Какое свойство пространства характеризует длина что является эталоном метра
Михаил Лебедев
2 июля 2017 · 2,4 K
Сусанна Казарян, США, Физик
Откуда взялся килограмм? 1 кг = 1000 г, a 1 г это масса 1 см³ чистейшей воды при 4 °C. Потом он многократно переопределялся Международным Бюро Мер и Весов (МБМВ) и сегодня 1 кг является международным эталоном единицы измерения массы в СИ. Эта длинная история подробно написана здесь.
А почему метр именно такой длины? 1 метр — это была длина маятника с полупериодом колебаний на широте 45°, равным 1 сек. Метр также многократно переопределялся и на сегодня он привязан к скорости света и является международным эталоном единицы измерения длины в СИ. Подробнее здесь.
А миля? Традиционная единица измерения пути (тысяча двойных шагов римских солдат в полном облачении на марше), разная в разных странах. Американская и Британская 1 миля = 1609,34 м.
Существуют ли идеальные эталоны этих мер и где хранятся? Ничего нет идеального. Для того и существует Международное Бюро Мер и Весов, чтобы регулярно уточнять и переопределять при необходимости международные единицы измерения (СИ) и продолжать их хранить. Штаб-квартира, расположена в городе Север с 1875 г (предместье Парижа, Франция). Подробнее об МБМВ здесь.
Как было установлено сколько точно равен один миллиметр, сантиметр, дециметр и так далее? Как люди пришли к тому,что длина всегда одинакова?
При переходе на стандартную метрическую систему в 1795 г. во Франции была принята единица в которой измеряется расстояние – метр. За эталон метра принята 1/40.000.000 длины меридиана проходящего через Париж. В 1889 г. был изготовлен эталон метра из платино-иридиевого сплава в виде отрезка балки. Сплав, из которого он изготовлен, почти не подвержен тепловому расширению. Позднее, метрическую меру исчисления приняли почти все страны.
В связи с возросшими потребностями науки в точности измерений, возникла необходимость в новом эталоне метра, не зависящем от понятий относительности времени и размеров тел при больших скоростях. В качестве такого эталона в 1983 г. было принято расстояние проходимое светом в вакууме за 1/299 792 458 секунды. Скорость света в вакууме составляет 299 792 458 м/с, она не зависит от выбора инерциальных систем отсчёта и остаётся всегда постоянной.
Дольные величины метра: дециметр дм (1/10 м), сантиметр см (1/100 м), миллиметр мм (1/1000 м), микрометр мкм (1/1.000.000 м), нанометр нм (1/1.000.000.000 м), пикометр пм (1/1.000.000.000.000 м) и т. д. получают деля эталонный метр на отрезки равной длины.
Действительно ли идея первичности энергии, а не массы была у Эйнштейна? И действительно ли она была его отличием от других физиков?
“Главной причиной, почему приписывание массы любому виду энергии считается чисто терминологически неудачным и поэтому практически вышло из употребления в стандартной научной терминологии, является следующая из этого полная синонимичность понятий массы и энергии. Кроме того, неаккуратное использование такого подхода может запутывать[9] и в конечном итоге оказывается неоправданным. Таким образом, в настоящее время термин «релятивистская масса» в профессиональной литературе практически не встречается, а когда говорится о массе, имеется в виду инвариантная масса. В то же время термин «релятивистская масса» используется для качественных рассуждений в прикладных вопросах, а также в образовательном процессе и в научно-популярной литературе. Этот термин подчёркивает увеличение инертных свойств движущегося тела вместе с его энергией, что само по себе вполне содержательно[10].” https://ru.wikipedia.org/wiki/Эквивалентность_массы_и_энергии
Это вот совершенно не представляет трудности найти и прочитать. Уже возникла некая псевдокультура – именем Эйнштейна забивать гвозди в стенку напротив портрета ученого. Скорей всего, чтобы повесить там собственное миропонимание.
Нет. Все гораздо проще. Преобразования относительности Галилея исследовались и “развивались” многими математиками. Я бы сказал – “почем зря”. Хотя, на самом деле, с целью исследования возможности математических абстракций. … Наверное. Предпоследним был Лоренц. А когда потребовалось обосновать физичность уже существующей эфирной связи, Эйнштейн добавил к тем преобразованиям формулу Пуанкаре. Как сейчас принято указывать. Хотя, Пуанкаре дал эту формулу не совсем в таком виде.
