медь?

А) Низкой температурой плавления (651 0С), низкой теплопроводностью, низкой плотностью (1740 кг/м3)

В) Низкой температурой плавления (327 0С), низкой теплопроводностью, высокой плотностью (11600 кг/м3)

С) Высокой температурой плавления (1083 0С), высокой теплопроводностью, высокой плотностью (8940 кг/м3)

D) Высокой температурой плавления (1665 0С), высокой теплопроводностью, высокой плотностью (4500 кг/м3)

2. Что такое латунь?

А) Сплав меди с цинком

В) Сплав железа с никелем

С) Сплав меди с оловом

D) Сплав аллюминия с кремнием.

3. Как называется сплав марки Л62? Каков его химический состав?

А) Литейная сталь, содержащая 0,62%С

В) Литейный алюминиевый сплав, содержащий 62% Al

С) Сплав меди с цинком, содержащий 62% Cu

D) Сплав бронзы с медью, содержащий 62% бронзы

4. Как называются сплавы с другими элементами (кремнием, алюминием, оловом, бериллием и т.д.)

А) Бронзы

В) Латунь

С) Инвары

D) Баббиты

5. Каковы основные характеристики алюминия?

А) Малая плотность, низная теплопроводность, низкая коррозионная стойкость.

В) Высокая плотность, высокая теплопроводность, высокая коррозионная стойкость

С) Малая плотность, высокая теплопроводность, высокая коррозионная стойкость

D) Малая плотность, высокая теплопроводность, низкая коррозионная стойкость
6. Как называется сплав марки Д16? Каков его химический состав?

А) Баббит, содержащий 16% олова

В) Латунь, содержащая 16% цинка

С) Сталь, содержащая 16% меди

D) Деформируемый алюминиевый сплав, упрочняемый термообработкой – дуралюмин, состав устанавливают по стандарту.

7. К какой группе металлов относится титан?

А) К благородным

В) К редкоземельным

С) К тугоплавким

D) К легкоплавким

8. Какое свойство делает титановые сплавы особенно ценными по созданию летательных аппаратов?

А) Низкая плотность

В) Высокая абсолютная прочность

С) Высокая химическая стойкость

D) Высокая удельная прочность

9. Что такое баббиты?

А) латунь с двухфазной структурой

В) Литейный алюминиевый сплав

С) Антифрикционный сплав

D) Бронза, упрочненная железом и марганцем

10. Какой из приведенных материалов в ответах предпочтителен для изготовления быстроходных подшипников скольжения?

А) Бр 05Ц5С5

В) АО9-2

С) АЧС-3

D) ЛЦ16КЧ

Тестовое задание.

Читайте также:  Какое свойство из нижеперечисленных относится к основным свойствам алгоритма

К теме «Металлы и сплавы с особыми свойствами и электротехнические материалы» (!)

1. Какой материал называют твердой медью?

А) Электролитическую медь

В) Медный сплав, содержащий легирующие элементы, повышающие твердость

С) Медь, упрочненную холодной пластической деформацией

D) Медный штеин.

2. Какой материал называют мягкой медью?

А) Медь после огневого рафинирования

В) Медный сплав, содержащий легирующие элементы, снижающие твердость

С) Электролитическую медь

D) Отожженную медь.

3. Как влияют растворимые в меди примеси на ее электропроводимость?

А) Электропроводность меди не зависит от примесей

В) Все примеси снижают электропроводность

С) Все примеси повышают электропроводность

D) Примеси, обладающие меньшими, чем медь, удельнымэлектросопротивлением (например, серебро) повышает электропроводность, остальные – снижают

4. Что такое нихром? Каково его назначение?

А) Жаростойкий сплав на основе никеля. Используется для изготовления нагревательных элементов.

В) Диэлектрический материал. Используется для изготовления электроизоляторов.

С) Железоникелевый сплав с высокой магнитной проницаемостью используется в слаботочной технике

D) Высокохромистый инструментальный материал. Используется для изготовления штампового инструмента.

5. Какие материалы называют диэлектриками?

А) Материалы, поляризирующиеся в электрическом поле.

В) Материалы с обратной зависимостью электросопротивления от температуры

С) Материалы с неметаллическими межатомными связями

D) Материалы с аморфной структурой

6. Что такое диэлектрическая проницаемость?

