Какое свойство материала называют упругостью

Какое свойство материала называют упругостью thumbnail

Материалы это материальная субстанция, используемая для производства, изготовления вещей или преобразования в другие материальные субстанции, объекты и предметы, на практике это – продукция, которую расходуют с изменением формы, состава или состояния при изготовлении изделий.  В зависимости от выбранного материала окончательное изделие будет обладать тем или иным свойством.

Механические свойства

Упругостью твердого тела называют его свойство самопроизвольно восстанавливать первоначальную форму и размеры после прекращения действия внешней силы. Упругая деформация полностью исчезает после прекращения действия внешней силы, поэтому ее принято называть обратимой.

Пластичностью твердого тела называют его свойство изменять форму и размеры под действием внешних сил не разрушаясь, причем после прекращения действия силы тело не может самопроизвольно восстановись свои размеры и форму, и в теле остается некоторая остаточная деформация, называемая пластической деформацией.

Пластическую, или остаточную, деформацию, не исчезнувшую после снятия нагрузки, называют необратимой.

Основными характеристиками деформативных свойств строительного материала являются: относительная деформация, модуль упругости Юнга и коэффициент Пуассона.

Внешние силы, приложенные к телу, вызывают изменение межатомных расстояний, отчего происходит изменение размеров деформируемого тела на величину dl в направлении действия силы.

Относительная деформация равна отношению абсолютной деформации dl к первоначальному линейному размеру l тела.

Формула расчета: є = dl / l,

где є – относительная деформация.

Модуль упругости (модуль Юнга) связывает упругую деформацию є и одноосное напряжение s линейным соотношением, выражающим закон Гука.

Формула расчета: є = s / E ,

где E – модуль Юнга.

При одноосном растяжении (сжатии) напряжение определяется по формуле:

s = Р / F,

где Р – действующая сила; F – площадь первоначального поперечного сечения элемента.

Примеры строительных материалов по данному свойству:

Модуль упругости представляет собой меру жесткости материала. Материалы с высокой энергией межатомных связей (они плавятся при высокой температуре) характеризуются и большим модулем упругости.

Зависимость модуля упругости Е ряда материалов от температуры плавления ( tпл. ) смотри в таблице.

Какое свойство материала называют упругостью

Модуль упругости Е связан с другими упругими характеристиками материала посредством коэффициента Пуассона. Одноосное растяжение (сжатие) sz вызовет деформацию по этой оси – єz и сжатие по боковым направлениям – єx и – єy, которые у изотропного материала равны между собой.

Коэффициент Пуассона, или коэффициент поперечного сжатия µ равен отношению:

µ = – єx / єz.

Примеры строительных материалов по данному свойству:

Коэффициент Пуассона бетона – 0,17 – 0,2, полиэтилена – 0,4.

Прочность – свойство материала сопротивляться разрушению под действием внутренних напряжений, вызванных внешними силами или другими факторами (стесненная усадка, неравномерное нагревание и т. п.).

Прочность материала оценивают пределом прочности (временным сопротивлением) R, определенным при данном виде деформации.

Схема диаграмм деформаций.

Какое свойство материала называют упругостью

Для хрупких материалов (природных каменных материалов, бетонов, строительных растворов, кирпича и др.) основной прочностной характеристикой является предел прочности при сжатии.

Предел прочности при осевом сжатии равен частному от деления разрушающей силы на первоначальную площадь поперечного сечения образца (куба, цилиндра, призмы).

Формула расчета: Rсж = Рразр / F,

где Rсж – предел прочности при осевом сжатии; Рразр – разрушающая сила; F – первоначальная площадь поперечного сечения образца.

Предел прочности при осевом растяжении Rр используется в качестве прочностной характеристики стали, бетона, волокнистых и других материалов.

