Какое свойство клетки обеспечив ионы натрия калия кальция

ХИМИЧЕСКИЕ СВОЙСТВА И БИОЛОГИЧЕСКАЯ РОЛЬ ЭЛЕМЕНТОВ S-БЛОКА

К s-элементам относятся две группы Периодической системы: IА и IIА.

В группу IА входят 8 элементов: литий, калий, натрий, рубидий, цезий, франций, водород, гелий. В группу IIА входят 6 элементов: бериллий, магний, кальций, стронций, барий, радий.

Общим является застраивание в их атомах электронами s-подуровня внешнего энергетического уровня.

СРАВНЕНИЕ СВОЙСТВ ЭЛЕМЕНТОВ IА И IIА (КОМПЛЕКСООБРАЗОВАНИЕ, ОБРАЗОВАНИЕ ОСАДКОВ) НА ПРИМЕРЕ Na, K И Mg, Ca

Общая характеристика элементов IА и IIА

Элементные вещества – типичные металлы, обладающие блеском, высокой электрической проводимостью и теплоповодимостью, химически весьма активны.

Как следует из электронных формул, элементы группы (Na, K) имеют на внешнем энергетическом уровне по одному s электрону. Элементы IIА группы (Mg, Ca) по 2 s электрона.

Химические свойства s элементов и IIА групп сходны.

s-элементы и IIА имеют относительно большие радиусы атомов и ионов.

s-элементы и IIА групп легко отдают валентные электроны. Являются сильными восстановителями. С ростом радиуса атома в группах и IIА ослабевает связь валентных электронов с ядром, следовательно s-элементы этих групп имеют низкие значения Еи и Еср. к ẽ. Все щелочные и щелочноземельные металлы имеют отрицательные стандартные окислительно-восстановительные потенциалы, большие по абсолютной величине. Что также характеризует их, как сильных восстановителей. Восстановительные свойства возрастают закономерно с увеличением радиуса атома. Восстановительная способность увеличивается по группе сверху вниз.

Для элементов IIА группы характерна большая, чем для элементов группы способность к комплексообразованию.

s-элементы и IIА образуют соединения с ионным типом связи.

Исключение составляет водород, для которого в соединениях даже с самыми электроотрицательными элементами характерна преимущественно ковалентная связь (например, фтороводород или вода). Частично ковалентный характер связи в соединениях имеет место у лития, бериллия и магния.

Сравнение свойств элементов IА и IIА (комплексообразование, образование осадков) на примере Na, K и Mg, Ca

Атомы элементов группы имеют по одному валентному электрону на s подуровне внешнего энергетического уровня. Это обуславливает проявление степени окисления +1.

Все элементы группы сходны по свойствам, что объясняется однотипным строением не только внешней, валентной оболочки, но и предвнешней (исключение литий).

С ростом радиуса атома в группе ослабевает связь валентного электрона с ядром. Соответственно, уменьшается энергия ионизации атомов. Так как радиус атома калия больше, чем радиус атома натрия, то энергия ионизации калия меньше, чем у натрия.

В результате ионизации образуются катионы Э+, имеющие устойчивую конфигурацию благородных газов.

Химическая активность металлов группы возрастает закономерно с увеличением радиуса атома и уменьшением их способности к гидратированию (чем меньше способность к гидратированию, тем активнее металл).

Так как радиус атома калия больше, чем радиус атома натрия, то способность к гидратации для катиона калия будет ниже, чем для катиона натрия, а, следовательно, химическая активность катиона калия выше, чем у катиона натрия.

Вследствие незначительного поляризующего действия (устойчивая электронная структура, большие размеры, малый заряд ядра) комплексообразование для ионов щелочных металлов малохарактерно. Вместе с тем, они способны образовывать комплексные соединения с некоторыми биолигандами (КЧ для натрия и калия может принимать значения 4 и 6). Способность образовывать донорно-акцепторные связи с соответствующими лигандами едва намечается у натрия. У калия имеется значительная тенденция к использованию имеющихся в атоме вакантных d-орбиталей.