А) Мера нагревостойкости диэлектрика

В) Мера диэлектрических потерь

С) Мера электрической прочности диэлектрика

D) Мера поляризации диэлектрика

7. Что такое электрическая прочность?

А) Величина напряжения в момент пробоя

В) Направленность электрического поля в момент пробоя

С) Максимальная величина тока, при которой возможна длительная эксплуатация материала

D) Мера способности материала сопротивляться одновременному воздействию тока и механической нагрузке

8. Где используют магнитно-твердые материалы?

А) Для изготовления магнитопроводов токов высокой частоты

В) Для изготовления электромагнитов

С) Для изготовления постоянных магнитов

D) Для изготовления магнитопроводов постоянного или слабо пульсирующего тока

9. Какие материалы называют магнитно-мягкими?

А) Мартенситные стали

В) Литые высококоэрцитивные сплавы

С) Материалы с широкой петлей гистерезиса

D) Материалы с малым значением коэрцитивной силы

10. Для каких целей применяют электротехнические стали?

А) Для изготовления постоянных магнитов

В) Для изготовления приборов, регулирующих сопротивления электрических цепей

С) Для магнитопроводов, работающих в полях промышленной частоты

D) Для передачи электической энергии на значительные расстояния

Тестовое задание.

К теме «Инструментальные материалы»

1. К какому классу по равновесной структуре относятся быстрорежущие стали?

А) К заэвтектоидным сталям

В) К эвтектоидным сталям

С) К доэвтектоидным сталям

D) К ледебуритным сталям

2. До каких, ориентировочно, температур следует нагревать быстрорежущие стали при закалке?

А) 750…800 0С

В) 1200…1300 0С

С) 1400…1500 0С

D) 800…900 0С

3. Почему при закалке быстрорежущей стали применяют ступенчатый нагрев?

А) При ступенчатом нагреве обеспечивается лучшая растворимость карбидов

В) Ступенчатый нагрев позволяет предотвратить появление в нагреваемом изделии трещин (сталь обладает низкой теплопроводностью)

С) При ступенчатом нагреве легирующие элементы распределяются по сечению изделия более равномерно

D) Ступенчатый нагрев позволяет предотвратить рост аустенитного зерна

4. Почему быстрорежущие стали при закалке нагревают до t значительно более высоких, чем, например, углеродистые стали?

А) В быстрорежущих сталях перлитно-аустенитное превращение протекает при более высоких температурах

В) При высоком нагреве более полно растворяются вторичные карбиды и образуется высоколегированный аустенит

С) При высоком нагреве полностью растворяются первичные и вторичные карбиды

D) При высоком нагреве происходит укрупнение аустенитного зерна

5. Какой из перечисленных в ответах технологических методов применяют для получения твердых сплавов?

А) Обработку сверхвысоким давлением в сочетании с высоким нагревом

В) Порошковую металлургию

С) Литье с последующей термической обработкой

D) Термомеханическую обработку

Тестовое задание.

К теме «Неметаллические и композиционные материалы»

1. Какие вещества называют полимерами?

А) Вещества полученные полимеризацией низкомолекулярных соединений

В) Высокомолекулярные соединения, основная молекулярная цепь которых, состоит из атомов углерода

С) Высокомолекулярные соединения, молекулы которых состоят из большего числа мономерных звеньев

D) Органистическое соединение, состоящее из большего числа одинаковых по химическому составу мономеров

2. Какой из наполнителей пластмасс: слюдяная мука, асбестовые волокна, стеклянные нити – полимерный материал?

А) Ни один из названых материалов не полимер

В) Стеклянные нити

С) Асбестовые волокна и слюдяная мука

D) Все названные наполнители – полимеры

3. В основной цепи полимера, кроме углерода, присутствуют атомы фтора и хлора. Какое из свойств, перечисленных в ответах, можно ожидать у полимерного материала?

А) Повышенную газонепроницаемость

В) Высокую химическую стойкость

С) Повышенную эластичность

D) Высокие диэлектрические свойства

4. Какие полимерные материалы называют термопластичными?

А) Материалы, обратно затвердевающие в результате охлаждения без участия химических реакций

В) Материалы с редкосетчатой структурой макромолекул

С) Материалы, формируемые при повышенных температурах

D) Материалы, необратимо затвердевающие в результате химических реакций

5. Какие материалы называют пластмассами?

