Какое свойство липидов лежит в основе энергетической

Какое свойство липидов лежит в основе энергетической thumbnail

Тема: Химический состав тел живой природы. Строение и функции липидов

Цель– выявление особенностей химической организации живой материи, роли органических (липидов) веществ в жизни клетки и организма.

Органические соединения, основой строения которых являются атомы углерода, составляют отличительный признак живого. Из органических соединений всеобщее биологическое значение имеют белки, нуклеиновые кислоты, углеводы и липиды.

Видеоурок  

Липиды – органические соединения с различной структурой, нерастворимые в воде, но растворимые в органических растворителях.

Название «липиды» произошло от греческого слова (lipos) липос — жир.

Липиды — это обширная группа природных органических соединений, включающая жиры и жироподобные вещества.

Рассмотрим строение липидов

Липиды не имеют единой химической характеристики.Их можно условно разделить на простые и сложные.

Основную часть простых липидов составляют триглицериды. В большинстве своём они представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина.

Сложные эфиры глицерина и органических кислот с большим числом углеродных атомов ─ это и есть собственно жиры, поэтому и кислоты, входящие в их состав, называют жирными.

Жирные кислоты имеют одинаковую для всех кислот группировку  карбоксильную группу (–СООН)

Жирные кислоты, входящие в состав жиров, в зависимости от наличия двойных связей, подразделяют на насыщенные и ненасыщенные.

Ненасыщенной жирная кислота называется, когда в её составе содержится одна или несколько двойных связей.

Если жирная кислота не имеет двойных связей, её называют насыщенной. Насыщенные жирные кислоты чаще всего содержатся в составе животных жиров.

Ненасыщенные жирные кислоты ─ в составе растительных жиров.

Классификация жиров

Все жиры делят по происхождению и по агрегатному состоянию.

По происхождению жиры подразделяют на животные, растительные и переработанные.

По агрегатному состоянию: твёрдые, жидкие и полужидкие.

Если в триглицеридах преобладают насыщенные жирные кислоты, то их называют жирами.  При температуре 20°С они — твёрдые; Твёрдые жиры характерны для животных клеток.

 

Если в триглицеридах преобладают ненасыщенные жирные кислоты, их называют маслами. При 20 С  они — жидкие. Масла характерны для растительных клеток.

 

К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов.

Воски покрывают кожу, шерсть, перья животных, смягчая их и предохраняя от воздействия воды. Восковой защитный слой покрывает также стебель, листья и плоды многих растений.

Сложные липиды

Они состоят — из спирта, высокомолекулярных жирных кислот и других компонентов.

К сложным липидам относят фосфолипиды, гликолипиды, липопротеины, липоиды и др.

Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещён на остаток фосфорной кислоты. Фосфолипиды являются составными компонентами клеточных мембран.

Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.

Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

Липоиды — жироподобные вещества, к которым относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин и т. д.

Физико-химические свойства липидов объясняют их биологические функции. В состав молекул липидов входят атомы углерода, водорода и кислород. Атомы углерода образуют длинные углеводородные цепи.

Карбоксильная группа жирных кислот ионизирована и способна образовывать водородные связи. Однако по мере увеличения длины углеводородной цепи растворимость жирных кислот заметно снижается. Жирные кислоты, содержащие в цепи более 10 углеродных атомов, практически нерастворимы в воде.

Наиболее общим свойством всех липидов является хорошая растворимость в органических растворителях (бензине, хлороформе, эфире и др.)

В организм липиды попадают двумя способами — с пищей и вырабатываются в печени.

Излюбленный многими пищевой продукт – шоколад, на 50 г которого приходится 12 г жира.

Из бобов дерева какао получают какао-масло ─ жирное масло бледно-жёлтого цвета со слабым ароматным запахом какао. В бобах содержится до 50% какао-масла.

Какао-бобы были завезены испанцами в Европу из Мексики в 16 веке. Благодаря содержанию тристеарина какао-масло имеет твёрдую консистенцию при комнатной температуре. Плавится шоколад при температуре 30─34 °С. В состав какао-масла входят также глицериды олеиновой и линолевой кислот (до 40 %).

Какао масло применяется для приготовления лечебных свечей, мазей, губной помады, а также в кондитерской промышленности для изготовления шоколада.