Например, образование комплексов калия с антибиотиком валиномицином. Валиномицин образует с калием прочные комплексы, связывание этого антибиотика с натрием очень незначительно.

Большинство солей щелочных металлов хорошо растворимы в воде (исключение составляют некоторые соли лития).

Атомы элементов IIА группы имеют по два валентных электрона на s подуровне внешнего энергетического уровня.

В нормальном состоянии у атомов этих элементов нет неспаренных электронов, но при переходе атомов в возбужденное состояние один из s валентных электронов переходит на р-подуровень. Это обуславливает проявление степени окисления +2.

Степени окисления больше +2 элементы IIА группы не проявляют.

Несмотря на то, что число валентных s электронов у атомов IIА группы одинаково, свойства магния и кальция отличаются друг от друга.

Это связанно с тем, что в атоме кальция, в отличие от атома магния, имеются свободные d-орбитали, близкие по энергии к ns орбиталям.

Магний и кальций существенно различаются размерами атомов и ионов:

· металлический радиус атома Mg = 160 пм;

· металлический радиус атома Ca = 197 пм.

· кристаллический радиус иона Mg2+ = 74 пм;

· кристаллический радиус иона Ca2+ = 104 пм..

Больший размер иона кальция обусловливает и более высокое координационное число этого иона – КЧ (Ca2+) 6, 8, тогда как КЧ (Mg2+) – 6. Прочность комплексных соединений уменьшается по мере увеличения радиуса атома, следовательно, комплексные соединения магния будут более прочными, чем комплексные соединения кальция. Ион Mg2+ образует шестикоординационные соединения регулярной структуры. Ca2+образует несимметричные комплексы. Кальций предпочтительно координируется с атомами кислорода, магний – с атомами азота.

Многие соли щелочноземельных металлов малорастворимы в воде (малорастворимы CaF2, MgF2; практически не растворимы фосфаты кальция и магния). Причем с ростом порядкового номера растворимость солей снижается.

Такой характер изменения растворимости солей играет важную роль в биологическом действии катионов этой группы. Уменьшение растворимости кальция фосфата и карбоната по сравнению с фосфатами и карбонатами магния является, по видимому, одной из причин формирования скелета всех живых организмов именно из этих соединений кальция.

Читайте также:  Какое из химических свойств относится к стероидным сапонинам

В живых организмах из ионов кальция и фосфат-ионов образовался кристаллический минерал ГИДРОКСИЛАПАТИТ – Ca10(PO4)6(OH)2 – основное вещество костной и зубной ткани. Магний является макроэлементом, но лучшая растворимость магния фосфата Mg3(PO4)2 и основного карбоната Mg(OH)2)*4MgCO3*H2O объясняет тот факт, что его соединения не сыграли значительной роли в построении скелета.

Биологическая роль натрия, калия, кальция и магния

Вследствие очень легкой окисляемости щелочные металлы встречаются в природе исключительно в виде соединений.

По содержанию в организме человека натрий (0,08%) и калий (0,23%) относятся к макроэлементам, литий, рубидий и цезий – к микроэлементам.

Натрий и калий относятся к жизненно необходимым элементам, постоянно содержатся в организме, участвуют в обмене веществ.

Натрий

Содержание натрия в организме человека массой 70 кг – около 60 г: 44% – во внеклеточной жидкости, 9% – во внутриклеточной. Остальное количество натрия находится в костной ткани – место депонирования иона Na+ в организме.

В организме человека натрий находится в виде его растворимых солей: хлорида, фосфата, гидрокарбоната.

Распределен по всему организму:

в сыворотке крови,

в спинномозговой жидкости,

в глазной жидкости,

в пищеварительных соках,

в желчи,

в почках,

в коже,

в костной ткани,

в легких,

в мозге.

Натрий является основным внеклеточным ионом. Концентрация ионов Na+ внутри клетки примерно в 15 раз меньше, чем во внеклеточной жидкости.

Ионы натрия играют важную роль в обеспечении постоянства внутренней среды человеческого организма, участвуют в поддержании постоянного осмотического давления биожидкости (осмотического гомеостаза).