А) Материалы органической или неорганической природы, обладающие высокой пластичностью

В) Высокомолекулярные соединения, молекулы которых состоят из большего числа мономерных звеньев

С) Искусственные материалы на основе природных или синтетических полимерных связующих

D) Материалы, получаемые посредством реакций полимеризации или поликонденсации
6. Что такое текстолит?

А) Ненаполненная пластмасса на основе термопластичных полимеров

В) Пластмасса с наполнителем из направленных органических волокон

С) Пластмасса на основе термореактивного полимера с наполнителем из хлопчатобумажной ткани

D) Термореактивная пластмасса с наполнителем из стеклоткани

7. Для каких, из перечисленных в ответах, целей может быть использован гетинакс?

А) Для изготовления устройств гашения электрической дуги

В) Для изготовления панелей распределительных устройств низкого напряжения

С) Для изготовления прозрачных колпаков электрических приборов

D) Для изготовления подшипников скольжения микроэлектродвигателей

8. Для изделий какого типа возможно применение гетинакса?

А) Внутренняя облицовка салона самолета

В) Антенный обтекатель самолета

С) Наружная теплозащита космического аппарата

D) Остекление кабины самолета

9. Какой из перечисленных в ответах материалов предпочтителен для изготовления подшипников скольжения?

А) Фторопласт

В) Ударопрочный полистирол

С) Фенопласт – 4

D) Асбоволокнит

10. Какой из перечисленных в ответах материалов предназначен для изготовления тормозных накладок?

А) Текстолит

В) Винипласт

С) Асботекстолит

D) Стекловолокно
11. Какой материал называется композиционным?

А) Материал, составленный различными компонентами, разделенными в нем ярко выраженными границами

В) Материал, структура которого представлена матрицей и упрочняющими фазами

С) Материал, состоящий из различных полимеров

D) Материал, в основных молекулярных цепях которого содержатся неорганические элементы, сочетающиеся с органическими радикалами

12. Какие композиционные материалы называют диспереноупрочненными?

А) Материалы, упрочненные частицами второй фазы, выделившимися при старении

В) Материалы, упрочненные полностью растворимыми в матрице частицами второй фазы

С) Материалы, упрочненные нуль-мерными наполнителями

D) Материалы, упрочненные одномерными наполнителями

13. Как зависит прочность дисперно-упрочненных композиционных материалов от содержания наполнителя?

А) Если наполнитель по прочности превосходит матрицу, то увеличение его содержания приведет к повышению прочности, в противном случае – к понижению

В) С увеличением содержания наполнителя прочность растет

С) Прочность мало зависит от содержания наполнителя, но определяется его дисперсностью

Читайте также:  Что такое доказательства и какими свойствами они должны обладать

D) Прочность зависит, в основном, от расстояния между частицами наполнителя и их дисперсности

14. Каким методом получают дисперсно-упрочненные композиционные материалы?

А) Методом обработки давлением

В) Самораспространяющимся синтезом

С) Методом порошковой металлургии

D) Литьем под давлением

15. Как влияет увеличение объемного содержания волокнистого наполнителя на прочность композиционного материала?

А) Прочность не зависит от содержания наполнителя

В) Влияние на прочность не однозначно

С) Прочность растет

D) Прочность снижается

Ключи к тестам:

Электронное строение и классификация материалов1. В

2. В

3. А

4. D

5. С

6. С

7. D

8. В

9. D

10. АКлассификация и маркировка металлов и сплавов

1. В

2. А

3. D

4. D

5. В

6. С

7. С

8. D

9. В

10. С

Неметаллические и композиционные материалы

1. C

2. D

3. B

4. A

5. C

6. C

7. B

8. A

9. A

10. C

11. A

12. C

13. D

14. C

15. B

Механические свойства, деформация материалов1. D

2. А

3. D

4. D

5. B

6. B

7. A

8. B

9. C

10. BЦветные металлы и сплавы

1.С

2. А

3. С

4. А

5. С

6. D

7. С

8. D

9. С

10. В

Железоуглеродистые сплавы

1. С

2. С

3. D

4. А

5. С

6. D

7. В

8. D

9. D

10. DМеталлы и сплавы с особыми свойствами и электротехнические материалы1. С

2. D

3. В

4. А

5. А

6. D

7. В

8. С

9. D

10.С

Термическая обработка металлов и сплавов

1. С

2. D

3. D

4. D

5. С

6. В

7. В

8. D

9. А

10. АИнструментальные материалы

1. D

2. B

3. B

4. B

5. B

ТЕСТЫдисциплина «Материаловедение»

