Какое свойство химических элементов менделеев положил в основу

Сегодня новый выпуск «Химии для чайников». Тема сложная, но мы постараемся объяснить все просто не залезая в научные дебри. В прошлой беседе мы познакомились с атомами, узнали их строение, что атомы и образуют химические элементы. 

И как же запомнить все 118 элементов?

Современная таблица (озон ру)

Это долгое время было сложным вопросом. Над проблемой, как упорядочить элементы, бились лучшие умы. У кого-то получалась стройная картинка, у других выходили винтовые лестницы и другие фигуры. Давно было замечено, что свойства элементов повторяются с ростом атомной массы, есть некая зависимость и цикличность. Один из ученых смог создать таблицу, но в качестве главного свойства взял валентность и при проверке все рассыпалось. А он так близко был к решению задачи.

Что такое «валентность»?

Свойство элементов вступать в связи, создавать вещества. Если просто, то со сколькими другими атомами этот элемент может образовывать соединения. В электронных облаках вокруг ядра есть области меньшей плотности, в эти дыры могут залетать электроны другого элемента. И тогда возникает связь между ними. От количества таких «пустых» областей зависит активность того или иного элемента. Но не забывайте, что в наших статьях мы стараемся все упрощать. Сейчас химики не любят слово валентность, но используя его легче запомнить сколько потенциальных связей может установить элемент.

И так, что там химик Менделеев?

Вообще, Дмитрий Иванович не был химиком в нашем понимании. Он был ученым, специалистом в разных областях, он придумал транспортировку нефти по трубопроводу. Считается, что он изобрел русскую водку. Это не совсем правда. Бухали и до него. Ему приписывается оптимальная крепость напитка в 40 градусов. Менделеев почти двадцать лет искал способ классификации элементов, раскладывая карточки с их именами то так, то эдак. Есть легенда, что таблица приснилась ему во сне. Когда десятки лет обдумываешь загадку, еще не то приснится. 

И ему удалось все поставить на свои места?

И да и нет. Дело в том, что в 1869 году были известны только 63 элемента и в таблице оставались пустые места, а некоторые элементы не хотели вписываться в свои ячейки. Таблица получилась наглядной, учитывала множество характеристик, и доказала периодичность свойств элементов. Мало того, с развитием науки были обнаружены новые элементы. Они встали на места, зарезервированные ученым, и имели те свойства, которые он предсказал. А некоторым элементам Менделеев изменил ошибочные атомные массы, например урану. И оказался прав!

И как пользоваться такой таблицей?

Со времен Менделеева она претерпела изменения, но главная идея – периодичность свойств осталась неизменной. По вертикальным колонкам расположены группы элементов, которые обладают похожими свойствами, по горизонтали сами «периоды». От щелочных металлов до «благородных газов». Удивительно, но имеющие разные атомные массы элементы так похожи! Многие слышали о натрии и калии? Они образуют похожие соединения, их химические свойства почти одинаковы, несмотря на то, что их атомные массы различаются намного. Та же история и в правой таблице фтор и хлор однотипные газы.

Как он смог это установить?

Мы знаем, что свойства химического элемента полностью зависят от строения его атома, а 150 лет назад об этом не знали. Все это результат смекалки и десятилетий упорного труда. 

Таблица какая-то рваная в ней есть дырки и отдельные блоки снизу.

В природе нет ничего идеального. Даже в нижних блоках есть своя периодичность, например уменьшение электронной оболочки и уровень ионизации. Лантаноиды и актиноиды вынесли в нижний ряд, чтобы сделать таблицу компактнее. Даже в том, что таблица становится шире есть своя периодичность, это повторяется и в соседнем ряду. 

А Суперактиноиды это что такое?

Вся нижняя часть таблицы с номера 119 – это гипотетические элементы, которые не открыты, но предсказаны, и их свойства описаны, как учил Менделеев. Были сообщения, что удалось синтезировать элемент с номером 122, но доказательств этому нет.