В виде противоионов в соединениях с фосфорной кислотой (Na2HPO4 + NaH2PO4) органическими кислотами натрий обеспечивает кислотно-основное равновесие организма.

Ионы натрия участвуют в регуляции водного обмена и влияют на работу ферментов.

Вместе с ионами калия, магния, кальция, хлора ионы натрия участвуют в передаче нервных импульсов. При изменении содержания натрия в организме происходят нарушения функций нервной, сердечно-сосудистой систем, гладких и скелетных мышц.

Натрия хлорид NaCl – основной источник соляной кислоты для желудочного сока.

Ионы натрия принимают участие в формировании разности потенциалов на мембране.

Препараты натрия, применяемые в медицине

Изотонический раствор – NaCl (0,9%) – для инъекций вводят подкожно, внутривенно и в клизмах при обезвоживании организма и при интоксикацях. Также применяют для промывания ран, глаз, слизистой оболочки глаза, также для растворения различных ЛП.

Гипертонические растворы – NaCl (3-5-10%) – применяют наружно в виде компрессов и примочек при лечении гнойных ран. По закону осмоса применение таких компрессов способствует отделению гноя из ран и плазмолизу бактерий (антимикробное действие).

2-5% р-р NaCl назначают внутрь для промывания желудка при отравлении AgNO3.

Ag+(р) + Cl¯(р) → AgCl(т)

Натрия гидрокарбонат NaHCO3 используют при заболеваниях, сопровождающихся ацидозом.

Механизм

NaHCO3 + RCOOH → H2O + CO2 + RCOONa

RCOONa натриевые соли органических кислот в значительной мере выводятся с мочой, CO2 – покидает организм с выдыхаемым воздухом.

NaHCO3 также используют при повышенной кислотности желудочного сока, язвенной болезни желудка и двенадцатиперстной кишки.

NaHCO3 + HCl → H2O + NaCl + CO2

Имеет ряд побочных эффектов.

NaHCO3 применяют в виде полосканий, промывания при воспалительных заболеваниях глаз, слизистых оболочек верхних дыхательных путей. В результате гидролиза NaHCO3 водный раствор имеет слабощелочные свойства. При воздействии щелочи на микробные клетки происходит их гибель.

NaHCO3 + H2O → NaOH + CO2 + H2O

Натрия сульфат Na2 SO4*10 H2 O – применяют в качестве слабительного средства. Соль медленно всасывается из кишечника, что приводит к поддержанию повышенного осмотического давления в полости кишечника. В результате осмоса происходит накопление воды в кишечнике, содержимое его разжижается, сокращения кишечника усиливаются и каловые массы быстрее выводятся.

Натрия тетраборат Na2 B4 O7*10 H2 O – применяется наружно как антисептическое средство для полосканий, спринцеваний, смазываний. Антисептическое действие аналогично NaHCO3, связано со щелочной реакцией среды в результате гидролиза.

Na2B4O7 + 7H2O → 2NaOH + 4H3BO3

Радиоактивный изотоп 24 Na в качестве метки применяют для определения скорости кровотока, используют для лечения некоторых форм лейкемии.

Калий

Содержание калия в организме человека массой 70 кг – около 160 г.: 2% – во внеклеточной жидкости, 98% – во внутриклеточной.

В организме человека калий находится:

в крови,

в почках,

в сердце,

в костной ткани,

в сердце,

в мозге.

Калий является основным внутриклеточным ионом. Концентрация ионов К+ внутри клетки примерно в 35 раз больше, чем во внеклеточной жидкости.Ионы калия играют важную роль в физиологических процессах – сокращении мышц, нормальном функционировании сердца, проведении нервных импульсов, обменных реакциях. Являются важными активаторами внутриклеточных ферментов.