В зависимости от соотношения Rр / Rсж можно условно разделить материалы на три группы:

1) материалы, у которых Rр > Rсж (волокнистые – древесина и др.) ;
2) Rр = Rсж (сталь);
3) Rр < Rсж (хрупкие материалы – природные камни, бетон, кирпич).

Размерность: (Мпа).

Предел прочности при изгибе определяют путем испытания образца в виде балочек на двух опорах.

Формула расчета: Rр•и = М / W,

где Rр•и – предел прочности при изгибе; М – изгибающий момент; W – момент сопротивления.

Размерность: (Мпа).

Коэффициент конструктивного качества (к.к.к.) материала равен отношению показателя прочности R к относительной средней плотности pо.

Формула расчета: к.к.к. = R / pо.

Следовательно, это прочность, отнесённая к единице средней плотности. Лучшие конструкционные материалы имеют высокую прочность при малой средней плотности.

Примеры значений к.к.к. для некоторых строительных материалов:

стеклопластик – 225; древесина (без пороков) – 200; сталь высокопрочная – 127; сталь – 51; легкий конструкционный бетон – 22,2; тяжелый бетон – 16,6; легкий бетон – 12,5; кирпич – 5,56.

Твердостью называют свойство материала сопротивляться проникновению в него другого, более твердого тела.

Твердость минералов оценивают шкалой Мооса, представленной десятью минералами, из которых каждый последующий своим острым концом царапает все предыдущие. Эта шкала включает минералы в порядке возрастающей твердости от 1 до 10.

1. Тальк, Mg3[Si4O10][OH]2 – легко царапается ногтем.
2. Гипс, CaSO4 • 2H2O – царапается ногтем.
3. Кальцит, CaCO3 – легко царапается стальным ножом.
4. Флюорит (плавиковый шпат), CaF – царапается стальным ножом под небольшим нажимом.
5. Апатит, Ca5 [PO4]3 F – царапается ножом под сильным нажимом.
6. Ортоклаз, К2О.Al2О3.6SiO2 – царапает стекло.
7. Кварц, SiO2; топаз, Al2 [SiO4] (F, OH)2; корунд, Al2 О3; алмаз, С – легко царапают стекло, применяются в качестве абразивных (истирающих и шлифующих) материалов.

Твердость древесины, маталлов, бетона и некоторых других строительных материалов определяют, вдавливая в них стальной шарик или твердый наконечник (в виде конуса или пирамиды). В результате испытания вычисляют число твердости
HB = P / F,

где F – площадь поверхности отпечатка.

От твердости материалов зависит их истираемость: чем выше твердость, тем меньше истираемость.

Истираемость оценивают потерей первоначальной массы образца материала, отнесенной к площади поверхности истирания F.

Формула расчета: И = ( m1 – m2 ) / F,

где m1 и m2 – масса образца до и после истирания.

Размерность: (г/кв.см).
Это свойство важно для эксплуатации дорог, полов, ступеней лестниц, и т. п.

Износом называют свойство материалов сопротивляться одновременному воздействию истирания и ударов.

Сопротивление удару – способность материала сопротивляться действию удара падающего груза. Для определения прочности материалов при ударе применяются специальные копры.

Физические свойства

Истинная плотность – масса единицы объёма абсолютно плотного материала.

Формула расчета: p = m / Vа,

где m – масса материала; Vа – его объем в плотном состоянии.

Размерность: (г/куб.см, кг/куб.м).

Средняя плотность – масса единицы oбъема материала в естественном состоянии.
pо = m / V,

где m – масса материала; Vс – его объём вместе с порами.
Размерность: (г/куб.см, кг/куб.м).

Значение средней плотности данного материала в сухом и влажном состоянии связаны соотношением:
p = p / (1 + Wм),

где Wм – количество воды в материале, доли от его массы.

Насыпная плотность ( pн ) – масса единицы объема рыхло насыпанных зернистых или волокнистых материалов (цемента, песка, гравия, щебня, гранулированной минеральной ваты и т. п.).

Истинная пористость – степень заполнения объема материала порами.