В следующий раз мы рассмотрим подробнее группы химических элементов, какие свойства им характерны, каковы их особенности. Пусть вас не пугает, что элементов много. Некоторые так редко встречаются в природе, что их изучение дело лабораторное, а часть элементов вообще если и существуют, то очень короткое время. Но они есть, и спасибо Дмитрию Ивановичу, что предсказал многое. И главное – дал нам в руки мощный инструмент.

Все выпуски

Поддержите проект!

Наши каналы в Telegram, Яндекс Дзен. Страницы в Facebook, VK, OK, Livejournal, G+, Tumblr, Twitter

Использованы материалы wikipedia.org и открытых источников.

Источник

Источник: https://allpozitive.ru/

Даже если вы не химик, вы точно знаете хоть что-то об этой таблице — например, кто её открыл, как она выглядит, что в ней находится.

Читайте также:  Какие свойства кубика льда

Но если вы химик или хотите начать изучать химию — на мой взгляд, вы просто обязаны знать всё, что заложено в ней. Ведь таблица — один большой кладезь справочных данных и свойств, без которых в химии ни шагу нельзя ступить!

В данной статье будут рассмотрены все основные закономерности таблицы… в рамках школьного курса химии — на самом-то деле их гораздо больше.

! Кстати, настоятельно рекомендую положить перед собой таблицу во время прочтения этой статьи. Или хотя бы отдельную вкладку в браузере с ней открыть. Иначе восприниматься материал будет крайне тяжело.

Статика: определённое положение элемента

Положения

Как шахматная доска состоит из строк, столбцов и полей, так и таблица состоит из периодов, групп (которые, в свою очередь, делятся на главные и побочные подгруппы) и фиксированных номеров химических элементов.

Период — это строки, горизонтальные ряды.

Группы — столбцы, ряды вертикальные.

Как определить, где главная подгруппа, а где побочная? Посмотрите на второй и третий период — там элементы только главных подгрупп. Они находятся с одного “бока” ячейки. Если опуститься на периоды ниже, можно заметить, что некоторые элементы смещены в другую сторону ячеек (Cu, Ag, Au, Rg в первой группе, например). Вот это и есть побочная подгруппа.

И, наконец, есть определённая нумерация этих самых ячеек, в которых находятся элементы — их порядковые номера.

Давайте потренируемся и составим “паспортные данные” хрома. Будет лучше, если вы сначала попробуете сами, а потом посмотрите ответ.

https://himi4ka.ru/

Легко и ненавязчиво находим, что хром находится в четвёртом периоде и шестой группе. Находится чуть в стороне от кислорода и серы — следовательно, подгруппа побочная. Ну и, не без некоторых усилий (спасибо, Дзен, за качество и невозможность приближать изображение) обнаруживаем его под двадцать четвёртым номером.

Ответ: четвёртый период, шестая группа, побочная подгруппа, двадцать четвёртый номер.

Всё очень просто!

Свойства

Каждому положению элемента относительно той или иной части таблицы соответствует определённое свойство.

Сопоставим их:

1. Период, в котором находится элемент — показывает число электронных слоёв элемента.

2. Группа — показывает наибольшее число электронов, которые атом может отдавать для образования хим. связи (максимальная валентность). Также показывает максимальную положительную степень окисления.

Следует отметить, что в химии присутствует некое “зло”. Химическое “зло” — большое количество исключений в некоторых разделах, и данный пункт, простите за каламбур, не является исключением.

Так, например, фтор, пусть и находится в седьмой группе, никогда не проявляет степень окисления +7, а у железа нет валентности VIII.

3. По тому, находится элемент в побочной или главной подгруппе, можно определить, металл это или неметалл.

Зачем это нужно, если в учебниках они всегда есть на красиво разукрашенном форзаце?

Всё это, конечно, замечательно, но что будет, если вам попадётся вариант в ч/б?

Кстати, именно такую таблицу раздают на ЕГЭ по химии. И некоторые ребята впадают в ступор уже на втором задании, когда их просят определить, относится элемент к металлам или неметаллам.

