Какое свойство металлов называется свариваемостью

Какое свойство металлов называется свариваемостью thumbnail

Свариваемость — свойство металлов или сочетания металлов образовывать при установленной технологии сварки неразъемное соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия. В сварочной практике существуют такие понятия, как физическая и технологическая свариваемость.

Свариваемость оценивается степенью соответствия свойств сварного соединения тем же свойствам основного материала и его склонностью к образованию дефектов. Материалы делятся на хорошо, удовлетворительно, плохо и ограниченно свариваемые.

Понятия свариваемости[править | править код]

Физическая свариваемость — подразумевает возможность получения монолитных сварных соединений с химической связью. Такой свариваемостью обладают практически все технические сплавы и чистые металлы, а также ряд сочетаний металлов с неметаллами.

Технологическая свариваемость — это характеристика металла, определяющая его реакцию на воздействие сварки и способность образовывать сварное соединение с заданными эксплуатационными свойствами. В этом случае свариваемость рассматривается как степень соответствия свойств сварных соединений одноименным свойствам основного металла или их нормативным значениям.

Определение свариваемости[править | править код]

Определение свариваемости по ГОСТ 29273-92: металлический материал считается поддающимся сварке до установленной степени при данных процессах и для данной цели, когда сваркой достигается металлическая целостность при соответствующем технологическом процессе, чтобы свариваемые детали отвечали техническим требованиям, как в отношении их собственных качеств, так и в отношении их влияния на конструкцию, которую они образуют.

Характеристики[править | править код]

Свариваемость металлов зависит от их химических и физических свойств, наличия примесей и др. От свариваемости металла зависит выбор технологии его сварки.

Свариваемость сталей определяется по склонности к образованию трещин и механическим свойствам шва, по ней стали разделяются на четыре группы:

  1. — хорошая свариваемость; сварка выполняется без подогрева до, в процессе сварки и после.
  2. — удовлетворительная свариваемость; сварка для предотвращения трещин предварительно нагревается, после сварки нужна термообработка.
  3. — ограниченная свариваемость; сталь склонна к образованию трещин, её предварительно подвергают термообработке, термически обрабатывается после сварки.
  4. — плохая свариваемость, склонность к образованию трещин. Сварка производится с предварительной термообработкой, подогрев проводится и после сварки.

Литература[править | править код]

Нормативная литература[править | править код]

  • ГОСТ 29273-92 «Свариваемость. Определение» (HTML).

Техническая литература[править | править код]

  • Николаев Г. А. Сварка в машиностроении: Справочник в 4-х т. М.: Машиностроение, 1978.
  • Сварка, резка и пайка металлов / К. К. Хренов. М.: Машиностроение, 1970, 408 с.
  • Справочник конструктора–машиностроителя. Т. 3. / В. И. Анурьев. М.: Машиностроение. 2000. 859 с.
  • Марочник сталей и сплавов / В. Г. Сорокин, А. В. Волосникова. – М.: Машиностроение, 1989. – 640 с.
  • Инструментальные стали. Справочник / Л. А. Позняк. М.: Металлургия, 1977, 168 с.

Ссылки[править | править код]

  • Свариваемость сталей

Источник

ЭЛЕКТРОГАЗАСВАРЩИК

Свариваемостью называется свойство или сочетание свойств металлов образовывать при установлен­ной технологии сварки неразъемное соединение, отвечаю­щее требованиям, обусловленным конструкцией и эксплу­атацией изделия.

Различают физическую и технологическую сваривае­мость.

Физическая свариваемость — свойство материалов да­вать монолитное соединение с химической связью. Такой свариваемостью обладают практически все технические сплавы и чистые металлы, а также ряд сочетаний метал­лов с неметаллами.

Технологическая свариваемость — технологическая ха­рактеристика металла, определяющая его реакцию на воз­действие сварки и способность при этом образовывать свар­ное соединение с заданными эксплуатационными свойства­ми

Свариваемость металла зависит от его химических и

физических свойств, кристаллической решетки, степени легирования, наличия примесей и других факторов.

Назовем основные показатели свариваемости металлов и их сплавов:

• окисляемость при сварочном нагреве, зависящая от химической активности металла;

• чувствительность к тепловому воздействию сварки, которая характеризуется склонностью металла к ро­сту зерна, структурными и фазовыми изменениями в шве и зоне термического влияния, изменением проч­ностных и пластических свойств;

• сопротивляемость образованию горячих трещин;

• сопротивляемость образованию холодных трещин при сварке;

• чувствительность к образованию пор;

• соответствие свойств сварного соединения заданным эксплуатационным требованиям.