Читайте также:  Какое свойство характерно для живых тел природы организмов в отличие от объектов

Формула расчета 1: П = Vп / V,

где Vп – объем пор; V – объём материала с порами.

Размерность: в процентах от объема.

Формула расчета 2: П = [1 – ( pо / p)] 100,

где pо – средняя плотность материала; p – истинная плотность материала.

Размерность: в процентах от объема.

Основные свойства строительных материалов представлены в таблице.

Какое свойство материала называют упругостью

Свойства, связанные с действиями воды

Гигроскопичность или сорбционная влажность – свойство капиллярно-пористого материала поглощать водяной пар из влажного воздуха.

Поглощение влаги из воздуха называется сорбцией.

Примеры строительных материалов по данному свойству:

Древесина, теплоизоляционные, стеновые и другие пористые материалы обладают развитой внутренней поверхностью пор и поэтому высокой сорбционной способностью.

Водопоглощение определяют по объему и массе.

Водопоглощение по объему – степень поглощения материала водой.

Формула расчета: Wо = ( mв – mс ) / V • 100,

где mв – масса образца материала, насыщенного водой; mс – масса образца в сухом состоянии; V – объём материала.

Размерность: (%).

Водопоглощение по массе – определяют по отношению к массе сухого материала.

Формула расчета: Wм = ( mв – mс ) / mс 100,

где mв – масса образца материала, насыщенного водой; mс – масса образца в сухом состоянии.

Размерность: (%).

Примеры строительных материалов по данному свойству:

Водопоглощенние различных материалов колеблется в широких пределах: гранита – 0,02- 0,7%, тяжелого плотного бетона – 2-4%, кирпича – 8-15%, пористых теплоизоляционных материалов – 100% и больше.

Связь между водопоглощением по массе и водопоглощением по объему определяется соотношением:

Wо = Wм • pо,

где pо – средняя плотность.

Коэффициент насыщения.
Водопоглощение используют для оценки структуры материла, привлекая для этой цели коэффициент насыщения пор водой равный отношению водопоглощения по объему к пористости:

kн = Wо / П,

где П – истинная пористость.

Коэффициент насыщения может изменяться от 0 (все поры в материале замкнутые) до 1 (все поры открытые), тогда Wо = П.

Коэффициент размягчения – отношение прочности материала, насыщенного водой, к прочности сухого материала.

Коэффициент размягчения характеризует водостойкость материала, он изменяется от 0 (размокшие глины и др.) до 1 (металлы и др.). Природные и искусственные каменные материалы не применяют в строительных конструкциях, находящихся в воде, если их коэффициент размягчения меньше 0,8.

Формула расчета: kр = Rв / Rс,

где Rв – прочность материала, насыщенного водой; Rс – прочности сухого материала.

Водопроницаемость – это свойство материала пропускать воду под давлением.

Коэффициент фильтрации характеризует водопроницаемость материала.
Формула расчета: kф = Vв a / [ S( P1 – P2 ) t],

где kф = Vв – количество воды в куб.м, проходящей через стенку площадью S = 1 кв.м, толщиной а = 1 м за время t = 1 ч при разности гидростатического давления на границах стенки ( P1 – P2 ) = 1 м вод. cт.

Размерность: (м/ч).

Газо- и паропроницаемость.
При возникновении у поверхности ограждения разности давления газа происходит его перемещение через поры и трещины материала.

Коэффициент газопроницаемости характеризует газо- и паропроницаемость:

Формула расчета: kг = aVp / ( StdP),

где Vp – масса газа или пара (плотностью p), прошедшего через стенку площадью S и толщиной а за время t при разности давлений на гранях стенки dP.

Размерность: [г/(м•ч•Па)].

Относительные значения паро-газопроницаемости некоторых строительных материалов представлены на таблице.