Чтобы не потерять лёгкие баллы, запомните:

Металлы — это элементы главных подгрупп 1-ой и 2-ой группы (исключение — водород и гелий), а также все элементы побочных подгрупп.

Неметаллы — все остальные.

Ну и, наконец, есть порядковый номер. Зная его, мы можем определить заряд ядра, число протонов, число электронов и, соответственно, найти число нейтронов через относительную атомную массу и протоны.

Вернёмся к нашему хрому. Как мы помним, он находится в четвёртом периоде, шестой группе, побочной подгруппе и имеет 24-ый номер.

Переводя на свойства: имеет четыре электронных слоя; имеет максимальную валентность VI и степень окисления +6; металл; его заряд/число протонов/число электронов равно 24, а число нейтронов — 28 (52 – 24 = 28).

Очень коварен в плане расчёта нейтронов хлор. Попробуйте сами найти нужное их количество, а в следующей статье узнаете, правы ли вы — поэтому не забудьте подписаться на канал, чтобы ничего не пропустить!

Ну а мы переходим к изменению свойств по периодам и группам.

Динамика

Всё завязано на радиусе атома. Помня об этом, вы всегда можете показать изменение электроотрицательности, окислительно-восстановительных, металлических/неметаллических свойств.

Посмотрите внимательно на распределение электронов по слоям у первых четырёх элементов первой группы и первых четырёх элементов седьмой группы.

Так уж мир устроен — всё стремится к стабильности. Люди ли это, государства, какие-то химические частицы — неважно. Среди химических элементов своеобразным образцом стабильности являются так называемые “благородные газы” — элементы главной подгруппы восьмой группы.

Читайте также:  Какие свойства подчеркивал ломоносов характеризуя металлы

Все остальные химические элементы стремятся этому образцу соответствовать, поэтому химические свойства веществ обусловлены…

… не чем иным, как желанием достигнуть электронной конфигурации благородных газов путём принятия либо отдачи электронов.

Очевидно, что натрию легче отдать один электрон, чтобы достигнуть конфигурации неона, чем присоединить семь электронов и стать “вторым аргоном” — у него и свободных орбиталей-то для этого нет!

Ещё легче с этим решением калию — мало того, что ему так же выгоднее затратить меньшее количество энергии, отдав один электрон вместо присоединения нескольких, так у него ещё и сам валентный электрон далеко — радиус больше, из-за этого его труднее удерживать.

Обратную картину наблюдаем в седьмой группе. Картина, впрочем, объясняется теми же самыми общими закономерностями.

Есть фтор. Ему “впадлу” отдавать семь электронов, когда можно отнять у кого-нибудь один и начать косплеить неон. А есть йод, йоду тоже впадлу — но у него радиус больше, поэтому ему сложнее присоединять присоединить этот несчастный электрон.

Исходя из этих примеров, мы можем вывести некоторые закономерности изменения химических свойств при движении по группам и периодам:

1. Окислительно-восстановительные свойства — собственно, способность присоединять/отдавать электроны, изменяя степень окисления.

Сверху-вниз по группе — возрастают восстановительные (вспомните натрий и калий), уменьшаются окислительные, слева-направо по периоду — уменьшаются восстановительные (вспомните элементы первой группы и элементы седьмой), увеличиваются окислительные.

2. Металлические/неметаллические свойства — то же самое, что и в первом свойстве — отдача/принятие электронов, следовательно — закономерности будут аналогичны.

Разница между окислительно-восстановительными свойствами и металлическими/неметаллическими состоит в том, что первые применительны к частицам (катионам, анионам), а вторые — к простым веществам.

3. Электроотрицательность — способность присоединять электронные пары при образовании химической связи. Снова присоединение/отдача электронов => аналогично первым двум свойствам.

А вот со следующими двумя свойствами рекомендую быть максимально осторожным.

4. Кислотно-основные свойства ОКСИДОВ И ГИДРОКСИДОВ — в группе (сверху вниз) увеличиваются основные свойства, уменьшаются кислотные, по периоду (слева направо) – наоборот, кислотные увеличиваются, а основные – уменьшаются.