Печень играет ключевую роль в метаболизме жирных кислот, однако некоторые из них она синтезировать не способна.

Поэтому они называются незаменимыми, к таким относятся ω-3 (омега-три) и ω-6 (омега-шесть) полиненасыщенные жирные кислоты.

Омега-3 и омега-6 полиненасыщенные жирные кислоты — это типы естественных ненасыщенных жиров.

Омега-3 кислоты имеют тройку в названии, потому что первая молекула с двойной связью находится на три атома углерода от омега-конца (то же самое с омега-6 жирными кислотами).

Омега-3 и омега-6 полиненасыщенные жирные кислоты необходимы человеку для работы головного мозга, памяти, внимания, психомоторной координации, речи, мышления, ориентации и других особо важных функций.

Эксперты предупреждают, что наше тело не умеет производить омега-3 и 6 жирные кислоты, так что их необходимо обязательно потреблять вместе с продуктами, которые их содержат.

Источником ω-3 и других полиненасыщенных жирных кислот являются зелёные растения (например, листья салата), рыба, чеснок, цельные злаки, свежие овощи и фрукты. Как пищевую добавку, содержащую ω-3 жирные кислоты, рекомендуется принимать рыбий жир. Жиры могут транспортироваться по кровеносным и лимфатическим сосудам в виде эмульсии. Природной эмульсией жира в воде является молоко.

Функции липидов

Общие функции углеводов и липидов: энергетическая, структурная, запасающая, защитная. Кроме того, липиды выполняют ещё терморегуляторную функцию и являются гормонами.

Энергетическая

В организме обмен веществ характеризуется единством всех его компонентов, жиров, белков и углеводов. Они образуют между собой сложные химические соединения, служат строительным материалом друг для друга, а при их расщеплении выделяется энергия.

Наибольшая калорийность характерна для жиров. Она вдвое выше чем у белков и углеводов. При полном окислении 1 г жира выделяется около 9 ккал или 38,9 кДж энергии, примерно вдвое больше, чем при окислении 1 г углеводов.

Структурная функция

Сложные липиды и белки являются главным строительным материалом клеток и мембран. Их расположение в мембране упрощённо можно представить в виде двойного слоя сложных липидов.

Молекулы сложных липидов гидрофильны с одной стороны и гидрофобны с другой. При контакте с водной средой молекулы этих липидов всегда обращены к ней гидрофильной стороной.

Наличие гидрофобного слоя очень важно для выполнения мембранами их функций, поскольку он непроницаем для ионов и полярных соединений.

Читайте также:  Какие плоды шиповника лечебные свойства

Простые липиды, в отличие от сложных только гидрофобны. Билипидный слой является барьером между внутренней и внешней стороной клетки.

Защитная функция

Благодаря низкой теплопроводности жиры защищают организм от холода. Особенно толстый подкожный жировой слой характерен для водных млекопитающих (китов, моржей и др.).

Поэтому жировые депо находятся не только в подкожном слое, но и вокруг жизненно важных органов.

Но в то же время у животных, обитающих в условиях жаркого климата, верблюдов например, жировые запасы откладываются на изолированных участках тела (в горбах) в качестве резервных запасов воды, так как вода — один из продуктов окисления жиров.

При расщеплении 1 грамма жира образуется 1─1,5 грамма воды.

Жиры также предохраняют организмы и от механических воздействий. Толстый слой жира защищает внутренние органы многих животных от повреждений при ударах (например, сивучи при массе до тонны, могут прыгать в воду со скал высотой 20─25 м).

Жировые отложения используются в качестве запасных источников питательных веществ.

Восковой налёт на различных частях растений препятствует излишнему испарению воды. А у животных он играет роль водоотталкивающего покрытия. 

Например, у птиц перья обладают гидрофобной поверхностью и хорошо отталкивают воду. Растения чаще запасают углеводы, однако в семенах многих растений содержание жиров также достаточно высоко.

Растительные масла добывают из семян подсолнечника, кукурузы, рапса, льна и других масличных растений.

У позвоночных имеются специализированные клетки — адипоциты из которых в основном состоит жировая ткань. Они почти полностью заполнены большой каплей жира.