Действие Na+, К+-АТФазы и возникновение разности потенциалов на клеточных мембранах

Многие важные биологические процессы осуществляются только при условии различного ионного и молекулярного состава внутри клеток и во внеклеточной жидкости. Концентрация ионов К+ внутри клетки примерно в 35 раз больше, чем во внеклеточной жидкости, концентрация ионов Na+ внутри клетки примерно в 15 раз меньше, чем во внеклеточной жидкости. Чтобы поддерживать такое распределение ионы калия должны перемещаться из внешней среды внутрь клетки, а ионы натрия – наоборот, поступать из клетки во внеклеточное пространство. Т.е. должен осуществляться перенос ионов из области с более низкой концентрацией в область с более высокой концентрацией. Самопроизвольно такой процесс протекать не может. Нормальное распределение ионов натрия и калия обеспечивается работой натрий-калиевых насосов. Работа этих насосов по переносу ионов против градиента концентрации и по поддержанию этого градиента требует большой затраты энергии, следовательно, сопровождается макроэргической реакцией гидролиза АТФ.

Читайте также:  На каких свойствах кислорода основано его применение

За счет энергии гидролиза одной молекулы АТФ три иона Na+ выводятся из клетки, а два иона К+ – поступают в клетку. В итоге на мембране клетки возникает разность потенциалов: наружная поверхность мембраны заряжается положительно, а внутренняя – отрицательно.

Магний

Формально относится к макроэлементам. Общее содержание в организме 0,027% (около 20 г). В наибольшей степени магний концентрируется в дентине и эмали зубов, костной ткани. Накапливается в

поджелудочной железе,

скелетных мышцах,

почках,

мозге,

печени и сердце.

Является внутриклеточным катионом. Концентрация ионов Mg2+ внутри клеток примерно в 2,5-3 раза выше, чем во внеклеточной жидкости.

Во внутриклеточной жидкости АТФ и АДФ присутствуют, в основном, в виде комплексов MgАТФ 2- и MgАДФ2-.

Во многих ферментативных реакциях активной формой АТФ является комплекс MgАТФ 2-.

Препараты магния, применяемые в медицине

MgO магния оксид – применяют в качестве антацидного средства при повышенной кислотности желудочного сока.

MgO + HCl → H2O + MgCl2

MgCl2 – обладает легким послябляющим эффектом.

MgO магния оксид (85%) и магния пероксид MgO2 (15%) “магний перекись”. Применяют при кишечных расстройствах.

MgSO4*7 H2 O магния сульфат (горькая соль) – в зависимости от дозы может обладать седативным, снотворным или наркотическим эффектом. Применяют и как слабительное.

В качестве адсорбирующего и обволакивающего средства применяют тальк силикатное производное Mg2+ – 2 MgSiO3* Mg(HSiO3)2.

Кальций

Относится к макроэлементам. Общее содержание в организме – 1,4%.

Содержится в каждой клетке человеческого организма. Основная масса – в костной и зубной тканях. В костях и зубах взрослого человека около 1 г кальция находится в виде нерастворимого кристаллического минерала ГИДРОКСИЛАПАТИТА – Ca10( PO4)6( OH)2. Ионы кальция принимают активное участие в передаче нервных импульсов, сокращении мышц, регулировании работы сердечной мышцы, механизмах свертывания крови.

Препараты кальция, применяемые в медицине

Кальция хлорид CaCl2 – при отравлении солями магния, также оксалат- и фторид- ионами. Применение препарата в первом случае основано на взаимозамещаемости ионов кальция и магния в организме, во втором – на образовании нетоксичных малорастворимых соединений.

Кальция карбонат CaCO3 – обладает антацидным и адсорбирующим действием, назначают внутрь при повышенной кислотности желудочного сока.

Кальция сульфат CaSO4*1/2 H2 O – жженый гипс. Применяют для приготовления гипсовых повязок при переломах.

Источник

Валентин Г.

13 сентября 2018  · 1,6 K

Калий и натрий являются ионами, которые постоянно находятся в наших клетках. Они взаимодействуют с кислотами и белками в клетке. Они необходимы для поддержания водного баланса клетки, для её взаимодействий с другими клетками, а также для транспорта различных веществ. В мышечных клетках они участвуют в сокращении.
Аналогично можно сказать и про магний, но он наиболее важен для функцирования сердечной мышцы.