Какое свойство материала называют упругостью

Усадкой (усушкой) называют уменьшение размеров материала при его высыхании. Она вызывается уменьшением толщины слоев воды, окружающих частицы материала, и действием внутренних капиллярных сил, стремящихся сблизить частицы материала.

Набухание (разбухание) происходит при насыщении материала водой. Полярные молекулы воды, проникая в промежутки между частицами или волокнами, слагающими материал, как бы расклинивают их, при этом утолщаются гидратные оболочки вокруг частиц, исчезают внутренние мениски, а с ними и капиллярные силы.

Усадка некоторых строительных материалов представлена на таблице.

Какое свойство материала называют упругостью

Свойства, связанные с действиями тепла

Морозостойкость ( F, Мрз) – свойство насыщенного водой материала выдерживать попеременное замораживание и оттаивание без значительной потери в массе и прочности.

Морозостойкость материала количественно оценивается маркой по морозостойкости.

Примеры строительных материалов по данному свойству:

Легкие бетоны, кирпич, керамические камни для наружных стен зданий обычно имеют морозостойкость Мрз 15, Мрз 25, Мрз 35. Бетон, применяемый в строительстве мостов и дорог, должен иметь марку Мрз 50, Мрз 100 и Мрз 200, гидротехнический бетон – до Мрз 500.

Теплопроводностью называют свойство материала передавать тепло от одной поверхности к другой.

На практике удобно судить о теплопроводности по средней плотности материала. Известна формула В.П. Некрасова, связывающая теплопроводность со средней плотностью каменного материала, выраженной по отношению к воде. Значение теплопроводности по этой формуле вычисляется следующим образом:

1,16 • SQRT(0,0196 + 0,22 • pо – 0,16),

где SQRT( ) – операция вычисления квадратного корня; pо – средняя плотность материала.

Размерность: Вт/(мК).

Теплоёмкость определяется количеством тепла, которое необходимо сообщить 1 кг данного материала, чтобы повысить его температуру на 1°С.

Примеры строительных материалов по данному свойству:

Теплоемкость неорганических строительных материалов (бетонов, кирпича, природных каменных материалов) изменяется в пределах от 0,75 до 0,92 кДЖ/(кг •°С). Теплоёмкость сухих органических материалов (например, древесины) – около 0,7 кДЖ/(кг •°С), вода имеет наибольшую теплоемкость – 1 кДЖ/(кг •°С), поэтому с повышением влажности теплоемкость возрастает.

Огнеупорность – свойство материала выдерживать длительное воздействие высокой температуры (от 1580°С и выше), не размягчаясь и не деформируясь. Огнеупорные материалы применяют для внутренней футеровки промышленных печей.

Тугоплавкие материалы размягчаются при температуре выше 1350°С.

Горючесть – способность материала гореть.

Материалы делятся на горючие (органические) и негорючие (минеральные).

Добавлено:
23.10.2019 15:13:04

Источник

Диаграммы напряжений

На сегодняшний день существует несколько методик испытания образцов материалов. При этом одним из самых простых и показательных являются испытания на растяжение (на разрыв), позволяющие определить предел пропорциональности, предел текучести, модуль упругости и другие важные характеристики материала. Так как важнейшей характеристикой напряженного состояния материала является деформация, то определение значения деформации при известных размерах образца и действующих на образец нагрузок позволяет установить вышеуказанные характеристики материала.

Тут может возникнуть вопрос: почему нельзя просто определить сопротивление материала? Дело в том, что абсолютно упругие материалы, разрушающиеся только после преодоления некоторого предела – сопротивления, существуют только в теории. В реальности большинство материалов обладают как упругими так и пластическими свойствами, что это за свойства, рассмотрим ниже на примере металлов.

Испытания металлов на растяжение проводятся согласно ГОСТ 1497-84. Для этого используются стандартные образцы. Методика испытаний выглядит приблизительно так: к образцу прикладывается статическая нагрузка, определяется абсолютное удлинение образца Δl, затем нагрузка увеличивается на некоторое шаговое значение и снова определяется абсолютное удлинение образца и так далее. На основании полученных данных строится график зависимости удлинений от нагрузки. Этот график называется диаграммой напряжений.