Кроме перечисленных основных показателей сваривае­мости имеются еще показатели, от которых зависит каче­ство сварных соединений. К ним относят качество форми­рования сварного шва, величину собственных напряжений, величину деформаций и коробления свариваемых материа­лов и изделий. 1

Окисляемость металла при сварке определяется хими­ческими свойствами свариваемого материала. Чем хими­чески активнее металл, тем больше его склонность к окис­лению и тем выше должно быть качество защиты при свар­ке. Это особенно наглядно видно на примере железоугле­родистых сплавов. Свариваемость углеродистой стали из­меняется в зависимости от содержания основных приме­сей. Углерод является наиболее важным элементом в со­ставе стали, определяющим почти все основные ее свой­ства в процессе обработки, в том числе и свариваемость..

Низкоуглеродистые и среднеуглеродистые стали сварива­ются хорошо. Стали, содержащие С >0,35%, свариваются хуже. С увеличением содержания углерода свариваемость стали ухудшается. В околошовных зонах появляются зака­лочные структуры и трещины, а шов получается пористым.

Марганца в стали содержится обычно 0,3—0,8%, что не затрудняет сварку стали. Однако при повышенном содер­жании марганца (1,8—2,5%) прочность, твердость и зака­ливаемость стали возрастают, и это способствует образова­нию трещин. При сварке высокомарганцовистых сталей (11—16% Мп) происходит выгорание марганца, если не принять меры по его восполнению через электродное по­крытие, флюсы и др.

Хром увеличивает прочность стали, повышает ее устой­чивость против коррозии и длительного воздействия высо­ких температур. Однако с увеличением содержания хрома возрастает закаливаемость сталбй и ухудшается их свари­ваемость.

Никель повышает прочность, пластичность и коррози­онную стойкость стали, улучшает свариваемость. Однако при сварке требуется защита от воздействия кислорода воз­духа во избежание выгорания никеля.

Титан повышает прочность, ударную вязкость стали, улучшает ее свариваемость, способствует измельчению зе­рен при кристаллизации металла. При сварке связывает углерод, препятствуя образованию карбидов хрома по гра­ницам зерен и возникновению межкристаллитной корро­зии металла сварного соединения хромсодержащих ста­лей.

Кремний содержится в обычной углеродистой стали в пределах 0,02—0,3% и существенного влияния на свари­ваемость не оказывает. При повышенном содержании (0,8—1,5%) кремний затрудняет сварку, так как придает стали жидкотекучесть и образует тугоплавкие окислы и шлаки.

Сера является самой вредной примесью стали. Содер­жание серы в стали допускается не более 0,05 %. Сера обра­зует в металле сернистое железо, которое имеет более низ­кую температуру плавления, чем сталь, и плохо растворя­ется в расплавленной стали. При кристаллизации стали сернистое железо располагается между кристаллами метал­ла шва и способствует образованию трещин.

Фосфор является также вредной примесью стали. Со­держание фосфора в стали доходит до 0,05 %. Фосфор ухуд­шает свариваемость стали, так как образует хрупкое фос­фористое железо, придает стали хладноломкость.

Свариваемость стали принято оценивать по следующим показателям:

• склонности металла шва к образованию горячих и хо­лодных трещин;

• склонности к изменению структуры в околошовной зоне и к образованию закалочных структур;

• физикомеханическим качествам сварочного соедине­ния;

• соответствию специальных свойств сварного соеди­нения техническим условиям.

Для определения свариваемости применяют два основ­ных метода. По первому методу изготовляют образцы, на которые наплавляются по одному валику. Обработанные и протравленные образцы подвергают макро – и микроиссле­дованиям, а затем механическим испытаниям на загиб и ударную вязкость. Результаты исследования позволяют не только оценить свариваемость стали, но и установить оп­тимальные режимы сварки.

Сталь считается сваривающейся хорошо, если трещи­ны отсутствуют; удовлетворительно, если трещины обра­зуются при охлаждении водой, но отсутствуют при охлаж­дении воздухом; ограниченно, если сталь для предупреж­дения образования трещин требует предварительного по­догрева до 100— 150°С и охлаждения на воздухе. Плохо сваривающиеся стали требуют предварительного подогре­ва до 300°С и выше.