У людей наибольшее количество жировой ткани находится под кожей (так называемая подкожная клетчатка), особенно в районе живота и молочных желёз.

Человеку с лёгким ожирением (15─20 кг триглицеридов) таких запасов может хватить для обеспечения себя энергией в течение месяца, в то время как всего запасного гликогена хватит не более чем на сутки.

Самые разные организмы — от диатомовых водорослей до акул — используют резервные запасы жира как средство снижения удельного веса тела и, таким образом, увеличения плавучести. Это позволяет снизить расходы энергии на удержание в толще воды.

Регуляторная функция

Многие производные липидов (например, гормоны коры надпочечников, половых желёз, витамины А, D, E) участвуют в обменных процессах, происходящих в организме. 

Липиды участвуют в межклеточной и внутриклеточной сигнализации.

Источник

В биологии липиды — это  несколько свободная группа органических молекул (жиров и жироподобных веществ (липоидов). Их главной химической характеристикой называют нерастворимость (гидрофобность) или частичную растворимость (амфифильность) в воде и расщепление в неполярных органических растворителях, таких как бензин, эфир, ацетон, хлороформ, метанол, бензол.

Но это определение не принимает химия, так как есть липиды, гидролизующиеся в воде и нерастворимые в неполярных растворителях. В химии липидами называют жирные кислоты и их производные. Но мы изучаем биологию, и поэтому будем считать липидом, например, холестерин, который нельзя назвать производным жирной кислоты.

Липиды есть в клетках всех живых организмов. Их содержание колеблется от 5 до 15 % сухой массы. В клетках жировой ткани оно достигает 90 %. Запасные жиры животных – это только один из видов липидов. К ним также относятся масла, такие как оливковое, кокосовое, кукурузное и др, воск, некоторые витамины, гормоны и др.

Кокосы и кокосовое масло фотоКокосовое масло

Липиды содержат большую долю неполярных углеводородных связей (C – H), и поэтому их длинноцепочечные молекулы не могут складываться, как у белков, чтобы отгородить свои гидрофобные части от окружающей водной среды. Вместо этого при погружении молекулы липидов самопроизвольно группируются и их полярные (гидрофильные) группы направляются в сторону воды, а неполярные (гидрофобные) части поднимаются над водой.

Вы могли замечать этот эффект при добавлении масла в кастрюлю с водой, оно собирается в капли и поднимается на поверхность. В сторону воды обращается хорошо растворимая глицериновая часть молекулы, а над водой находится цепочка нерастворимых жирных кислот. Эта способность к спонтанной агрегации имеет важное значение для клетки, так как из таких комплексов состоит основа клеточных мембран.

Капли масла фотоМасло в воде

Состав липидов

Липиды – это органические вещества, основу которых составляют высшие жирные кислоты или высокомолекулярные спирты. По составу и строению они разнообразны. Липидными мономерами могут быть:

  • высшие углеводороды;
  • жирные кислоты;
  • высшие алифатические спирты, кетоны, альдегиды;
  • высшие полиолы;
  • изопрены и их производные;
  • высшие аминоспирты.

Кроме основной части они могут включать и нелипидные компоненты, тогда их называют сложными: липопротеины, гликолипиды.

Чтобы понять физико-химические свойства и биологические функции липидов, рассмотрим строение наиболее распространённых из них – триглицеридов и фосфолипидов.

Липиды триглицериды

Триглицериды (триацилглицериды) – это сложные эфиры глицерина и трёх остатков высших не всегда одинаковых жирных кислот (ЖК), соединённых сложноэфирными связями реакцией дегидрации (кондинсации). К ним относятся жиры и масла.

ЖК – это карбоновые кислоты (COOH), с углеводной цепью, содержащей не менее 4 атомов. Мы описываем их как «кислоты», потому что их функциональная группа (- COOH, карбоксильная) имеет тенденцию ионизировать с производством ионов водорода, что является свойством кислоты. Глицерин представляет собой трёхуглеродный полиспирт (с тремя —OH группами).