5. А однажды моему знакомому встретилось такое задание:

“Тематический тренинг” В. Н. Доронькина

Как вы видите, под цифрой 2 просят указать элементы в порядке возрастания кислотных свойств водородных соединений. Которые он, очевидно, принял за кислотные свойства оксидов и гидроксидов, поэтому там написан неправильный ответ и недоумевающий знак вопроса.

С кислотными свойствами водородных соединений всё с точностью до наоборот… Хотя, нет, ладно, не всё. Наполовину.

Давайте просто вспомним, что вообще такое кислотные свойства. Если очень коротко и упрощённо:

Кислотные свойства – это способность отдавать протон водорода.

А какая разница, протон, электрон – ведь всё опять возвращается на круги своя, к атомному радиусу!

Чем больше он, тем больше длина связи. Чем больше длина связи, тем легче отдавать те или иные частицы. Значит, по группе (сверху вниз) кислотные свойства водородных соединений УСИЛИВАЮТСЯ. Это, кстати, объясняет, почему плавиковую кислоту (HF) считают слабее, чем её соседей с нижних этажей – HCl, HBr, HI.

Пятое свойство упоминается не так часто, как четвёртое, но оно имеет место быть в том числе и в заданиях ЕГЭ. Будьте внимательны.

На сегодня всё, не забудьте определить ЧИСЛО НЕЙТРОНОВ ХЛОРА, в следующей статье мы рассмотрим детальнее этот вопрос (а заодно обсудим изотопы, атомную массу и многие другие интересные вещи) и проверим, правы ли вы в своих рассуждениях, поэтому не забудьте поставить лайк и подписаться на канал!

Крайне занятная таблица. Но если вы школьник, то учить её не стоит, одолейте хотя бы классику 🙂

Источник

Еще
алхимики пытались найти закон природы, на основе которого можно было бы
систематизировать химические элементы. Но им недоставало надежных и подробных
сведений об элементах. К середине XIX в. знаний о химических элементах стало
достаточно, а число элементов возросло настолько, что в науке возникла
естественная потребность в их классификации. Первые попытки классификации
элементов на металлы и неметаллы оказались несостоятельными. Предшественники
Д.И.Менделеева (И. В. Деберейнер, Дж. А. Ньюлендс, Л. Ю. Мейер) многое сделали
для подготовки открытия периодического закона, но не смогли постичь истину.
Дмитрий Иванович установил связь между массой элементов и их свойствами.

Дмитрий
Иванович родился в г. Тобольске. Он был семнадцатым ребенком в семье. Закончив
в родном городе гимназию, Дмитрий Иванович поступил в Санкт-Петербурге в
Главный педагогический институт, после окончания которого с золотой медалью
уехал на два года в научную командировку за границу. После возвращения его
пригласили в Петербургский университет. Приступая к чтению лекций по химии,
Менделеев не нашел ничего, что можно было бы рекомендовать студентам в качестве
учебного пособия. И он решил написать новую книгу – «Основы химии».

Читайте также:  Какой четырехугольник называется прямоугольником свойства прямоугольника

Открытию
периодического закона предшествовало 15 лет напряженной работы. 1 марта 1869 г.
Дмитрий Иванович предполагал выехать из Петербурга в губернии по делам.

Периодический
закон был открыт на основе характеристики атома – относительной атомной массы.

Менделеев
расположил химические элементы в порядке возрастания их атомных масс и заметил,
что свойства элементов повторяются через определенный промежуток – период, Дмитрий
Иванович расположил периоды друг под другом, так, чтобы сходные элементы
располагались друг под другом – на одной вертикали, так была построена
периодическая система элементов.

1 марта
1869 г. Формулировка периодического закона Д.И. Менделеева.

Свойства простых веществ,
а также формы и свойства соединений элементов находятся в периодической
зависимости от величины атомных весов элементов.