Читайте также:  Какими свойствами обладает оксид хрома

диаграмма напряжений для стали

Рисунок 318.1. Диаграмма напряжений для стального образца.

На данной диаграмме мы видим 5 характерных точек:

1. Предел пропорциональности Рп (точка А)

Нормальные напряжения в поперечном сечении образца при достижении предела пропорциональности будут равны:

σп = Рп/Fo (318.2.1)

Предел пропорциональности ограничивает участок упругих деформаций на диаграмме. На этом участке деформации прямо пропорциональны напряжениям, что выражается законом Гука:

Рп = kΔl (318.2.2)

где k – коэффициент жесткости:

k = EF/l (318.2.3)

где l – длина образца, F – площадь сечения, Е – модуль Юнга.

Модули упругости

Главными характеристиками упругих свойств материалов являются модуль Юнга Е (модуль упругости первого рода, модуль упругости при растяжении), модуль упругости второго рода G (модуль упругости при сдвиге) и коэффициент Пуассона μ (коэффициент поперечной деформации).

Модуль Юнга Е показывает отношение нормальных напряжений к относительным деформациям в пределах пропорциональности

Модуль Юнга также определяется опытным путем при испытании стандарт­ных образцов на растяжение. Так как нормальные напряжения в материале равны силе, деленной на начальную площадь сечения:

σ = Р/Fо (318.3.1), (317.2)

а относительное удлинение ε – отношению абсолютной деформации к начальной длине

εпр = Δl/lo (318.3.2)

то модуль Юнга согласно закону Гука можно выразить так

Е = σ/εпр = Plo/FoΔl = tgα (318.3.3)

диаграммы напряжений некоторых металлов

Рисунок 318.2. Диаграммы напряжений некоторых сплавов металлов

Коэффициент Пуассона μ показывает отношение поперечных деформаций к продольным

Под воздействием нагрузок не только увеличивается длина образца, но и уменьшается площадь рассматриваемого поперечного сечения (если предположить, что объем материала в области упругих деформаций остается постоянным, то значит увеличение длины образца приводит к уменьшению площади сечения). Для образца, имеющего круглое сечение, изменение площади сечения можно выразить так:

εпоп = Δd/do (318.3.4)

Тогда коэффициент Пуассона можно выразить следующим уравнением:

μ = εпоп/εпр (318.3.5)

Модуль сдвига G показывает отношение касательных напряжений т к углу сдвига

Модуль сдвига G может быть определен опытным путем при испытании образцов на кручение.

При угловых деформациях рассматриваемое сечение перемещается не линейно, а под некоторым углом – углом сдвига γ к начальному сечению. Так как касательные напряжения равны силе, деленной на площадь в плоскости которой действует сила:

т = Р/F (318.3.6)

а тангенс угла наклона можно выразить отношением абсолютной деформации Δl к расстоянию h от места фиксации абсолютной деформации до точки, относительно которой осуществлялся поворот:

tgγ = Δl/h (318.3.7)

то при малых значениях угла сдвига модуль сдвига можно выразить следующим уравнением:

G = т/γ = Ph/FΔl (318.3.8)

Модуль Юнга, модуль сдвига и коэффициент Пуассона связаны между собой следующим отношением:

Е = 2(1 + μ)G (318.3.9)

Значения постоянных Е, G и µ приводятся в таблице 318.1

Таблица 318.1. Ориентировочные значения упругих характеристик некоторых материалов

модули упругости различных материалов

Примечание: Модули упругости являются постоянными величинами, однако технологии изготовления различных строительных материалов меняются и более точные значения модулей упругости следует уточнять по действующим в настоящий момент нормативным документам. Модули упругости бетона зависят от класса бетона и потому здесь не приводятся.