Вот именно ФОРМА (а не формула), позволила использовать “эквивалентность массы и энергии” для расширения возможностей аппарата преобразований относительности, предложенного Лоренцем. И тогда стало возможно ВСЕ! Например, добавить в ту панацею малость энергии, а извлечь чуток времени. Или массы. Или расстояния. В зависимости от ситуации.
Это был вынужденный математический прием. Сейчас такой нужды нет. Как никогда не было физического эквивалента для пересчета массы в энергию. И наоборот – тоже. Единство материи и движения нужно уметь понять как оно есть.
ЕДИНСТВО, а не эквивалентность.
Прочитать ещё 1 ответ
Как вы думаете, если бы жители СССР в 80-х увидели своё будущее, которое их ждёт через 30 лет, то большинство стало бы Союз быстрее доламывать или, наоборот, начало бы его чинить?
Разум, однажды расширивший свои границы, никогда не вернется в прежние.
Если речь о 30 годах, стало быть увидели бы из 1989 года.Чтобы они увидели?
1) полные магазины.Никаких тебе пустых полок,талонов и гигантских очередей.
2) президента,который у власти чуть дольше чем Брежнев.Но при этом выглядит вполне бодро в отличии от Леонида Ильича.
3) больше свободы. Можно ездить за границу, власти не доверяют и все чаще об этом говорят, куча аналогов программы “600 секунд”, правда уже не на ТВ.
4) техника.Наличие Интернета (первый в мире сайт,самый примитивный,появился только в 1991 году), улицы,стоящие в пробках с иномарками, возможность приобрести технику,которой тогда в принципе не было.
Все это склонило бы советских людей быстрее покончить со старой системой. Правда если потом показать их будущее через 4-5 лет….
Прочитать ещё 26 ответов
Рост Наполеона был почти метр семьдесят. Так откуда же взялся комплекс с его именем и миф, что император – низкий?
Специалист широкого, но не очень глубокого профиля.
А ещё люблю читать книжки…
Поскольку попытки остроумно посоветовать использовать функцию поиска не одобряются местными жителями, просто скопирую собственный ответ на аналогичный вопрос
Изначально, видимо, из-за прозвища “маленький капрал”, которое генерал Бонапарт получил не столько за рост, сколько за возраст (из за худобы и непропорционально большой головы он выглядел даже моложе своих двадцати шести лет). Посильный вклад внесли английские пропагандисты – рост Наполеона в пять футов и два дюйма переведённый в метрическую систему с использованием британской системы мер действительно даёт всего 159 см (но в французских футах и дюймах – на 11 сантиметров больше). Понятно, что удачливого противника всегда приятнее изображать карликом. Ну и не в последнюю очередь тут постарался сам император, подбирая двухметровых адъютантов, на фоне которых он действительно выглядел коротышкой.
Прочитать ещё 1 ответ
Если Big Bang произошёл 13.8 млрд лет назад, означает ли это, что размер Вселенной на данный момент не может превышать сферу радиусом 13.8 млрд световых лет?
Объясните чайнику: если до Большого взрыва Вселенная была бесконечно мала, то как называлось то пространство, которое ее окружало?
72 · 70 ответов · Наука
Если за год на Землю выпадает 40 000 тонн космической пыли, то через сколько лет гирька на которой написано “10 кг” будет весить 11 кг?
Как возможно, что наблюдаемая Вселенная представляет собой шар диаметром около 93 миллиардов световых лет, но при этом возраст вселенной всего 13,8 миллиарда лет?
В Древнем Риме не знали, что такое ноль, а Майя не знали, что такое колесо, а что из элементарных базовых вещей не знает наша цивилизация?
Источник
Идея разобраться в этом вопросе и в итоге написать данный текст родилась здесь же на сайте — под одной из публикаций увидел утверждение, что продаваемые в магазинах линейки калибруют по вторичным эталонам, те — по первичным, а первичные — по международным. Это лишь в малой части соответствует действительности, так что, если заинтересовались, давайте разбираться.
Disclaimer: я не метролог, так что текст является не очень нудной (я надеюсь) попыткой научно-популярного рассказа, так что в нём возможны некоторые неточности, о которых можно сообщать как в личку, так и в комментариях — как вам угодно.
Многие, наверное, помнят со школьной скамьи, что эталон метра хранится в Парижской палате мер и весов в стеклянной банке под вакуумом
там же, где и эталон лошадиной силы — лошадь весом один килограмм
. Обратимся к энциклопедии и почитаем подробности.