Углеродистые стали по свариваемости можно условно подразделить на следующие группы: хорошо сваривающи­еся стали — СтО, Ст1, Ст2, СтЗ, Ст4 (ГОСТ 380—88); 08, 10, 15, 20, 25 (ГОСТ 1050—88); удовлетворительно свари­вающиеся стали — Ст5 (ГОСТ 380—88); 30, 35 (ГОСТ 1050— 88); ограниченно сваривающиеся стали — Стб, Ст7 (ГОСТ 380—88); 40, 45, 50 (ГОСТ 1050—88); плохо сваривающие­ся стали — 60Г, 65Г, 70Г, 70, 75, 80, 85.

В сварных строительных конструкциях используются главным образом стали первой группы. Стали СтО, Ст1, Ст2, СтЗ, Ст4, Ст5 применяют при изготовлении строи­тельных конструкций, арматуры, горячекатаных и сварных труб с прямым и спиральным швами. Из стали СтЗ изго­товляют бункера, резервуары, газгольдеры, подкрановые балки, конструкции доменного комплекса, балки перекры­тий. Стали 10, 15, 20 и 25 используют для производства горячекатаных труб. Эти стали хорошо поддаются сварке и образуют сварной шов без хрупких структур и пористости.

Как правило, чем выше прочность свариваемого мате­риала и больше стенень его легирования, тем чувствитель­нее материал к термическому циклу сварки и сложнее тех­нология его сварки.

Чувствительность металла к тепловому воздействию сварки оценивают по свойствам различных зон соединений и, сварных соединений в целом при статических, динами­ческих и вибрационных испытаниях (растяжение, изгиб, определение твердости, определение перехода металла в хрупкое состояние и др.), а также по результатам металло­

графических исследований в зависимости от применяемых видов и режимов сварки.

Сопротивляемость металла образованию трещин при сварке: при сварке могут возникать горячие и холодные трещины в металле шва и в околошовной зоне.

Горячие трещины — хрупкие межкристаллические раз­рушения металла шва и околошовной зоны, возникающие в твердожидком состоянии в процессе кристаллизации, а также при высоких температурах в твердом состоянии.

При кристаллизации жидкий металл шва сначала пере­ходит в жидкотвердое, а затем в твердожидкое и, наконец, в твердое состояние. В твердожидком состоянии образует­ся скелет из кристаллитов затвердевшего металла (твердой фазы), в промежутках которого находится жидкий металл, который в таком состоянии обладает очень низкими плас­тичностью и прочностью.

Усадка шва и линейное сокращение нагретого металла в сварном соединении при охлаждении могут привести к образованию горячих трещин. Горячие трещины могут об­разовываться как вдоль, так и поперек шва.

Для оценки свариваемости металлов по сопротивляе­мости горячим трещинам применяют два основных вида испытаний — сварку технологических проб и машинные способы испытаний.

В технологических пробах сваривают узел или образец заданной жесткости. Пригодность материала, электродов, режимов сварки оценивают по появлению трещины и ее длине.

При машинных методах испытаний растягивают или изгибают образец во время сварки. Стойкость материалов оценивают по критической величине или скорости дефор­мирования, при которых возникает трещина. Для предот­вращения горячих трещин необходимо правильно выбирать присадочный материал и технологию сварки.

Холодные трещины — локальные межкристаллические разрушения, образующиеся в сварных соединениях преиму­щественно при нормальной температуре, а также при тем­пературах ниже 200° С. Причины возникновения холодных трещин при сварке следующие:

• охрупчивание металла вследствие закалочных процес­сов при быстром его охлаждении;

• остаточные напряжения, возникающие в сварных со­единениях;

• повышенное содержание водорода в сварных швах, который усиливает неблагоприятное действие первых двух главных причин.

Для ‘оценки свариваемости металлов по сопротивляе­мости холодным трещинам применяют, как и при оценке сопротивляемости горячим трещинам, два вида испыта­ний — технологические пробы ц методы количественной оценки с приложением к образцам внешней постоянной ме­ханической нагрузки.

Преимуществом технологических проб является воз­можность моделировать технологию сварки и, следователь­но, судить о сопротивляемости образованию трещин в ус­ловиях, близких к реальным. Проба представляет собой жесткое сварное соединение. Стойкость материала оцени­вают качественно по наличию или отсутствию трещин.

Существует много технологических проб, в которых имитируют жесткие узлы сварных конструкций. Пробы дают только качественный ответ: образуется или не обра­зуется трещина.