Строение жиров. Липиды триглицериды. фото

Триглицериды – довольно большие молекулы, однако по сравнению с гликогеном и крахмалом они малы. Но так как молекулы триглицеридов могут группироваться, образуя агрегаты, они внешне становятся похожими на макромолекулы. Углеводородные цепи жирных кислот сильно отличаются по длине. Наиболее распространены триглицериды с 14-22 атомами углерода. Их многочисленные C—H связи служат формой долгосрочного хранения энергии.

Если все внутренние атомы углерода в цепи ЖК связаны с двумя атомами водорода, тогда все максимально возможные связи заполнены и липид называется насыщенным, или предельным (в них нет двойных связей). Жирная кислота с двойными связями между одной или несколькими парами последовательных атомов углерода будет иметь меньше возможного количества атомов водорода, она будет ненасыщенной, или непредельной.

ЖК с одной двойной связью называются мононенасыщенными, а имеющие более одной двойной связи называются полиненасыщенными. Наиболее часто встречающиеся в природе ненасыщенные жирные кислоты имеют двойные связи с цис-конфигурацией, где углеродная цепь находится на одной стороне до и после двойной связи.

Соединение молекулы триглицерида фото

Промышленные частично гидрированные жиры могут приобрести двойные связи с транс-конфигурацией, где углеродная цепь перемещается на противоположную сторону до и после двойной связи. Это так называемые транс-жиры. Они связаны с повышением уровня «плохого холестерина» — липопротеинов низкой плотности и понижением уровня «хорошего холестерина» — липопротеинов высокой плотности. Это может стать причиной ишемической болезни сердца. Транс-жиры не должны присутствовать в продуктах нашего питания.

Читайте также:  Какие свойства у графита

Наличие двойной связи влияет на поведение молекул, так как вокруг такой связи не может происходить вращение C = C, в отличие от связи одинарной C—C. Эта характеристика влияет на точку плавления липидов, то есть отвечает за то, является ли ЖК при комнатной температуре твёрдым жиром или жидким маслом.

По этой причине триглицериды подразделяют на твёрдые жиры и жидкие масла. В жирах в основном содержатся предельные насыщенные кислоты (например, стеариновая и пальмитиновая). В маслах – непредельные, ненасыщенные кислоты (например, олеиновая). В молекуле масла имеется одна двойная связь, которая значительно понижает температуру плавления. Сравните: Тпл. стеариновой кислоты равна 69,6°С, олеиновой – 13,4°С.

Жиры, содержащие полиненасыщенные ЖК, имеют низкие температуры плавления, потому что их цепи не сгибаются в местах двойных связей. Большинство насыщенных жиров, таких как животные жиры и сливочные масла, твёрдые при комнатной температуре. Например, говяжье сало состоит из глицерина, насыщенных пальмитиновой и стеариновой кислот (пальмитиновая кислота плавится при 63°С, а стеариновая – при 70°С).

У животных, обитающих в условиях холодноого климата (например, арктических рыб), триглицериды содержат больше остатков ненасыщенных кислот, чем у обитателей южных широт. Поэтому их жир и при низких температурах остается жидким, а тело сохраняет гибкость.

Триглицериды, помещённые в воду, самопроизвольно связываются, образуя шарики, порой очень большие по отношению к размеру отдельных молекул. Эта их особенность позволяет им выполнять разные функции в организме, например, храниться в везикулах жировой ткани как потенциальный источник энергии.

Фосфолипиды

Фосфолипид можно рассматривать как замещённый триглицерид, в нём одна жирная кислота заменена фосфатом. За счёт этого гидрофильные свойства фосфолипидов выражены сильнее, в связи с чем в воде они могут образовывать двухслойные структуры – билипидный слой биологической мембраны. Структура фосфолипида состоит из трёх субъединиц.

  1. Глицерин – 3-углеродный спирт, в котором каждый атом углерода несёт гидроксильную группу. Глицерин образует костяк молекулы фосфолипида.
  2. Жирные кислоты – длинные углеводные цепи (CH2), заканчивающиеся карбоксильной группой (- COOH). Две жирные кислоты присоединяются к глицериновой основе.
  3. Фосфатная группа (–PO42-), прикреплённая к одному концу глицерина. Она встречается в заряженных молекулах: холин, этаноламин, аминокислота серин.