Упругие характеристики определяются для различных материалов в пределах упругих деформаций, ограниченных на диаграмме напряжений точкой А. Между тем на диаграмме напряжений можно выделить еще несколько точек:

2. Предел упругости Ру

Нормальные напряжения в поперечном сечении образца при достижении предела упругости будут равны:

σу = Ру/Fo (318.2.4)

Предел упругости ограничивает участок на котором появляющиеся пластические деформации находятся в пределах некоторой малой величины, нормированной техническими условиями (например 0,001%; 0,01% и т. д.). Иногда предел упругости обозначается соответственно допуску σ0.001, σ0.01 и т.д.

3. Предел текучести Рт 

σт = Рт/Fo (318.2.5)

Ограничивает участок диаграммы на котором деформация увеличивается без значительного увеличения нагрузки (состояние текучести). При этом по всему объему образца происходит частичный разрыв внутренних связей, что и проводит к значительным пластическим деформациям. Материал образца полностью не разрушается, но его начальные геометрические размеры претерпевают необратимые изменения. На отшлифованной поверхности образцов наблюдаются фигуры текучести – линии сдвигов (открытые профессором В. Д. Черновым). Для различных металлов углы наклона этих линий различны, но находятся в пределах 40-50о. При этом часть накопленной потенциальной энергии необратимо расходуется на частичный разрыв внутренних связей. При испытании на растяжение принято различать верхний и нижний пределы текучести – соответственно наибольшее и наименьшее из напряжений, при которых возрастает пластическая (остаточная) деформация при почти постоянной величине действующей нагрузки.

На диаграммах напряжений отмечен нижний предел текучести. Именно этот предел для большинства материалов принимается за нормативное сопротивление материала.

Некоторые материалы не имеют выраженной площадки текучести. Для них за условный предел текучести σ0.2 принимается напряжение, при котором остаточное удлинение образца достигает значения ε ≈0,2%.

4. Предел прочности Рмакс (временное сопротивление)

Нормальные напряжения в поперечном сечении образца при достижении предела прочности будут равны:

σв = Рмакс/Fo (318.2.6)

После преодоления верхнего предела текучести (на диаграммах напряжения не показан) материал снова начинает сопротивляться нагрузкам. При максимальном усилии Рмакс начинается полное разрушение внутренних связей материала. При этом пластические деформации концентрируются в одном месте, образуя в образце так называемую шейку.

Напряжение при максимальной нагрузке называется пределом прочности или временным сопротивлением материала.

В таблицах 318.2 – 318.5 приведены ориентировочные величины пределов прочности для некоторых материалов:

Таблица 318.2 Ориентировочные пределы прочности на сжатие (временные сопротивления) некоторых строительных материалов.

ориентировочные пределы прочности некоторых строительных материалов

Примечание: Для металлов  и сплавов значение пределов прочности следует определять согласно нормативных документов. Значение временных сопротивлений для некоторых марок стали можно посмотреть здесь.

Таблица 318.3. Ориентировочные пределы прочности (временные сопротивления) для некоторых пластмасс

ориентировочные пределы прочности для некоторых пластмасс

Таблица 318.4. Ориентировочные пределы прочности для некоторых волокон

ориентировочные пределы прочности некоторых волокон

Таблица 318.5. Ориентировочные пределы прочности для некоторых древесных пород

ориентировочные пределы прочности для некоторых видов древесины

5. Разрушение материала Рр

Если посмотреть на диаграмму напряжений, то создается впечатление, что разрушение материала наступает при уменьшении нагрузки. Такое впечатление создается потому, что в результате образования “шейки” значительно изменяется площадь сечения образца в районе “шейки”. Если построить диаграмму напряжений для образца из малоуглеродистой стали в зависимости от изменяющейся площади сечения, то будет видно, что напряжения в рассматриваемом сечении увеличиваются до некоторого предела:

диаграммы напряжений в зависимости от площади

Рисунок 318.3. Диаграмма напряжений: 2 – по отношению к начальной площади поперечного сечения, 1 – по отношению к изменяющейся площади сечения в районе шейки.