Одной из первых попыток создать универсальную, т.е. воспроизводящуюся, меру длины, стала в 1668 году длина (математического) маятника, полупериод колебаний которого равен одной секунде. Идея хорошая, но во время путешествия в Южную Америку астроному Жану Рише пришлось укорачивать длину эталона, т.к. период его колебаний увеличился. Связано это было со сплющеностью геоида и, соответственно, уменьшением силы тяжести на экваторе. 1790 году было предложено уточнение, что эталон длины должен быть измерен на широте 45°N (примерно между Бордо и Греноблем), эта длина составляет 0.994 современного метра. Предложение, несмотря на изящность, тем не менее, не было принято. В 1791 году метр был определён Французской Академией как одна сорокамиллионная часть Парижского меридиана (то есть одна десятимиллионная часть расстояния от северного полюса до экватора по поверхности земного эллипсоида на долготе Парижа). Простота калибровки вызывает некоторые сомнения, но аналогичная привязка есть и у морской мили (перемещение на одну морскую милю вдоль меридиана соответствует изменению географических координат на одну минуту широты). Можно подумать, что влияние неровности рельефа будет катастрофически влиять на точность эталона, но это не так — изменение высоты на 1000 метров приведёт к удлинению меридиана всего на 6283 метра, что даёт относительную ошибку в полторы десятитысячных (известная задачка про удлинение экватора на метр и муху). В реальности измерения проводились гораздо точнее, преимущественно на высоте уровня моря. Заинтересовавшиеся найдут тут много интересного. Я ограничусь впечатляющей картинкой:
С тех пор для стран, принявших метрическую систему, стали делать эталонные швеллеры из различных сплавов, вносить поправки в регламент, например, проводить измерения при определённой температуре для устранения эффекта теплового расширения (точка плавления льда), а также ввели определение килограмма как массы воды объёмом в один кубический дециметр. Постепенно точность воспроизводства эталона повышалась, достигнув в итоге 0.1 микрона вместо изначальных 50 микрон. Эталоны хранились в стерильных условиях в метрологических лабораториях по всему миру, пока в 1960 году не было решено отказаться от использования не так уж точно воспроизводимого предмета, подверженного старению, в пользу физического явления, которое можно точно воспроизвести в лаборатории с нужной точностью и через многие годы. С тех пор метр определялся как 1 650 763.73 длин волн оранжевой линии (6 056 Å) спектра, излучаемого изотопом криптона 86Kr в вакууме (переход между уровнями 2p10 и 5d5). Точность эталона составила 4 нанометра. Эталонные бруски по-прежнему хранятся в тех же условиях, но уже не как эталоны, а как заслуженные пенсионеры, возможно ещё могущие принести пользу. В 1983 году пошли ещё дальше и определили метр как расстояние, проходимое светом в вакууме за 1/299792458 долю секунды. К слову, секунда давно перестала быть долей тропического года, теперь это время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133, находящегося в покое при температуре 0 К. При соблюдении всех условий и введении поправок воспроизводимость современного эталона метра составляет 0.1 нм (относительная погрешность 10-10). Последняя величина — характерный размер атома.
Теперь у нас есть международный первичный эталон метра, и мы можем, наконец, изучить ГОСТ Р 8.763-2011 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины в диапазоне от 1·10-9 до 50 м и длин волн в диапазоне от 0.2 до 50 мкм (дата введения 01.01.2013). ГОСТ удалось понять только со второго прочтения, т.к. структурно он написан совершенно, на мой взгляд, неправильно, хоть и профессионально. В результате изучения мы постараемся понять, как же калибруют и поверяют линейки. По этому ГОСТу нашим государственным первичным эталоном является установка на основе стабилизированного лазера He-Ne/I (лазер, стабилизированный по линии насыщенного поглощения в молекулярном йоде — 127) и средства сличения — компараторы и интерферометры. Его институт-хранитель — ФГУП «ВНИИМ им. Д.И. Менделеева» (вместе с ФГУП «ВНИИФТРИ» они хранят практически все первичные эталоны величин).