Источник

Свойства титана и его сплавов

Вопросы, рассмотренные в материале:

  • Каковы свойства титана
  • Что добавляют в титан для получения сплава
  • Каковы свойства сплавов титана
  • Где используют титан и его сплавы

Титановые сплавы обладают таким количеством преимуществ, что это выгодно отличает их от других соединений. Высокая удельная прочность, устойчивость к повышенным температурам, стойкость к коррозии, податливость к сварке – эти и многие другие свойства титана и его сплавов сделали эти материалы особо ценными в сфере металлообработки. В нашей статье мы подробнее рассмотрим все свойства этого удивительного металла.

Характеристики титана

В таблице Менделеева Титан (Ti) можно найти под номером 22. Этот металл и его сплавы являются четырехвалентными. Кипение достигается при температуре +3330 °С, а плавление при +1168 °С.

Выделяют два вида титана, которые имеют идентичный химический состав при разном строении. Это обуславливает отличия в их свойствах. Низкотемпературная α-модификация сохраняет устойчивость только до температуры +882,5 °С, β-модификация может выдерживать большую температуру и сохраняет устойчивость до температуры плавления.

Характеристики титана

Титан и его сплавы парамагнитны. Удельное электросопротивление этого материала достаточно высоко 5.562*10-7–7.837*10-7 Ом/м. Он отличается низкой восприимчивостью температуры при нагревании. В случае снижения температуры до 0,45 К, титан становится проводником. Сталь и титан внешне очень похожи.

Если сравнивать титан с алюминием или железом, то его плотность и удельная теплоемкость находятся где-то посередине. Зато он обладает высокой механической прочностью, превосходя в этом параметре алюминий в 6 раз, а чистое железо в 13 раз. Данный материал может быть представлен в любой форме: листами, плитами, трубами и прутками.

Механические и технические свойства титана и его сплавов, а также их химический состав определяются маркой материала. В его состав могут входить следующие элементы:

  • алюминий;
  • молибден;
  • ванадий;
  • марганец;
  • хром;
  • олово;
  • кремний;
  • цирконий;
  • железо.

Свойства титана и его сплавов

Стандартно выделяются три категории титановых сплавов:

  1. Конструкционные и высокопрочные титановые сплавы. Имеют очень твердый состав, благодаря которому достигается идеальный баланс пластичности и прочности.
  2. Жаропрочные титановые сплавы. Имеют твердый состав, включающий в себя определенное количество химического соединения, что несколько снижает пластичность, зато придает высокую жаропрочность.
  3. Титановые сплавы на основе химического соединения. Этот жаропрочный состав имеет малую плотность и может составить конкуренцию никелевым соединениям по жаропрочности при определенной температуре.

Сейчас Ti очень широко используют в конструкционной деятельности. Еще 200 лет назад его считали неподходящим для конструирования, но прошло время, и на данный момент это один из самых долговечных и надежных материалов с широким спектром других полезных свойств.

Свойства титана и его сплавов

Рассмотрим подробнее самые популярные сплавы титана, их свойства и применение:

  • ВТ1-00 и ВТ1-0.

Технический титан. Полуфабрикаты технического Ti марок ВТ1-00 и ВТ1-0 поставляются в большом количестве металлургическими заводами. В состав этих марок входят примеси железа, азота, кремния, кислорода, углерода и пр. При этом в разновидности ВТ1-0 примесей значительно больше, чем обуславливается его большая прочность и меньшая пластичность по сравнению со второй маркой. Высокая пластичность этих марок позволяет изготавливать тончайшие изделия, включая фольгу.

Эти материалы не обладают высокой прочностью, поэтому для ее увеличения можно выполнить нагартовку. Правда, при этом снизится пластичность. Нагартовка не является оптимальным методом улучшения свойств данного металла, поскольку пластичность снижается гораздо сильнее, чем повышается прочность. Еще одним недостатком технического Ti является водородная хрупкость. Важно следить за тем, чтобы содержание водорода не превышало 0,008 % в титане ВТ1-00 и 0,01 % в ВТ1-0.