Что такое калий и магний?

С огромным удовольствием узнаю новое сама, с еще большим – хочу делиться…

Это пара очень важных для человеческого организма химических элементов, от наличия которых зависит его нормальное функционирование. Калий в первую очередь оказывает влияние на выделительную, костно-мышечную, сердечно-сосудистую и нервную системы. Недостаток калия приводит к нарушениям функционирования систем организма. Калий может поступать в организм с пищей и в виде витаминных добавок и комплексов. Этот элемент хорошо усваивается, но быстро выводится из организма. Поэтому важно следить за поступлением калия в организм. Калий содержится в кураге, миндале, фасоли, горохе, морской капусте, черносливе и т.д.
Магний необходим при формировании костной ткани, он улучшает работу сердца, нормализует дaвлeниe, peгулиpуeт caxap в кpoви, оказывает положительное влияние на дыхательную систему, улучшает зубы, препятствует отложению камней в желчном пузыpe и пoчкax. Но магний не синтезируется в организме, очень важно поддерживать его поступление с пищей или водой. Магнием богаты кpупы (особенно oвcянaя, ячнeвaя). В бeлoкoчaнной кaпуcте, гopoxе, фacoли, ceмечках, гpeйпфpутах, бaнaнах тоже достаточно. Витаминными комплексами тоже пренебрегать не стоит.

Прочитать ещё 2 ответа

Магний как химический элемент и магний как витамин — это один и тот же магний или нет?

Researcher, Institute of Physics, University of Tartu

В мультивитаминах магний – это “микроэлемент”, а не “витамин”. То есть, нечто, что нужно организму в микроколичествах. В мультивитамины закладывают немножко какой-нибудь соли магния, исходя из неких представлений о суточной норме этих “микроэлементов”. То есть, это тот же самый магний, что и в таблице Менделеева, но “химический элемент” – это абстракция, “совокупность всех атомов одного сорта”, а в витаминах магний в виде вполне реальных соединений, например, сульфата магния.

Прочитать ещё 1 ответ

Для чего организму человека магний?

Практикующие специалисты, авторы работ агентства “Современные Медицинские Технологии”.  · zdrav-invest.ru

Несмотря на относительно низкую потребность в организме, всего 400мг, данный микроэлемент выполняет следующие важные функции:

  • Кальциевый обмен,
  • Углеводный обмен,
  • Жировой обмен,
  • Другие обменные процессы.
Читайте также:  Какие из галогенов могут проявлять восстановительные свойства

Следует знать, что без магния не усваивается кальций, что может грозить от ломкости ногтей, до явлений остеопороза.

Установлено что галичие магния влияет на продолжительность жизни. Правда у подопытных грызунов (почти в 2 раза). Но это можно и отнести к людям.

Данный микроэлемент ответственен за устойчивость нервной системы. Поэтому дефицит провоцирует стресс и апатию.

Интересные факты:

  • Дефицит магния наблюдается у 80% беременных.
  • Это 4-й по распространенности элемент в организме.
  • Самое большое количество магния содержиться в бурых водорослях.

Прочитать ещё 7 ответов

Источник

Натрий, калий и хлор находятся в организме в ионизированной форме (Na+, K+, Cl-). Ионы натрия содержатся вне клеток (в плазме крови, лимфе, межклеточной жидкости) а ионы калия сосредоточены внутри клеток. Эти ионы играют важную роль в создании осмотического давления, являющегося важнейшим физико-химическим фактором, от которого зависят многие функции клеток. Например, красные клетки крови могут полноценно переносить кислород только при строго определенном значении осмотического давления плазмы крови. Осмотическое давление внеклеточных жидкостей и, в т.ч., плазмы крови создается, в основном, за счет хлористого натрия, а внутри клеток – за счет солей калия.

Ионы натрия, калия и хлора еще участвуют в формировании нервного импульса и являются активаторами ряда ферментов. Хлор используется для образования соляной кислоты желудочного сока.

Ионы натрия и особенно калия необходимы для функционирования сердечной мышцы – миокарда, причем потребность в них возрастает по мере увеличения интенсивности сердечной деятельности.