Теперь разберёмся с иерархией эталонов. Ниже по вертикали находятся вторичные эталоны, за ними следуют рабочие эталоны последовательно с первого по четвёртый разряд, ниже — рабочие средства измерений с классами точности от 0 до 5 (точные измерительные приборы, которые проходят иерархическую калибровку, прослеживаемую вплоть до международного эталона). Последние используются непосредственно для измерений и (по крайней мере должны) для изготовления приспособлений, наносящих риски (чёрточки) на массово изготавливаемую продукцию — те самые линейки, рулетки и прочие бытовые средства измерения. Итого я насчитал по вертикали 13 ступеней, которые проходятся перед изготовлением конечной продукции. На самом деле их будет чуть меньше, т.к. рабочие средства измерений отщепляются от иерархии на разной высоте в зависимости от класса точности.
У системы эталонов есть также и горизонтальное разделение на четыре независимых ответвления по типу проводимых измерений. Эти ветвления называются частями (с первой по четвёртую) и предназначены для следующего:
Часть 1. Источники излучений и средства измерений длин волн;
Часть 2. Меры длины штриховые и измерители перемещений;
Часть 3. Меры длины концевые плоскопараллельные;
Часть 4. Измерители перемещений, меры рельефные и микроскопы в области нанодиапазона;
Итак, пройдёмся по интересующей нас части 2. Первичный эталон сличают с помощью компаратора со вторичными — интерференционными установками для поверки штриховых мер длины в диапазоне от 0,001 до 1000 мм. С ними сличают рабочие эталоны 1-го разряда — штриховые меры длины, дифракционные голографические меры длины; далее поочерёдно с помощью компараторов сличают. Рабочие эталоны 2-го разряда — штриховые меры длины, голографические измерительные системы линейных перемещений. Рабочие эталоны 3-го разряда — штриховые меры длины, растровые измерительные преобразователи. Рабочие эталоны 4-го разряда — штриховые меры длины.
Рабочие средства измерений нулевого и первого класса точности сличают с рабочим эталоном первого разряда, второго и третьего — с рабочим эталоном второго разряда, четвёртого и пятого класса — с рабочим эталоном третьего разряда. Рабочие эталоны 4-го разряда используются для измерений с помощью непосредственного сличения. Рабочие средства измерения пятого класса точности, по идее, должны использоваться при производстве штампов для изготовления линеек и рулеток или, по крайней мере, для поверки станков, использующихся на производстве.
Иллюстрация из ГОСТа (мелко, но кликабельно):
Про принцип работы оптических интерференционных компараторов писать не буду, так как это описано много где, кроме того, для широкой аудитории будет, пожалуй, скучновато. Желающие могут ознакомиться тут.
В завершение статьи подсуну пару своих картинок. В своё время было необходимо проверить стабильность нескольких генераторов, для чего была собрана простейшая схема компаратора — сигналы от двух генераторов очень известной фирмы подаются на два вентиля (аналог диода), за ними стоят два аттенюатора, далее Т-образный мост, в котором происходит смешение сигналов, на выходе моста — детектор. Генераторы выставляются на близко расположенные частоты, с помощью аттенюаторов добиваемся равенства амплитуд колебаний двух сигналов, после чего получаем с детектора разностный сигнал, частота которого и будет индикатором стабильности двух генераторов. Два очень хороших генератора в тесте длительностью в трое суток:
Видно, что генераторы сличены с точностью порядка 3·10-9. Тест проводился в праздники, чтобы минимизировать тепловые скачки. Можно отметить, однако, несколько резких всплесков с последующей эспоненциальной релаксацией. Вахтёр была немало удивлена, когда я сообщил ей в какое время и сколько раз она заходила в запертую лабораторию залить в чайник воды. Ай-ай-ай! На картинка ниже красная линия — повтор предыдущего графика, а синяя получена смешиванием генератора из первой пары с менее прецизионным, но
тёплым ламповым
отечественным генератором:
Долговременная стабильность у отечественного примерно такая же, а вот кратковременная — гораздо хуже. Цена, правда, у них тоже отличается не слабо.
На этом, пожалуй всё, спасибо за внимание и хороших выходных! Надеюсь, что было познавательно и не очень нудно.
ГОСТ Р 8.763-2011
Источник
Идея разобраться в этом вопросе и в итоге написать данный текст родилась здесь же на сайте — под одной из публикаций увидел утверждение, что продаваемые в магазинах линейки калибруют по вторичным эталонам, те — по первичным, а первичные — по международным. Это лишь в малой части соответствует действительности, так что, если заинтересовались, давайте разбираться.