Тем не менее более правильным является рассмотрение прочностных характеристик материала по отношению к площади первоначального сечения, так как расчетами на прочность изменение первоначальной геометрической формы редко предусматривается.

Одной из механических характеристик металлов является относительное изменение ψ площади поперечного сечения в районе шейки, выражаемое в процентах:

Читайте также:  Какими свойствами обладают кислотные соединения

ψ = 100(Fo – F)/Fo (318.2.7)

где Fo – начальная площадь поперечного сечения образца (площадь поперечного сечения до деформации), F – площадь поперечного сечения в районе “шейки”. Чем больше значение ψ, тем более ярко выражены пластические свойства материала. Чем меньше значение ψ, тем больше хрупкость материала.

Если сложить разорванные части образца и измерить его удлинение, то выяснится, что оно меньше удлинения на диаграмме (на длину отрезка NL), так как после разрыва упругие деформации исчезают и остаются только пластические. Величина пластической деформации (удлинения) также является важной характеристикой механических свойств материала.

За пределами упругости, вплоть до разрушения, полная деформация состоит из упругой и пластической составляющих. Если довести материал до напряжений, превышающих предел текучести (на рис. 318.1 некоторая точка между пределом текучести и пределом прочности), и затем разгрузить его, то в образце останутся пластические деформации, но при повторном загружении через некоторое время предел упругости станет выше, так как в данном случае изменение геометрической формы образца в результате пластических деформаций становится как бы результатом действия внутренних связей, а изменившаяся геометрическая форма, становится начальной. Этот процесс загрузки и разгрузки материала можно повторять несколько раз, при этом прочностные свойства материала будут увеличиваться:

изменение прочности при наклепе

Рисунок 318.4. Диаграмма напряжений при наклепе (наклонные прямые соответствуют разгрузкам и повторным загружениям)

Такое изменение прочностных свойств материала, получаемое путем повторяющихся статических загружений, называется наклепом. Тем не менее при повышении прочности металла путем наклепа уменьшаются его пластические свойства, а хрупкость увеличивается, поэтому полезным как правило считается относительно небольшой наклеп.

Работа деформации

Прочность материала тем выше, чем больше внутренние силы взаимодействия частиц материала. Поэтому величина сопротивления удлинению, отнесенная к единице объема материала, может служить характеристикой его прочности. В этом случае предел прочности не является исчерпывающей характеристикой прочностных свойств данного материала, так как он характеризует только поперечные сечения. При разрыве разрушаются взаимосвязи по всей площади сечения, а при сдвигах, которые происходят при всякой пластической деформации, разрушаются только местные взаимосвязи. На разрушение этих связей затрачивается определенная работа внутренних сил взаимодействия, которая равна работе внешних сил, затрачиваемой на перемещения:

А = РΔl/2 (318.4.1)

где 1/2 – результат статического действия нагрузки, возрастающей от 0 до Р в момент ее приложения (среднее значение (0 + Р)/2)

При упругой деформации работа сил определяется площадью треугольника ОАВ (см. рис. 318.1). Полная работа, затраченная на деформацию образца и его разрушение:

А = ηРмаксΔlмакс (318.4.2)

где η – коэффициент полноты диаграммы, равный отношению площади всей диаграммы, ограниченной кривой АМ и прямыми ОА, MN и ON, к площади прямоугольника со сторонами 0Рмакс (по оси Р) и Δlмакс (пунктир на рис. 318.1). При этом надо вычесть работу, определяемую площадью треугольника MNL (относящуюся к упругим деформациям).

Работа, затрачиваемая на пластические деформации и разрушение образца, является одной из важных характеристик материала, определяющих степень его хрупкости.