Содержание в организме натрия и калия регулируется гормоном коры надпочечников – альдостероном. Этот гормон в процессе образования мочи в почках задерживает ионы натрия и способствует удалению из организма ионов калия.

У спортсменов, выполняющих интенсивные физические нагрузки, потребность миокарда в калии увеличивается. Однако за счет усиленного потоотделения происходит потеря больших количеств хлористого натрия, а также и калия. В ответ на обессоливание организма увеличивается выброс в кровь альдостерона, который препятствует выделению ионов натрия с мочой и, наоборот, повышает экскрецию с мочой ионов калия. В результате такого влияния гормона существенно снижаются запасы калия, в том числе, в сердечной мышце.

Для нормализации калиевого обмена в спортивной практике используют продукты питания, богатые калием (например, изюм, курага и др.), а также аптечные препараты калия (например, оротат калия, аспаркам).

Кальций, магний и фосфор, в основном, находятся в составе костной ткани в форме нерастворимых солей. Эти соли составляют одну четверть объема костной ткани и половину ее массы. Формирование костной ткани (минерализация) связано, прежде всего, с накоплением в ней фосфорнокислых солей кальция, имеющих кристаллическую форму. Важная роль в этом процессе принадлежит витамину D.

Незначительная часть кальция и магния находится в плазме крови и внутри клеток в форме ионов: Ca2+, Mg2+. Ионы кальция, находящиеся в плазме крови, являются обязательными участниками свертывания крови, а содержащиеся внутри мышечных клеток, управляют процессами сокращения и расслабления мышцы. Ионы кальция и магния являются также активаторами некоторых ферментов

Биологическая роль фосфора весьма многогранна. Как уже отмечалось, фосфор участвует в образовании нерастворимых фосфорнокислых солей кальция и магния, являющихся минеральной основой костной ткани. Часть фосфора входит в состав органических соединений, таких как нуклеиновые кислоты, фосфолипиды, фосфопротеиды. Еще часть фосфора находится в организме в форме фосфорной кислоты, которая выполняет исключительно важную роль в энергетическом обмене, что обусловлено уникальной способностью фосфора образовывать богатые энергией химические связи (высокоэнергетические или макроэргические связи). Главным макроэргическим соединением организма является аденозинтрифосфат АТФ (см. главу 7. «Общая характеристика обмена веществ»).

Регуляция содержания кальция и фосфора в плазме крови осуществляется гормоном щитовидной железы – кальцитонином игормоном паращитовидных желез – паратгормоном.

Кальцитонин совместно с витамином D способствует включению кальция и фосфора в состав костной ткани, вследствие чего концентрация в крови катионов кальция и фосфатных анионов снижается, и выделение их с мочой уменьшается.

Паратгормон совместно с витамином D ускоряет всасывание кальция и фосфора из кишечника. Под действием паратгормона также происходит разрушение минеральной основы костей, в результате чего кальций и фосфор выходят из костной ткани в кровь. Повышение концентрации кальция и фосфора в крови, в свою очередь, приводит к увеличению их экскреции с мочой.

В конечном итоге такие регуляторные воздействия обеспечивают постоянство концентрации кальция и фосфора в плазме крови.

Железо является главным микроэлементом. В организме взрослого человека содержится 4-5 г железа, а суточная потребность в этом элементе составляет 10-15 мг.

Используется железо для синтеза сложного циклического соединения, содержащего железо – гема, входящего в белки – гемопротеиды (строение гема см. в главе 15 «Биохимия крови»). К этим белкам относятся переносчики кислорода гемоглобин (содержится в красных клетках крови) и миоглобин (входит в состав мышц), а также ферменты цитохромы (участвуют в тканевом дыхании) Таким образом, железо, в первую очередь, необходимо для обеспечения аэробных процессов, которые являются основными источниками энергии при выполнении продолжительных физических нагрузок.

Транспортируется железо кровью в составе белка плазмы трансферрина, запасной формой железа является белок ферритин.

Источник