Количественным критерием оценки сопротивляемости сварного соединения образованию холодных трещин явля­ются минимальные внешние напряжения, при которых начинают возникать холодные трещины при выдержке об­разцов под нагрузкой, прикладываемой сразу же после свар­ки. Внешние нагрузки воспроизводят воздействие на ме­

талл собственных сварочных и усадочных напряжений, которые постоянно действуют сразу после сварки при хра­нении и эксплуатации конструкции.

Методы борьбы с холодными трещинами основывают­ся на уменьшении степени подкалки металла, снятии оста­точных напряжений, ограничении содержания водорода. Наиболее эффективным средством для этого является по­догрев металла перед сваркой и замедленное охлаждение после сварки.

Необходимость подогрева и замедленного охлаждения металла сварного шва можно оценить по эквивалентному содержанию углерода Сэкв, учитывающему химический со­став свариваемого металла;

где С — содержание углерода в сотых долях %;

Mn, Ni, Cr, Mo, V – в %.

По величине Сэкв все стали можно разделить условно на четыре группы;

1. Сэкв < 0,25. Хорошо сваривающиеся стали, которые не дают трещин при сварке обычным способом без термо­обработки.

2. Сэкв = 0,25—0,35. Удовлетворительно сваривающиеся стали, которые допускают сварку без появления трещин в нормальных производственных условиях, т. е. при окружающей температуре выше 0°С, отсутствии ветра

и пр.

3. Сэкв = 0,35—0,45. Ограниченно сваривающиеся стали, которые склонны к образованию трещин при сварке в обычных условиях. При сварке таких сталей необходим предварительный подогрев до 100—200°С. Большин­ство сталей этой группы подвергают термообработке и после сварки.

4. Скв > 0,45. Такие стали склонны к образованию холод­ных трещин при сварке. Их можно сваривать только с предварительным подогревом, подогревом в процессе сварки и последующей термообработкой.

Температуру предварительного подогрева можно рас­считать по формуле

Т = 350 v’Co6-0,25 , где Со6 — общий эквивалент углерода.

Со« = С«в(1 + 0.005S).

S — толщина свариваемого металла, мм.

Поры в сварных швах возникают при первичной крис­таллизации металла сварочной ванны в результате выде­ления газов. Поры представляют собой заполненные газом полости в швах, имеющие округлую, вытянутую или бо­лее сложные формы. Поры могут располагаться по оси шва, его сечению или вблизи границы сплавления. Они могут выходить или не выходить на поверхность, располагаться цепочкой, отдельными группами или одиночно, могут быть микроскопическими и крупными (до 4—6 мм в поперечни­ке). Причины возникновения пор следующие:

• выделение водорода, азота и окиси углерода в резуль­тате химических реакций;

• различная растворимость газов в расплавленном и твердом металле;

• захват пузырьков газа при кристаллизации сварочной ванны.

Для уменьшения пористости необходима тщательная подготовка основного и присадочного материалов под сварку (очистка от ржавчины, масла, влаги, прокалка и т. д.), на­

дежная защита зоны сварки от воздуха, введение в свароч­ную ванну раскислителей (из основного металла, свароч­ной проволоки, покрытия, флюса), соблюдение режимов сварки.

Наряду с порами однородность металла шва нарушают шлаковые включения. Шлаковые включения связаны с ту­гоплавкостью, повышенной вязкостью и высокой плотнос­тью шлаков, плохой зачисткой поверхности кромок и от­дельных слоев при многослойной сварке, затеканием шла­ка в зазоры между свариваемыми кромками и в места под­резов. Помимо шлаковых включений в шве могут быть мик­роскопические оксидные, сульфидные, нитридные, фосфор­содержащие включения, которые ухудшают свойства свар­ного шва.

Технология сварки (вид сварки, сварочные материалы, техника сварки) выбирается в зависимости от основного показателя свариваемости (или сочетаний нескольких по­казателей) для каждого конкретного материала.

Техника безопасности при работе с газосварочным обо­рудованием заключается в выполнении следующих требо­ваний: 1. Запрещается устанавливать оборудование и произво­дить сварочные работы вблизи огнеопасных материалов. Подвижные ацетиленовые генераторы должны устанавли­ваться не ближе …

При работе на контактных машинах возможны пораже­ния электрическим током, ожоги нагретым металлом, брыз­гами и выплесками расплавленного металла, отравление испарениями металла и его покрытий в зоне сварки, а так­же травматизм от …

§ 65. Техника безопасности при электрической сварке При электросварочных работах возможны следующие виды производственного травматизма: поражение электри­ческим током; поражение зрения и открытой поверхности кожи лучами электрической дуги; ожоги от капель …

Источник

Свариваемость – способность металла образовывать качественные сварные соединения, удовлетворяющие эксплуатационным требованиям конструкции. Различают физическую и технологическую свариваемость.