Молекула фосфолипида имеет заряженную гидрофильную «головку» на одном конце (фосфатная группа) и два длинных неполярных гидрофобных «хвоста» на другом. Такая структура важна для выполнения функций молекулой, хотя она и парадоксальна. Почему молекула должна одновременно быть и нерастворимой и растворимой в воде?

Строение фосфолипидов фото

Только благодаря этим уникальным свойствам фосфолипидов появилась биологическая мембрана. Фосфолипиды образуют сложную структуру (бислой), в которой два слоя молекул выстраиваются в линию, причём гидрофобные «хвосты» каждого слоя направлены друг к другу, или внутрь, оставляя гидрофильные головки ориентированными наружу. Это и есть основа биологической мембраны, но об этом подробнее поговорим при изучении строения клетки.

Функции фосфолипидов:

  • служат запасными соединениями, в том числе в семенах, желтках яиц;
  • образуют бислой биологических мембран;
  • формируют внешний слой липопротеинов плазмы крови;
  • входят в состав сурфоктанта легких и способствует предотвращению слипания стенок во время выдоха;
  • исполняют роль вторичных посредников в передаче гормонального сигнала в клетки.

Фосфолипиды в клеточной мембране фотоФосфолипиды в биологической мембране.
Автор: Dhatfield (talk)

Другие липиды

Липиды под названием воски выполняют в клетках растений, животных и некоторых прокариот защитную роль. В составе секрета сальных желёз млекопитающих они смазывают волосы и кожу, придавая им эластичность и уменьшая их изнашиваемость. Воски копчиковой железы птиц предназначены для создания водоотталкивающей плёнки на перьях.

Восковая плёнка наземных растений (восковая кутикула) предохраняет листья от застоя излишков воды в условиях высокой влажности и от испарения воды в жарком климате. Воск входит и в состав кутикулы наземных членистоногих.

Восковая кутикула листьев фотоВодоотталкивающая восковая кутикула

Воски — сложные эфиры одноатомных высокомолекулярных спиртов и высших карбоновых кислот.

У животных они также входят в состав селезёнки, лимфатических узлов и головного мозга. К природным воскам относятся спермацетовый, пчелиный, ланолин, воск сахарного тростника, карнаубский и др.

Пчелиный воск – это, в основном, мирицилпальмитат плюс небольшое кол-во пигментов, других спиртов и жирных кислот. Его производят пчёлы для изготовления сот.

Липиды: пчелиный воск, соты фото

Спермацет – это эфир цетилового спирта и пальмитиновой кислоты. Добывается из фиброзных мешков костных углублений черепа кашалотов и служит животному проводником звуков при эхолокации. Используется в парфюмерии, хорошо всасывается через кожу и служит прекрасной основой для кремов и мазей. Поэтому на кашалотов долгое время шла беспощадная охота.

Ланолин – состоит из смеси эфиров ланолиновой, пальмитиновой, стеариновой и др. кислот и двух стеринов – ланостерина и агностерина. Вырабатывается как смазочное вещество, покрывающее шерсть овец.

Еще одну группу липидов составляют стероиды. Их молекулы не содержат остатков карбоновых кислот. Стероидами являются, например, желчные кислоты (важнейшие компоненты желчи) и стероидные гормоны (половые гормоны, гормоны коры надпочечников — кортикостероиды), а также стерины.

Строение стероидов фото

Исключительно важную роль в организме человека и животных играет холестерин – органическое соединение, природный жирный спирт, содержащийся в клеточных мембранах всех животных и растений. Он необходим для синтеза желчных кислот, стероидных гормонов, витамина D. Кроме того, холестерин входит в состав биологических мембран, обеспечивает их стабильность и регуляцию проницаемости.

Следовательно, он необходим для нормального обмена веществ организма. Около 80% его процентов образуется в печени, кишечнике, почках, надпочечниках, половых железах человека. Остальные 20% поступают с пищей. 80% холестерина в организме человека находится в свободном виде, а 20% в связанном.

Атеросклероз фотоАтеросклероз

Некоторые молекулы связанного холестерина способны выпадать в осадок в виде кристаллов и формировать атеросклеротические бляшки в сосудах, вызывая инфаркты, инсульты, сосудистую непроходимость, тромбоз.

