Какое свойство генетического кода называется триплетностью

Какое свойство генетического кода называется триплетностью thumbnail

Генетический код. Биосинтез белка. Вирусы.

Вариант 1

1.Какое свойство генетического кода называется триплетностью?

  1. Три нуклеотида кодируют одну аминокислоту.
  2. Один кодон всегда кодирует одну аминокислоту.
  3. Одну аминокислоту могут кодировать до 6 кодонов.
  4. Рамка считывания равна трем нуклеотидам, один нуклеотид не может входить в состав двух кодонов.
  5. У всех организмов Земли одинаков генетический код.
  6. Нуклеотиды выстраиваются по принципу комплементарности

2. Какое свойство генетического кода называется вырожденностью (избыточностью)?

3. Какое свойство генетического кода называется однозначностью?

4. Что такое транскрипция?

  1. Удвоение ДНК.
  2. Синтез иРНК на ДНК.
  3. Синтез полипептидной цепочки на иРНК.
  4. Синтез иРНК, затем синтез на ней полипептидной цепочки.

5. Сколько различных аминокислот закодировано на ДНК кодовыми триплетами?

  1. 10.
  2. 20.
  3. 26.
  4. 170

6. Что является матрицей при трансляции?

  1. ДНК.
  2. иРНК.
  3. тРНК
  4. рРНК

7. Установите соответствие между процессами, происходящими во время транскрипции и трансляции.

  1. Происходит в ядре.
  2. Осуществляется с помощью рибосом.
  3. Необходимы нуклеотиды.
  4. Принимают участие тРНК.
  5. Необходимы аминокислоты.
  6. Образуется белок
  7. Образуется рРНК

8. Если нуклеотидный состав ДНК – АТТ-ГЦГ-ТАТ, то каким должен быть нуклеотидный состав иРНК?

а) ТАА-ЦГЦ-УТА;

б) ТАА-ГЦГ-УТУ;

в) УАА-ЦГЦ-АУА;

г) УАА-ЦГЦ-АТА

9. Вирусы – это:

    1) доклеточные формы жизни;  2) древнейшие эукариоты; 3) древнейшие прокариоты 3) примитивные бактерии.

10. Обязательными компонентами вируса являются:

     1) липиды; 2) нуклеиновые кислоты; 3) полисахариды; 4) белки.

11. Вирусы, проникая в клетку хозяина,

      1) питаются рибосомами; 2) отравляют её своими продуктами жизнедеятельности    3) воспроизводят свой генетический материал;   4) поселяются в митохондриях;

12. Установите последовательность жизненного цикла вируса в клетке хозяина:

     1) растворение оболочки клетки в месте прикрепления вируса;

     2) встраивание ДНК вируса в ДНК клетки хозяина;

     3) формирование новых вирусов;

     4) прикрепление вируса  своими отростками   к  оболочке клетки;

     5) проникновение ДНК вируса в клетку;

     6) синтез вирусных белков.

Генетический код. Биосинтез белка. Вирусы.

Вариант 2

1). Какое свойство генетического кода называется триплетностью?

1.        Три нуклеотида кодируют одну аминокислоту.

2.        Один кодон всегда кодирует одну аминокислоту.

3.        Одну аминокислоту могут кодировать до 6 кодонов.

4.        Рамка считывания равна трем нуклеотидам, один нуклеотид не может входить в состав двух кодонов.

5.        У всех организмов Земли одинаков генетический код.

6.        Нуклеотиды выстраиваются по принципу комплементарности

2. Какое свойство генетического кода называется универсальностью?

3. Какое свойство генетического кода называется неперекрываемостью?

4. Что такое трансляция?

1.        Удвоение ДНК.

2.        Синтез иРНК на ДНК.

3.        Синтез полипептидной цепочки на иРНК.

4.        Синтез иРНК, затем синтез на ней полипептидной цепочки.

5. Сколько видов т-РНК в клетке?

1.        4.

2.        20.

3.        61.

4.        170.

6. Что является матрицей при транскрипции?

1.        ДНК.

2.        иРНК.

3.        тРНК

4.        рРНК

7. Установите соответствие между процессами, происходящими во время транскрипции и трансляции.

А.        Происходит в ядре.

Б.        Осуществляется с помощью рибосом.

В.        Необходимы нуклеотиды.

Г.        Принимают участие тРНК.

Д.        Необходимы аминокислоты.

Е.        Образуется белок

Ж.        Образуется и-РНК

8. В каком направлении происходит реализация наследственной информации?