Disclaimer: я не метролог, так что текст является не очень нудной (я надеюсь) попыткой научно-популярного рассказа, так что в нём возможны некоторые неточности, о которых можно сообщать как в личку, так и в комментариях — как вам угодно.
Многие, наверное, помнят со школьной скамьи, что эталон метра хранится в Парижской палате мер и весов в стеклянной банке под вакуумом там же, где и эталон лошадиной силы — лошадь весом один килограмм. Обратимся к энциклопедии и почитаем подробности.
Одной из первых попыток создать универсальную, т.е. воспроизводящуюся, меру длины, стала в 1668 году длина (математического) маятника, полупериод колебаний которого равен одной секунде. Идея хорошая, но во время путешествия в Южную Америку астроному Жану Рише пришлось укорачивать длину эталона, т.к. период его колебаний увеличился. Связано это было со сплющеностью геоида и, соответственно, уменьшением силы тяжести на экваторе. 1790 году было предложено уточнение, что эталон длины должен быть измерен на широте 45°N (примерно между Бордо и Греноблем), эта длина составляет 0.994 современного метра. Предложение, несмотря на изящность, тем не менее, не было принято. В 1791 году метр был определён Французской Академией как одна сорокамиллионная часть Парижского меридиана (то есть одна десятимиллионная часть расстояния от северного полюса до экватора по поверхности земного эллипсоида на долготе Парижа). Простота калибровки вызывает некоторые сомнения, но аналогичная привязка есть и у морской мили (перемещение на одну морскую милю вдоль меридиана соответствует изменению географических координат на одну минуту широты). Можно подумать, что влияние неровности рельефа будет катастрофически влиять на точность эталона, но это не так — изменение высоты на 1000 метров приведёт к удлинению меридиана всего на 6283 метра, что даёт относительную ошибку в полторы десятитысячных (известная задачка про удлинение экватора на метр и муху). В реальности измерения проводились гораздо точнее, преимущественно на высоте уровня моря. Заинтересовавшиеся найдут тут много интересного. Я ограничусь впечатляющей картинкой:
С тех пор для стран, принявших метрическую систему, стали делать эталонные швеллеры из различных сплавов, вносить поправки в регламент, например, проводить измерения при определённой температуре для устранения эффекта теплового расширения (точка плавления льда), а также ввели определение килограмма как массы воды объёмом в один кубический дециметр. Постепенно точность воспроизводства эталона повышалась, достигнув в итоге 0.1 микрона вместо изначальных 50 микрон. Эталоны хранились в стерильных условиях в метрологических лабораториях по всему миру, пока в 1960 году не было решено отказаться от использования не так уж точно воспроизводимого предмета, подверженного старению, в пользу физического явления, которое можно точно воспроизвести в лаборатории с нужной точностью и через многие годы. С тех пор метр определялся как 1 650 763.73 длин волн оранжевой линии (6 056 Å) спектра, излучаемого изотопом криптона 86Kr в вакууме (переход между уровнями 2p10 и 5d5). Точность эталона составила 4 нанометра. Эталонные бруски по-прежнему хранятся в тех же условиях, но уже не как эталоны, а как заслуженные пенсионеры, возможно ещё могущие принести пользу. В 1983 году пошли ещё дальше и определили метр как расстояние, проходимое светом в вакууме за 1/299792458 долю секунды. К слову, секунда давно перестала быть долей тропического года, теперь это время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133, находящегося в покое при температуре 0 К. При соблюдении всех условий и введении поправок воспроизводимость современного эталона метра составляет 0.1 нм (относительная погрешность 10-10). Последняя величина — характерный размер атома.
Теперь у нас есть международный первичный эталон метра, и мы можем, наконец, изучить ГОСТ Р 8.763-2011 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений длины в диапазоне от 1·10-9 до 50 м и длин волн в диапазоне от 0.2 до 50 мкм (дата введения 01.01.2013). ГОСТ удалось понять только со второго прочтения, т.к. структурно он написан совершенно, на мой взгляд, неправильно, хоть и профессионально. В результате изучения мы постараемся понять, как же калибруют и поверяют линейки. По этому ГОСТу нашим государственным первичным эталоном является установка на основе стабилизированного лазера He-Ne/I (лазер, стабилизированный по линии насыщенного поглощения в молекулярном йоде — 127) и средства сличения — компараторы и интерферометры. Его институт-хранитель — ФГУП «ВНИИМ им. Д.И. Менделеева» (вместе с ФГУП «ВНИИФТРИ» они хранят практически все первичные эталоны величин).