Низкомолекулярного «плохого» холестерина в нашем организме не должно быть больше 2,586 ммоль/л. Факторы, повышающие его:

  • курение;
  • избыточный вес;
  • гиподинамия;
  • питание с большим количеством трансжиров, углеводов (особенно легкоусвояемых), недостаточное содержание клетчатки, полиненасыщенных жирных кислот, витаминов, микроэлементов;
  • застой желчи (причины: алкоголь, вирусные заболевания, лекарства);
  • эндокринные нарушения – сахарный диабет, гиперсекреция инсулина, гормонов коры надпочечников, недостаток гормонов щитовидной железы, половых гормонов.

Классификация липидов

Классификация липидов – спорный вопрос. Существуют разные типы деления этих веществ: по степени растворимости в воде и другим физико-химическим свойствам, по структурным и биосинтетическим особенностям. Мы не будем рассматривать полной классификации, обратим внимание только на те вещества, которые имеют важнейшее значение в биосистемах.

Читайте также:  Какие есть свойства у вады

В зависимости от состава липиды классифицируют на несколько групп. Различают простые и сложные липиды. Сложные липиды в отличие от простых имеют дополнительные нелипидные группы.

Название класса липидовСостав и строение липидов
Триглицериды: животные жиры, растительные масла.Сложные эфиры глицерина и остатков ВЖК:

·       стеариновой – C17H35COOH

·       пальмиьтновой – C15H31COOH

·       олеиновой – C17H33COOH

Воска: пчелиный, растительный.Сложные эфиры ВЖК и высокомолекулярных одноатомных кислот.
Стерины (стеролы): холестерол, кортикостерон, тестостерон, эстрадиол.Высокомолекулярные спирты, состоящие из нескольких циклических блоков.
Фосфолипиды.Триглицериды, в молекуле которых одна ВЖК заменена на остаток фосфорной кислоты H3PO4
ЛипопротеиныСоединения липидов с белками.
ГликолипидыСоединения липидов с углеводами.

В настоящее время целесообразно руководствоваться следующей классификацией липидов:

  • ацилглицеролы (нейтральные жиры) – моно-, ди- и триглицериды. Универсальные вещества всех организмов. Они могут вступать во все реакции, свойственные сложным эфирам. Самая значимая из них – реакция омыления. При омылении (гидролизе) из ацетилглицеролов образуется глицерол и соли жирных кислот (мыла). Омыление может быть ферментативным, кислотным или щелочным;
  • диольные липиды;
  • орнито- и лизинолипиды;
  • воски;
  • фосфолипиды (глицерофосфолипиды, сфингофосфолипиды);
  • гликолипиды (гликозилдиацилглицериды, цереброзиды, олиго(поли)гликозилцерамиды, полипренилфосфатсахара);
  • жирные кислоты;
  • эйкозаноиды (простагландины, тромбоксаны, простациклины, лейкотриены);
  • стероиды (стеролы, стериды, стероидные гормоны, желчные кислоты, витамины группы D, кортикостероиды, стероидные гликозиды);
  • терпены.

Классификация липидов фото

Биологические функции липидов

  1. Энергетическая. В количественном отношении липиды – основной энергетический резерв организма. Они содержатся в клетках в виде жировых капель, служащих «метаболическим топливом». Липиды окисляются в митохондриях до воды и диоксида углерода с образованием большого количества АТФ.

При полном окислении 1 г жиров до углекислого газа и воды выделяется около 39 кДж энергии, что намного больше по сравнению с полным окислением такого же количества углеводов. Это дает возможность животным, впадающим в спячку, расходовать накопленные летом и осенью жировые запасы для поддержания процессов жизнедеятельности в зимний период. Высокое содержание липидов в семенах растений обеспечивает энергией развитие зародыша и проростка, пока он не перейдет к самостоятельному питанию.

  1. Структурная (строительная). Ряд липидов принимает участие в построении клеточных мембран. Типичными мембранными липидами являются фосфолипиды, гликолипиды и холестерин. Интересно, что мембраны совсем не содержат жиров.
  2. Изолирующая (защитная). Жировые отложения в подкожной ткани и вокруг различных органов обладают высокими теплоизолирующими свойствами, благодаря тому, что жиры плохо проводят тепло. У синего кита толщина подкожного жирового слоя превышает 50 см, доходя до 1 м, поэтому он может жить в холодных водах.