Деформация сжатия

Деформации сжатия подобны деформациям растяжения: сначала происходят упругие деформации, к которым за пределом упругости добавляются пластические. Характер деформации и разрушения при сжатии показан на рис. 318.5:

формы образцов для испытаний на сжатие

Рисунок 318.5

а – для пластических материалов; б – для хрупких материалов ; в – для дерева вдоль волокон, г – для дерева поперек волокон.

Испытания на сжатие менее удобны для определения механических свойств пластических материалов из-за трудности фиксирования момента разрушения. Методы механических испытаний металлов регламентируются ГОСТ 25.503-97. При испытании на сжатие формы образца и его размеры могут быть различными. Ориентировочные значения пределов прочности для различных материалов приведены в таблицах 318.2 – 318.5.

Если материал находится под нагрузкой при постоянном напряжении, то к практически мгновенной упругой деформации постепенно прибавляется добавочная упругая деформация. При полном снятии нагрузки упругая деформация уменьшается пропорционально уменьшающимся напряжениям, а добавочная упругая деформация исчезает медленнее.

Образовавшаяся добавочная упругая деформация при постоянном напряжении, которая исчезает не сразу после разгрузки, называется упругим последействием.

Влияние температуры на изменение механических свойств материалов

Твердое состояние – не единственное агрегатное состояние вещества. Твердые тела существуют только в определенном интервале температур и давлений. Повышение температуры приводит к фазовому переходу из твердого состояния в жидкое, а сам процесс перехода называется плавлением. Температуры плавления, как и другие физические характеристики материалов, зависят от множества факторов и также определяются опытным путем.

Таблица 318.6. Температуры плавления некоторых веществ

температуры плавления некоторых веществ

Примечание: В таблице приведены температуры плавления при атмосферном давлении (кроме гелия).

Упругие и прочностные характеристики материалов, приведенные в таблицах 318.1-318.5, определяются как правило при температуре +20оС. ГОСТом 25.503-97 допускается проводить испытания металлических образцов в диапазоне температур от +10 до +35оС.

При изменении температуры изменяется потенциальная энергия тела, а значит, изменяется и значение внутренних сил взаимодействия. Поэтому механические свойства материалов зависят не только от абсолютной величины температуры, но и от продолжительности ее действия. Для большинства материалов при нагреве прочностные характеристики (σп, σт и σв) уменьшаются, при этом пластичность материала увеличивается. При снижении температуры прочностные характеристики увеличиваются, но при этом повышается хрупкость. При нагреве уменьшается модуль Юнга Е, а коэффициент Пуассона увеличивается. При снижении температуры происходит обратный процесс.

влияние температуры на механические характеристики углеродистой стали

Рисунок 318.6. Влияние температуры на механические характеристики углеродистой стали.

При нагревании цветных металлов и сплавов из них прочность их сразу падает и при температуре, близкой к 600° С, практически теряется. Исключение составляет алюмотермический хром, предел прочности которого с увеличением температуры увеличивается и при температуре равной 1100° С достигает максимума σв1100 = 2σв20.

Характеристики пластичности меди, медных сплавов и магния с ростом температуры уменьшаются, а алюминия – увеличиваются. При нагреве пластмасс и резины их предел прочности резко снижается, а при охлаждении эти материалы становятся очень хрупкими.

Влияние радиоактивного облучения на изменение механических свойств

Радиоактивное облучение по-разному влияет на различные материалы. Облучение материалов неорганического происхождения по своему влиянию на механические характеристики и характеристики пластичности подобно понижению температуры: с увеличением дозы радиоактивного облучения увеличивается предел прочности и особенно предел текучести, а характеристики пластичности снижаются.

Облучение пластмасс также приводит к увеличению хрупкости, причем на предел прочности этих материалов облучение оказывает различное влияние: на некоторых пластмассах оно почти не сказывается (полиэтилен), у других вызывает значительное понижение предела прочности (катамен), а в третьих – повышение предела прочности (селектрон).

Источник