Теперь разберёмся с иерархией эталонов. Ниже по вертикали находятся вторичные эталоны, за ними следуют рабочие эталоны последовательно с первого по четвёртый разряд, ниже — рабочие средства измерений с классами точности от 0 до 5 (точные измерительные приборы, которые проходят иерархическую калибровку, прослеживаемую вплоть до международного эталона). Последние используются непосредственно для измерений и (по крайней мере должны) для изготовления приспособлений, наносящих риски (чёрточки) на массово изготавливаемую продукцию — те самые линейки, рулетки и прочие бытовые средства измерения. Итого я насчитал по вертикали 13 ступеней, которые проходятся перед изготовлением конечной продукции. На самом деле их будет чуть меньше, т.к. рабочие средства измерений отщепляются от иерархии на разной высоте в зависимости от класса точности.
У системы эталонов есть также и горизонтальное разделение на четыре независимых ответвления по типу проводимых измерений. Эти ветвления называются частями (с первой по четвёртую) и предназначены для следующего:
Часть 1. Источники излучений и средства измерений длин волн;
Часть 2. Меры длины штриховые и измерители перемещений;
Часть 3. Меры длины концевые плоскопараллельные;
Часть 4. Измерители перемещений, меры рельефные и микроскопы в области нанодиапазона;
Итак, пройдёмся по интересующей нас части 2. Первичный эталон сличают с помощью компаратора со вторичными — интерференционными установками для поверки штриховых мер длины в диапазоне от 0,001 до 1000 мм. С ними сличают рабочие эталоны 1-го разряда — штриховые меры длины, дифракционные голографические меры длины; далее поочерёдно с помощью компараторов сличают. Рабочие эталоны 2-го разряда — штриховые меры длины, голографические измерительные системы линейных перемещений. Рабочие эталоны 3-го разряда — штриховые меры длины, растровые измерительные преобразователи. Рабочие эталоны 4-го разряда — штриховые меры длины.
Рабочие средства измерений нулевого и первого класса точности сличают с рабочим эталоном первого разряда, второго и третьего — с рабочим эталоном второго разряда, четвёртого и пятого класса — с рабочим эталоном третьего разряда. Рабочие эталоны 4-го разряда используются для измерений с помощью непосредственного сличения. Рабочие средства измерения пятого класса точности, по идее, должны использоваться при производстве штампов для изготовления линеек и рулеток или, по крайней мере, для поверки станков, использующихся на производстве.
Иллюстрация из ГОСТа (мелко, но кликабельно):
Про принцип работы оптических интерференционных компараторов писать не буду, так как это описано много где, кроме того, для широкой аудитории будет, пожалуй, скучновато. Желающие могут ознакомиться тут.
В завершение статьи подсуну пару своих картинок. В своё время было необходимо проверить стабильность нескольких генераторов, для чего была собрана простейшая схема компаратора — сигналы от двух генераторов очень известной фирмы подаются на два вентиля (аналог диода), за ними стоят два аттенюатора, далее Т-образный мост, в котором происходит смешение сигналов, на выходе моста — детектор. Генераторы выставляются на близко расположенные частоты, с помощью аттенюаторов добиваемся равенства амплитуд колебаний двух сигналов, после чего получаем с детектора разностный сигнал, частота которого и будет индикатором стабильности двух генераторов. Два очень хороших генератора в тесте длительностью в трое суток:
Видно, что генераторы сличены с точностью порядка 3·10-9. Тест проводился в праздники, чтобы минимизировать тепловые скачки. Можно отметить, однако, несколько резких всплесков с последующей эспоненциальной релаксацией. Вахтёр была немало удивлена, когда я сообщил ей в какое время и сколько раз она заходила в запертую лабораторию залить в чайник воды. Ай-ай-ай! На картинка ниже красная линия — повтор предыдущего графика, а синяя получена смешиванием генератора из первой пары с менее прецизионным, но тёплым ламповым отечественным генератором:
Долговременная стабильность у отечественного примерно такая же, а вот кратковременная — гораздо хуже. Цена, правда, у них тоже отличается не слабо.
На этом, пожалуй всё, спасибо за внимание и хороших выходных! Надеюсь, что было познавательно и не очень нудно.
ГОСТ Р 8.763-2011
Оригинал статьи на Хабре (2016 год)
К лучшим публикациям Хабра за сутки
Источник