а) ДНК – иРНК – полипептид;

б) ДНК – тРНК – полипептид;

в) РНК – ДНК – полипептид;

г) ДНК – рРНК – полипептид

9. Вирусы размножаются:

      1) самостоятельно вне клетки хозяина; 2) только в клетке хозяина; 3) в клетке хозяина бесполым способом; 4)1 и 2.

10. Синтез вирусного белка осуществляется:

      1) на рибосомах клетки; 2) на собственных рибосомах вируса.

11. Признак организмов, характерный для неклеточной формы жизни:

      1) питание;        2) выделение вредных продуктов жизнедеятельности;

      3) дыхание;        4) высокая степень приспособленности к среде.

12. Установите последовательность жизненного цикла вируса в клетке хозяина:

     1) растворение оболочки клетки в месте прикрепления вируса;

     2) встраивание ДНК вируса в ДНК клетки хозяина;

     3) формирование новых вирусов;

     4) прикрепление вируса  своими отростками   к  оболочке клетки;

     5) проникновение ДНК вируса в клетку;

     6) синтез вирусных белков.

Источник

Анонимный вопрос

13 января 2019  · 4,5 K

Генетический код-способ записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности образующих эти кислоты нуклеотидов.

Свойства:
-Специфичность-3 нуклеотида кодируют только 1 определенную аминокислоту.
-Избыточность-1 аминокислота может кодироваться несколькими нуклеотидами
-Триплетность-3 нуклеотида кодируют 1 аминокислоту
-Неперекрываемость-3 нуклеотида входят в состав только 1 аминокислоты
-Универсальность-генетический год един для всех организмов

Какая часть ДНК показывает принадлежность человека к различным расам (99% – европеец, 1% – азиат, например)?

Добрый вечер. Никакая.

Никакая часть ДНК не отвечает за национальность.

Национальность — это язык, это культура, это общество и его самосознание, но не биологический задаток отдельного человека. Все эти вещи находятся не где-то в глубине клеток, а между людьми. Их человек усваивает на протяжении всей жизни.

Ваш вопрос вполне закономерен, ведь почти всегда и во всяком касающемся нас деле можно его задать: каково соотношение биологического и социального? Так вот, в случае национальности доля биологии ничтожна. В данном случае важны всего две особенности организма — развитый мозг и речевая система, позволяющие нам создать довольно сложную культуру. Всё остальное мы делаем сами.

Прочитать ещё 2 ответа

Как связаны между собой хромосомы, ДНК, гены?

Beamline scientist на линии порошковой рентгеновской дифракции

ДНК – это молекула, которая содержит генетическую информацию. Ген – кусок этой молекулы, описывающий синтез конкретного белка. Хромосома – способ упаковки молекулы ДНК внутри ядра. Если проводить аналогию с компьютером, ген – это один исполняемый файл, ДНК – папка с кучей файлов, хромосома – архив этой папки.

Прочитать ещё 2 ответа

Почему между нуклеотидами и аминокислотами не существует комплементарности? Разве генетический код не доказывает эту комплементарность?

Популяризатор биологии, особенно биохимии и доказательной медицины. Область научной…  · vk.com/mir_mol

Между аминокислотами и нуклеотидами нет комплементарности наподобие той, которая есть между нуклеотидами А—Т/У и Г—Ц. Вас, очевидно, интересует вопрос, как в таком случае происходит трансляция, то есть перевод с языка нуклеотидов на язык аминокислот, а именно синтез белка в соответствии с последовательностью матричной РНК (мРНК). Правила такого перевода называются генетическим кодом.

Во-первых, синтез белка происходит не напрямую по мРНК, а с участием адаптеров – молекул-посредников, называемых транспортными РНК (тРНК). Одним участком тРНК взаимодействует с мРНК по принципу комплементарности, который никто не отменял (кодон-антикодоновое взаимодействие). А с другим концом молекулы тРНК связана молекула аминокислоты. Поэтому если говорить максимально корректно, то тРНК, уже участвующую в процессе трансляции, лучше называть аминоацил-тРНК («аминоацил» значит остаток аминокислоты). Аминокислоты, сидящие на соседних молекулах тРНК, позже соединятся с помощью пептидной связи. И так далее. Происходит биосинтез полипептида.

Читайте также:  Какое свойство характерно для живых тел природы в отличие от неживой природы

Во-вторых, важным моментом является специфическое присоединение определённой аминокислоты к определённой тРНК (имеющей строго определённый антикодон). Конечно, это происходит до трансляции! Чтобы такой процесс произошёл и чтобы специфичность была соблюдена, необходимо действие фермента. Он называется аминоацил-тРНК-синтетаза. Она имеет интересную структуру, которая позволяет ещё и дополнительно контролировать корректность связывания аминокислоты со «своей» тРНК. Мало кто обращает внимание на эту реакцию, но именно в этот момент и происходит реализация генетического кода! Таким образом, в реализации генетического кода принимает участие не комплементарность, сходная с комплементарностью между определёнными нуклеотидами, а субстратная специфичность тРНК с конкретным антикодоном и аминокислоты к ферменту.