  • Сплав ВТ5 (ВТ5Л).

Для легирования сплава ВТ5 (ВТ5Л) использовали лишь алюминий, который является самым распространенным легирующим средством. Особые свойства алюминия привели его к лидирующим позициям среди всех лигирующих добавок:

  1. алюминий является природным материалом, который можно легко найти и стоит недорого;
  2. меньшая по сравнению с Ti плотность алюминия позволяет значительно повышать удельную прочность получаемого состава;
  3. чем больше в составе алюминия, тем более жаропрочное соединение получается, также увеличивается сопротивление ползучести соединения;
  4. включение в состав алюминия позволяет улучшить показатели модулей упругости;
  5. повышение объема алюминия в соединении снижает их водородную хрупкость.

По сравнению с техническим Ti, для марки ВТ5 характерны такие свойства, как большая прочность и жароустойчивость. Улучшение данных свойств приводит к снижению технологической пластичности Ti. Соединение ВТ5 в горячем состоянии может быть подвергнуто штамповке, ковке и прокату, что позволяет производить профильную, прутковую и штамповочную продукцию. Но основной сферой применения является фасонное литье (марка ВТ5Л), а не металл в деформированном состоянии.

  • Сплав ВТ5-1.

Соединение ВТ5-1 включено в систему Ti-Al-Sn. Технологические свойства титана и его сплавов с алюминием улучшаются за счет олова. Это приводит к снижению окислительных процессов и увеличению сопротивления ползучести. Прочностные свойства этого сплава титана позволяют отнести его к соединениям средней прочности. При этом ВТ5-1 не поддается надрезам, предел его выносливости с достаточным запасом, уровень жаропрочности достигает +450 °С.

Сплав ВТ5-1

С технологической точки зрения ВТ5-1 более предпочтителен (по сравнению с ВТ5). Основная сфера применения: поковки, листы, профили, плиты, штамповки, трубы, проволока и другие виды полуфабрикатов, производимых под давлением.

Соединение образуется путем сваривания. При этом основной материал и сварное соединение обладают одинаковой прочностью. Воздействие высокой температурой не повышает прочности ВТ5-1.

Читайте также:  Какие свойства масло пачули

Если необходимо работать при криогенных температурах, то надо контролировать содержание примесей в материале, поскольку превышение допустимого порога может приводить к повышению хладноломкости. Маркировка ВТ5-1кт обозначает состав с пониженным содержанием примесей.

В европейских странах соединение Ti-5A1-2,5Sn используют двумя способами: по стандартному назначению и для работы при криогенных температурах. Состав для криогенной работы маркируют Ti-5AI-2,5Sn ELI и также для поддержания его свойств следят за уровнем примесей.

  • Сплав ОТ4-0.

Высокотехнологичное соединение с малой прочностью маркируют ОТ4-0. Под давлением в результате горячей обработки марганец способен повысить технологичность состава. Это сплав титана псевдо-α-класса с небольшим количеством β-фазы. Не подлежит термическому упрочнению. Сфера применения: поковки, листы, прутки, ленты, штамповки и полосы. Легко принимает нужную форму при холодной и горячей обработке. Допускается даже штамповка в условиях комнатной температуры. Свойства материала прекрасно подходят для сварочных работ.

  • Сплав ОТ4-1.

Среди наиболее технологичных можно выделить сплав титана ОТ4-1. Обладает следующими свойствами: малопрочный, малолегированный псевдо-α-класса системы Ti-Al-Mn, прекрасно деформируется. Можно менять форму этого титанового сплава как в горячем, так и в холодном состоянии. Сфера применения: поковки, листы, профили, плиты, ленты, прутки, полосы и трубы.

На холодную в основном выполняется листовая штамповка, не требующая сложной формы. Если необходимо изготовить более сложную по форме деталь, то желательно подогреть материал до +500 °С. Свойства ОТ4-1 позволяют использовать его для выполнения сварочных работ любым способом. При этом основной металл и сварное соединение будут обладать одинаковой прочностью и пластичностью.

Для полного отжига необходима температура +640…+690 °С (подходит для изготовления листовых полуфабрикатов и их производных) и +740…+790 °С (для изготовления поковок, прутков, штамповки и пр.).