Липиды предохраняют внутренние органы от механических повреждений (например, почки человека покрыты жировым слоем, защищающим их от травм, сотрясения при ходьбе и прыжках), так они выполняют роль амортизатора.

Как основной компонент клеточной мембраны липиды изолируют внутреннюю часть клетки от окружающей среды и за счёт гидрофобных свойств обеспечивают образование мембранных потенциалов.

Воск покрывает тонким слоем листья растений, не давая им намокать во время обильных дождей, препятствуя испарению воды в жарком климате.

У водоплавающих птиц и некоторых зверей воски выделяются специальными железами и служат смазкой для перьев и волос, придавая им водоотталкивающие свойства.

Миелиновые липиды в мембранах шванновских клеток образуют оболочку вокруг аксонов нейронов, за счёт этого мембрана поверхности нервной клетки электрически изолируется и импульсы по ней проходят намного быстрее.

  1. Сигнальная (регуляторная). Стероиды, эйкозаноиды и некоторые метаболиты фосфолипидов выполняют сигнальные функции. Они служат в качестве гормонов, медиаторов и вторичных переносчиков (мессенжеров). Половые гормоны и кортикостероиды регулируют процессы развития и размножения, обмена веществ.

Витамины группы D, которые являются производными холестерина, играют важную роль в обмене кальция и фосфора. Другие витамины липидной природы: А, Е, К. Желчные кислоты участвуют в пищеварении: они обеспечивают эмульгирование жиров пищи и всасывание продуктов их расщепления.

  1. Запасающая. Жиры служат источником энергии и воды в клетках. Они хранятся в жировых депо: капли жира внутри клетки, жировые тела насекомых, подкожная клетчатка. При окислении 100 г жиров выделяется 107 мл воды. Благодаря эндогенному образованию воды в пустыне могут жить многие животные, например песчанки и тушканчики. С этим связано накопление жира в горбах верблюда.

Развитие эмбрионов птиц и рептилий в яйце при запасе энергии и воды в виде жира, образуется в результате окисления из запасов в желтке. Киты не могут пить солёную воду, которой они окружены, и полагаются полностью на метаболическую воду.

  1. Другие функции липидов. Отдельные липиды выполняют роль «якоря», удерживающего на мембране белки и другие соединения. Некоторые являются кофакторами, принимающими участие в ферментативных реакциях, например в свёртывании крови или в трансмембранном переносе электронов.

Светочувствительный каротиноид ретиналь играет центральную роль в процессе зрительного восприятия.

Жиры способствуют плавучести водных животных от мельчайших диатомовых водорослей, до китов.

Поскольку некоторые липиды не синтезируются в организме человека, они должны поступать с пищей в виде незаменимых жирных кислот и жирорастворимых витаминов. (рис.) Ненасыщенные жирные кислоты – арахидоновая, линолевая и линоленовая. Линолевая и линоленовая кислоты могут превращаться в арахидоновую за счёт наращивания цепи и, следовательно, являются её заменителями.

Функции липидов фото

Липиды в нашем питании

Большинство жиров содержит более 40 атомов углерода. Соотношение энергии хранящейся в С—Н связях в липидах выше, чем в углеводах, что делает их более эффективными для её хранения. В среднем жиры дают около 9 кКал/г. по сравнению с 4 ккал/г для углеводов.

Большинство жиров, производимых животными насыщены, за исключением некоторых, например рыбьего жира, в то время как большинство растительных масел ненасыщенны. Исключение составляют тропические растительные масла, такие как пальмовое, которые являются насыщенными несмотря на жидкое состояние при комнатной температуре.

Когда в организме появляется избыток углеводов, они преобразуются в крахмал, гликоген или жиры, зарезервированные для будущего использования. Это причина того, почему многие люди набирают вес, становясь старше, так как количество энергии, которую они тратят, уменьшается, а потребление пищи нет. А всё увеличивающаяся доля углеводов превращается в жир.

Липиды в продуктах фото

Питание продуктами с высоким содержанием жиров является одним из нескольких факторов, способствующих развитию сердечно-сосудистых заболеваний, особенно атеросклероза.

Источник