Генетический код лишь говорит о существовании соответствия между кодонами тРНК и аминокислотами, но не раскрывает механизма, обеспечивающего такое соответствие. Для реализации генетического кода важен не принцип комплементарности, а специфичность действия аминоацил-тРНК-синтетазы.

Какие нуклеотиды входят в состав и ДНК, и РНК?

Со-основатель медико-генетического центра Genotek. Сотрудник Института Биомедици…

Нуклеотиды в ДНК:

Аденин – А

Цитозин – Ц (C)

Гуанин – Г(G)

Тимин – Т

В РНК:

Аденин – А

Цитозин – Ц (C)

Гуанин – Г(G)

Урацил – У(U)

Таким образом, и в ДНК, и в РНК встречаются аденин, цитозин, гуанин.

Источник

Генетические функции ДНК заключаются в том, что она обеспечивает хранение, передачу и реализацию наследственной информации, которая представляет собой информацию о первичной структуре белков (т.е. их аминокислотном составе). Связь ДНК с синтезом белка была предсказана биохимиками Дж. Бидлом и Э. Тейтумом еще в 1944 г. при изучении механизма мутаций у плесневого грибка Neurospora. Информация записана в виде определенной последовательности азотистых оснований в молекуле ДНК с помощью генетического кода. Расшифровку генетического кода считают одним из великих открытий естествознания ХХ в. и по значимости приравнивают к открытию ядерной энергии в физике. Успех в этой области связан с именем американского ученого М. Ниренберга, в лаборатории которого был расшифрован первый кодон — YYY. Однако весь процесс расшифровки занял более 10 лет, в нем участвовало много известных ученых из разных стран, и не только биологи, но и физики, математики, кибернетики. Решающий вклад в разработку механизма записи генетической информации был внесен Г. Гамовым, который первым предположил, что кодон состоит из трех нуклеотидов. Совместными усилиями ученых была дана полная характеристика генетического кода.

Таблица генетического кода
Таблица генетического кода
Буквы во внутреннем круге — основания в 1-й позиции в кодоне, буквы во втором круге —
основания во 2-й позиции и буквы снаружи второго круга — основания в 3-й позиции.
В последнем круге — сокращенные названия аминокислот. НП — неполярные,
П — полярные аминокислотные остатки.

Основными свойствами генетического кода являются: триплетность, вырожденность и неперекрываемость. Триплетность означает, что последовательность из трех оснований определяет включение в молекулу белка специфической аминокислоты (например, АУГ — метионин). Вырожденность кода заключается в том, что одна  и та же аминокислота может кодироваться двумя или несколькими кодонами. Неперекрываемость означает, что одно и то же основание не может входить в состав двух соседних кодонов.

Установлено, что код является универсальным, т.е. принцип записи генетической информации одинаков у всех организмов.

Триплеты, кодирующие одну и ту же аминокислоту, называются кодонами-синонимами. Обычно они имеют одинаковые основания в 1-й и 2-й позициях и различаются только по третьему основанию. Например, включение аминокислоты аланина в молекулу белка кодируют кодоны-синонимы в молекуле РНК — GCA, GCC, GCG, GCY. В составе генетического кода имеются три некодирующих триплета (нонсенс-кодоны — UAG, UGA, UAA), которые играют роль stop-сигналов в процессе считывания информации.

Установлено, что универсальность генетического кода не является абсолютной. При сохранении общего для всех организмов принципа кодирования и особенностей кода в ряде случаев наблюдается изменение смысловой нагрузки отдельных кодовых слов. Это явление получило название неоднозначности генетического кода, а сам код был назван квазиуниверсальным.

Читайте также другие статьи темы 6 “Молекулярные основы наследственности”:

  • 6.1. Открытие ДНК. ДНК – носитель генетической информации
  • 6.2. Модель молекулы ДНК
  • 6.4. Синтез белка. Транскрипция и трансляция. ДНК и РНК
  • 6.5. Процесс репликации ДНК

 Вопросы и задания по теме “Молекулярные основы наследственности”

Перейти к чтению других тем книги “Генетика и селекция. Теория. Задания. Ответы”:

  • Тема 1. История развития генетики
  • Тема 2. Законы Менделя
  • Тема 3. Взаимодействие генов
  • Тема 4. Сцепление генов. Кроссинговер
  • Тема 5. Генетика пола. Половые хромосомы. Наследование, сцепленное с полом
  • Тема 7. Ген и геном
  • Тема 8. Генная инженерия: ее развитие и методы
  • Тема 9. Мутационная изменчивость
  • Тема 10. Модификационная изменчивость
  • Тема 11. Генетика и эволюция
  • Тема 12. Генетика человека
  • Тема 13. Генетические основы селекции

Источник

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.

Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.

Нуклеиновые кислоты входят в состав важнейшего органа клетки — ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима помощь для доставки закодированного плана из ядра к месту синтеза. Такую помощь оказывают молекулы РНК.

Процесс  начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается.

После дальнейших изменений этот вид закодированной РНК готов.

РНК выходит из ядра и направляется к месту синтеза белка, где буквы РНК расшифровываются. Каждый набор из трех букв РНК образует «слово», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. По мере прочтения и перевода сообщения РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка.
Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все возможности укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 1027 лет. А для образования в организме цепочки из 20 аминокислот требуется не более  одной секунды — и этот процесс происходит непрерывно во всех клетках тела.

Читайте также:  Какие полезные свойства у женщин

Гены, генетический код и его свойства.

На Земле живет около 7 млрд людей. Если не считать 25—30 млн пар однояйцовых близнецов, то генетически все люди разные: каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются  различиями в  генотипах—наборах генов организма;  у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках  — следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода, который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности  (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три – 64                              четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот                                   

поэтому одна аминокислота может кодироваться несколькими триплетами.

Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК, т.к. она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции).

В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами:  триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.

Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код — единая система записи наследственной ин­формации в молекулах нуклеиновых кислот в виде последова­тельности нуклеотидов. Генетический код основан на использо­вании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода:

1. Генетический код триплетен. Триплет (кодон) — последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав бел­ков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот оста­ются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказыва­ется равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 43 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов — 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА — являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК,   не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одно­временно с избыточностью коду присуще свойство однозначнос­ти: каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. по­следовательность нуклеотидов в гене точно соответствует после­довательности аминокислот в белке.

5. Генетический код непере­крываем и компактен, т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов).

6. Генетический код универсален, т. е. ядер­ные гены всех организмов одинаковым образом кодируют инфор­мацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Существуют таблицы генетического кода для расшифровки кодонов и-РНК и построения цепочек белковых молекул.

Реакции матричного синтеза.  

В живых системах встречается реакции, неизвестные в неживой природе — реакции матричного синтеза.

Термином “матрица” в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки — на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.

Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК.

Мономерные молекулы, из которых синтезируется полимер, — нуклеотиды или аминокислоты — в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит “сшивание” мономерных звеньев в полимерную цепь, и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти “сборка” только какого-то одного полимера.

Матричный тип реакций — специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого — его способности к воспроизведению себе подобного.

 К реакциям матричного синтеза относят:

1. репликацию ДНК— процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Читайте также:  Что узнают ребята о свойствах предметов с помощью каких органов чувств

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.

Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться — процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. транскрипцию – синтез и-РНК на ДНК, процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК.

И-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. трансляцию— синтез белка на и-РНК; процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде.

4. синтез РНК или ДНК на РНК вирусов

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы:

нетранскрибируемая цепь ДНК А Т Г Г Г Ц ТАТ

транскрибируемая цепь ДНК Т А Ц Ц Ц Г А Т А

транскрипция ДНК ß ß ß

кодоны мРНК А У Г Г Г Ц У А У

трансляция мРНК ß ß ß

антикодоны тРНК У А Ц Ц Ц Г А У А

аминокислоты белка метионин глицин тирозин

Таким образом, биосинтез белка  – это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Молекулы белков по существу представляют собой полипептидные цепочки, составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться. Эта активация происходит под действием особых ферментов.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК. Каждой аминокислоте соответствует строго специфическая т-РНК, которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК. Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника –  матричной или информационной РНК (м-РНК или и-РНК), которая синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план — в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок.

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так  до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка.

А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы.

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому.

В процессе синтеза белка участвует одновременно не одна, а несколько рибосом — полирибосомы.

Основные этапы передачи генетической информации:

синтез на ДНК как на матрице и-РНК (транскрипция)

синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция).

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У эукариот  транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка — рибосомам. Лишь после этого наступает следующий этап — трансляция.

У прокариот транскрипция и трансляция идут одновременно.

Таким образом,

местом синтеза белков и всех ферментов в клетке являются рибосомы — это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка из аминокислот. Природа синтезируемого белка  зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.

Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому, что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.

Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.

Источник