Для неполного отжига достаточно температуры +520…+560 °С. Среди свойств, которые понижают ценность данного сплава, можно выделить невысокую прочность и излишнюю водородную хрупкость (для поддержания оптимальных свойств металла необходимо содержание водорода не более 0,005 %).

Сплав ОТ4-1

Сферы применения титана и его сплавов

Свойства титана и его сплавов нашли широкое применение в ракетной, авиационной и судостроительной отраслях. Титан и ферротитан являются лигирующими добавками к стали. Кроме этого, они могут выступать в качестве раскислителя.

Широкое распространение технический титан получил при изготовлении изделий, подвергающихся агрессивному воздействию среды (например, трубопроводы, клапаны, химические реакторы, арматура и пр.). Даже в электровакуумных приборах, работа которых тесно связана с высокой температурой, сетки и некоторые другие детали изготовлены из этого устойчивого материала.

Среди конструкционных материалов титан занимает четвертое место (после железа, алюминия и магния). Важным свойством титанового сплава с алюминием является высокая стойкость к окислению и повышению температуры, что особенно актуально для авиационной и автомобильной промышленности. Пищевая промышленность и восстановительная хирургия по достоинству оценили такое свойство этого материала, как биологическая безопасность для здоровья человека.

Разнообразие свойств титана и его сплавов довольно широко: высокая механическая прочность, устойчивость к повышению температуры, удельная прочность, стойкость к коррозии, низкая плотность и многие другие. Несмотря на высокую стоимость этого металла, затраты могут быть компенсированы более длительным сроком эксплуатации. А в некоторых ситуациях только этот материал способен выдержать работу в конкретных условиях.

Для авиастроения большое значение имеет такое свойство, как легкость материала в сочетании с высокой прочностью. Возможность использовать легкий Ti для работы в среде, где преобладают высокие температуры, выгодно отличает его от алюминия. Эти свойства титана и его сплавов позволяют использовать их при изготовлении обшивки самолетов, деталей шасси и крепления, и даже для конструирования реактивных двигателей. При этом масса изделия снижается на 10–25 %. Элементы воздухозаборников, лопатки и диски компрессоров, крепеж и многие другие детали производятся именно из титановых сплавов.

Ракетостроение также не обходится без данного материала, поскольку здесь необходимо решать сразу несколько проблем, возникающих из-за слишком малого срока работы двигателей при быстром прохождении плотных слоев атмосферы. Такие проблемы, как статическая выносливость, ползучесть и усталостная прочность, можно преодолеть за счет использования титана.

Свойства технического титана не соответствует в полной мере запросам авиационной отрасли, поскольку он не обладает достаточной тепловой прочностью. Зато его свойство сопротивляться коррозии нашло свое применение в судостроительной и химической промышленности. Здесь с его помощью изготавливают насосы для перекачки кислоты или соли, компрессоры, трубопроводы и запорную арматуру.

Емкости и фильтры из этого материала не поддаются негативному влиянию серной и соляной кислоты, а также растворам хлора. Помимо этого, Ti входит в состав материала для изготовления теплообменников, работающих в агрессивной среде (к примеру, в азотной кислоте). В области судостроения его можно встретить в обшивке подводных лодок и других кораблей, в материале торпед и гребных винтов. Удивительные свойства титана и его сплавов способствуют тому, что ракушки просто не налипают на такие детали. Вследствие этого снижается сопротивление судна во время движения.

Повсеместное использование соединений этого металла могло бы приобрести колоссальные темпы, если бы не его высокая стоимость и малая распространенность.

В промышленности соединения титана используются с разными целями в зависимости от их свойств. Так, высокая твердость карбида позволяет изготавливать из него режущие инструменты и абразивы. В производстве бумаги и пластика нашел свое применение белый диоксид. Кроме этого, с помощью него изготавливаются титановые белила.

В лакокрасочной и химической промышленности титаноорганические соединения используются как отвердитель и катализатор. Также в качестве добавки Ti применяют в химической, стекловолоконной и электронной промышленности, где идут в дело его неорганические соединения. Из нитрида титана изготавливают специальное покрытие для инструментов, а для обработки металлов чаще используют диборид как компонент, придающий твердость.

Сферы применения титана и его сплавов

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Источник