Физическая свариваемость металлов – свойство материалов давать монолитное соединение, т.е. способность их к взаимной кристаллизации с образованием твердых растворов, химических соединений и мелкодисперсных смесей фазовых составляющих (эвтектик). Эти процессы происходят на границе основного и наплавленного металла и характеризуют свариваемость с точки зрения возможности образования металлической связи и принципиальной возможности получения неразъемных сварных соединений.

Технологическая свариваемость металлов – технологическая характеристика металла, определяющая его реакцию на воздействие сварки и способность образовывать неразъемное сварное соединение с заданными эксплуатационными свойствами с наименьшими затратами. То есть она отражает технологическую реакцию материала на тепловое, силовое и металлургическое воздействие сварки.

Свариваемость металла зависит от его химических и физических свойств, типа кристаллической решетки, степени легирования, наличия примесей и ряда других факторов.

Свариваемость сталей оценивается по следующим показателям:

  • склонность металла шва к образованию горячих и холодных трещин;
  • склонность к изменению структуры в околошовной зоне и к образованию закалочных структур;
  • физико-механические качества сварного соединения (прочность, пластичность, ударная вязкость и т.п.);
  • соответствие специальных свойств сварного соединения

    требованиям технических условий на конструкцию (коррозийная стойкость, жаростойкость, жаропрочность, сопротивление хрупкому разрушению при низких температурах и т.п.).

Говоря проще, разница между материалами, обладающими хорошей и плохой свариваемостью, заключается в том, что для соединения последних необходима более сложная технология сварки.

Наибольшее влияние на свариваемость сталей оказывает углерод. Свариваемость ухудшается при увеличении содержания углерода, а также ряда других элементов. Для изготовления сварных конструкций в основном применяют конструкционные низкоуглеродистые, низколегированные и легированные стали. Главными трудностями при сварке легированных сталей является их склонность к образованию закалочных структур, горячих и холодных трещин, а также ухудшение механических свойств – в первую очередь снижение пластичности в зоне сварного соединения. Чем выше содержание углерода в стали, тем сильнее проявляются эти недостатки, и тем труднее обеспечить необходимые свойства соединения.

Ориентировочными количественными показателями свариваемости сталей является эквивалентное содержание углерода, определяемое по формуле:

где содержание углерода и легирующих элементов выражается в процентах.

В зависимости от эквивалентного содержания углерода конструкционные стали делят на 4 группы, которые характеризуются удовлетворительной, ограниченной или плохой свариваемостью.

Группа 1: хорошая свариваемость, Сэкв ≤ 0,25%, свариваемость без применения особых приемов (ст.2; ст3; 10Г2; 09Г2; 10Г2С).

Группа 2: удовлетворительная свариваемость, Сэкв -0,25 – 0,35 – требуется строгое соблюдение режимов сварки, применение специальных присадочных материалов, в отдельных случаях – предварительный и сопутствующий подогрев до 100 – 1500 С, термообработка (стали 15ГС, 15 ХМ, 10ХСНД, 14ХГС, 15ХСНД, 15ХГСА, 18Г29).

Группа 3: ограниченная свариваемость, Сэкв – 0,35 – 0,45, требуется подогрев до 100 – 2000 С и отпуск после сварки. Перед сваркой детали подвергают термообработке (стали 12Н1МФ, 20ХМФЛ, 15Х1М1ФЛ, 30ХГС, 35Г2, 30ХМ, 10ГН2МФА, 15Х2НМФА).

Группа 4: плохая свариваемость, Сэкв > 0,45. Высокая склонность к появлению холодных трещин в шве и околошовной зоне. При сварке обязательны предварительный подогрев до 250 – 4000С и последующая термообработка (стали 45Х, 45Г, 40Г2, 40ХС, 40ХМФА, 35ХГСА, 30ХИ3А, 40ХН2МА, 36Х2Р2МФА).

До сих пор не существует общепринятой методики определения свариваемости металлов. В большинстве случаев методики основаны на сварке специальных образцов, в которых созданы жесткие условия для шва. Однако имеются и расчетные методы, которые связывают максимальную твердость и тип структуры околошовной зоны данной стали с необходимостью подогрева детали перед сваркой, конструкцией соединения и толщиной металла. Расчетные методы дают возможность теоретически рассчитать режимы сварки, обеспечивающие получение заданной твердости и структуры.

Источник