К
сожалению, сторонников периодического закона сначала было очень мало, даже
среди русских ученых. Противников – много, особенно в Германии и Англии.
Открытие периодического закона – это блестящий образец научного предвидения: в
1870 г. Дмитрий Иванович предсказал существование трех еще неизвестных тогда
элементов, которые назвал экасилицием, экаалюминием и экабором. Он сумел
правильно предсказать и важнейшие свойства новых элементов. И вот через 5 лет,
в 1875 г., французский ученый П.Э. Лекок де Буабодран, ничего не знавший о
работах Дмитрия Ивановича, открыл новый металл, назвав его галлием. По ряду
свойств и способу открытия галлий совпадал с экаалюминием, предсказанным
Менделеевым. Но его вес оказался меньше предсказанного. Несмотря на это,
Дмитрий Иванович послал во Францию письмо, настаивая на своем предсказании.
Ученый мир был ошеломлен тем, что предсказание Менделеевым свойств экаалюминия оказалось
таким точным. С этого момента периодический закон начинает утверждаться в
химии.

В
1879
г.
Л. Нильсон в Швеции открыл скандий, в котором воплотился
предсказанный Дмитрием Ивановичем экабор.

В
1886
г.
К. Винклер в Германии открыл германий, который оказался экасилицием.

Но
гениальность Дмитрия Ивановича Менделеева и его открытия — не только эти
предсказания!

В
четырёх местах периодической системы Д. И. Менделеев расположил элементы не в
порядке возрастания атомных масс:

Ar – K,   Со
– Ni,    Te – I,    Th – Pa

Ещё
в конце 19 века Д.И. Менделеев писал, что, по-видимому, атом состоит из других
более мелких частиц. После его смерти в 1907 г. было доказано, что атом состоит
из элементарных частиц.  Теория строения атома подтвердила правоту Менделеева,
перестановки данных элементов не в соответствии с ростом атомных масс полностью
оправданы.

Современная
формулировка периодического закона:

Свойства химических
элементов и их соединений находятся в периодической зависимости от величины
заряда ядер их атомов, выражающейся в периодической повторяемости структуры
внешней валентной электронной оболочки.

И
вот спустя более 130 лет после открытия периодического закона мы можем
вернуться к словам Дмитрия Ивановича, взятым в качестве девиза нашего урока:
«Периодическому закону будущее не грозит разрушением, а только надстройка и
развитие обещаются». Сколько химических элементов открыто на данный момент? И
это далеко не предел.

Графическим
изображением периодического закона является периодическая система химических
элементов. Это краткий конспект всей химии элементов и их соединений.

Изменения
свойств в периодической системе с ростом величины атомных весов в периоде
(слева направо):

1.
Металлические свойства уменьшаются

2.
Неметаллические свойства возрастают

3.
Свойства высших оксидов и гидроксидов изменяются от основных через амфотерные к
кислотным.

4.
Валентность элементов в формулах высших оксидов возрастает от I до VII,
а в формулах летучих водородных соединений уменьшается от IV до I.

Основные принципы
построения периодической системы

Признак
сравнения

Д.
И. Менделеев

1.     Как
устанавливается последовательность элементов по номерам?

(Что
положено в основу ПСХЭ?)

Элементы
расставлены в порядке увеличения их относительных атомных масс. При этом есть
исключения.

Ar – K,    Co – Ni,    Te – I,    Th – Pa

2.     Принцип
объединения элементов в группы.

Качественный
признак. Сходство свойств простых веществ и однотипных сложных.

3.     Принцип
объединения элементов в периоды.

Совокупность
элементов по мере роста относительной атомной массы от одного щелочного
металла до другого.

Д.И Менделеев (видеофильм)

Периодический закон Д. И. Менделеева

Тренажёр №1 “Периодический закон и Периодическая система элементов Д.
И. Менделеева”

Тренажёр №2. “Закономерности изменения свойств атомов элементов в
периодах и группах Периодической системы элементов Д. И. Менделеева”

Тренажёр №3. “Периодический закон Д.И.Менделеева”

Рассказ в стихах об открытии периодического закона

Смотрите так же статью

Смотрите фильм Периодический
закон Менделеева

Источник