Какое свойство сложения применили

Какое свойство сложения применили thumbnail

Сложение натуральных чисел.

Прибавить одно число к другому довольно просто. Рассмотрим пример, 4+3=7. Это выражение означает, что к четырем единицам добавили три единицы и в итоге получили семь единиц.
Сложение натуральных чиселЧисла 3 и 4, которые мы сложили называется слагаемыми. А результат сложение число 7 называется суммой.

Сумма — это сложение чисел. Знак  плюс “+”.
Слагаемое слагаемое суммаВ буквенном виде этот пример будет выглядеть так:

a+b=c

Компоненты сложения:
a — слагаемое, b — слагаемые, c – сумма.
Если мы к 3 единицам добавим 4 единицы, то в результате сложения получим тот же результат он будет равен 7.
Какое свойство сложения применили
Из этого примера делаем вывод, что как бы мы не меняли местами слагаемые ответ остается неизменным:

4+3=3+4

Называется такое свойство слагаемых переместительным законом сложения.

Переместительный закон сложения.

От перемены мест слагаемых сумма не меняется.

В буквенной записи переместительный закон выглядит так:

a+b=b+a

Если мы рассмотрим три слагаемых, например, возьмем числа 1, 2 и 4. И выполним сложение в таком порядке, сначала прибавим 1+2, а потом выполним сложение к получившейся сумме 4, то получим выражение:

(1+2)+4=7

Можем сделать наоборот, сначала сложить 2+4, а потом к полученной сумме прибавить 1. У нас пример будет выглядеть так:

1+(2+4)=7

Ответ остался прежним. У обоих видов сложения одного и того же примера ответ одинаковый. Делаем вывод:

(1+2)+4=1+(2+4)

Это свойство сложения называется сочетательным законом сложения.

Переместительный и сочетательный закон сложения работает для всех неотрицательных чисел.

Сочетательный закон сложения.

Чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего числа.

(a+b)+c=a+(b+c)

Сочетательный закон работает для любого количества слагаемых.  Этот закон мы используем, когда нам нужно сложить числа в удобном нам порядке. Например, сложим три числа 12, 6, 8 и 4. Удобнее будет сначала сложить 12 и 8, а потом прибавить к полученной сумме сумму двух чисел 6 и 4.
(12+8)+(6+4)=30

Свойство сложения с нулем.

При сложении числа с нулем, в результате сумма будет тем же самым числом.

3+0=3
0+3=3
3+0=0+3

В буквенном выражение сложение с нулем будет выглядеть так:

a+0=a
0+a=a

Вопросы по теме сложение натуральных чисел:
Таблица сложения, составьте и посмотрите как работает свойство переместительного закона?
Таблица сложения от 1 до 10 может выглядеть так:

Таблица сложения натуральных чисел от 1 до 10Второй вариант таблицы сложения.

Таблица сложенияЕсли посмотрим на таблицы сложения, видно как работает переместительный закон.

В выражении a+b=c суммой, что будет являться?
Ответ: сумма — это результат сложения слагаемых. a+b и с.

В выражении a+b=c слагаемыми, что будет являться?
Ответ: a и b. Слагаемые – это числа, которые мы складываем.

Что произойдет с числом если к нему прибавить 0?
Ответ: ничего, число не поменяется. При сложении с нулем, число остается прежнем, потому что нуль это отсутствие единиц.

Сколько слагаемых должно быть в примере, чтобы было можно применить сочетательный закон сложения?
Ответ: от трех слагаемых и больше.

Запишите переместительный закон в буквенном выражении?
Ответ: a+b=b+a

Примеры на задачи.
Пример №1:
Запишите ответ у представленных выражений: а) 15+7 б) 7+15
Ответ: а) 22 б) 22

Пример №2:
Примените сочетательный закон к слагаемым: 1+3+5+2+9
1+3+5+2+9=(1+9)+(5+2)+3=10+7+3=10+(7+3)=10+10=20
Ответ: 20.

Пример №3:
Решите выражение:
а) 5921+0  б) 0+5921
Решение:
а) 5921+0 =5921
б) 0+5921=5921

Источник

Свойства сложения – это первый шаг к ускорению счета. Ученик, владеющий всеми приемами быстрого сложения, имеет больше времени для сложных задач и проверки своего решения. Поэтому имеет смысл рассмотреть свойства сложения еще раз, чтобы правильно применять их на практике

Какое свойство сложения применили

Что такое сложение?

Для начала вспомним, что такое вообще сложение? Сложение это одна из первых операций, которые изучают в школе, а иногда даже в детском саду. Как правило, сложение объясняют на примере фруктов.

Если взять 3 груши и 2 яблока, сложить их в корзину, то груши это первое слагаемое, яблоки второе, а общее количество фруктов в корзине – сумма. Это определение нельзя назвать неправильным, но ученики растут, как растут и используемые числа. Сложно представить себе сложение сотен тысяч фруктов.

Поэтому в математике используют другое определение, которое гласит, что сложение это перемещение точки на числовой прямой в право.

Многие знания усложняются со временем. Так, если в начальной школе ученикам говорят, что отрицательный результат сложения это ошибка, то в 5 классе все уже знают, что такой ответ возможен. Так и с определением свойств сложения. Обычных фруктов просто не хватит для того, чтобы представить себе большие числа. Поэтому в старших классах уходят к теоретическим определениям.

Свойства сложения

Выделяют переместительное и сочетательное свойство. Переместительное свойство говорит нам о том, что от перемены мест слагаемых сумма не поменяется.

Сочетательное свойство утверждает, что в примерах, где два и более множителя, сложение может производиться в любом порядке. Главное в этом случае правильно сгруппировать слагаемые, чтобы ускорить вычисления, а не затруднить его еще сильнее. Самый простой вариант это смотреть на количество единиц в числе. В первую очередь нужно складывать те числа, сумма единиц в которых равняется 10, например 29 и 31 в сумме дадут 60.

Читайте также:  Какие свойства характера помогают в достижении цели

После этого складывают целые десятки и только потом все остальное. Это наиболее простой и быстрый путь решение примеров на сложение.

На самом деле даже не каждый профессор сможет отличить применение сочетательного свойства от переместительного. Они крайне похожи, некоторые математики считают даже, что сочетательное свойство является продолжением переместительного. По той же причине учителя редко просят отличить применение в задаче одного свойства от другого. Нужно просто уметь пользоваться обоими.

Пример

Примеры сочетательного свойства сложения найти не трудно. Практически в каждом примере используется это свойство.

15*3+5-13-17-2-16-2 – для начала выполним умножение.

45+5-13-17-2-16-2 – теперь сгруппируем члены так, чтобы вычислить результат как можно быстрее. Для этого нужно вспомнить, что разность можно представить, как сумму отрицательных чисел. В нашем случае просто вынесем минус за знак скобок.

45+5-13-17-2-16-2=(45+5)-(13+17)-(2+2+16) – теперь выполним вычисления в скобках и найдем окончательный результат

45+5-13-17-2-16-2=(45+5)-(13+17)-(2+2+16)=50-30-0=0

Вот такой ответ получился у достаточно большого примера. Не стоит пугаться простых ответов вроде 0 или 1. Иногда составители примеров таким образом путают учеников.

Что мы узнали?

Мы поговорили о сложении, выделили сочетательное и переместительное свойства сложения. Поговорили о различиях этих свойств, а также о правильном применении сочетательного свойства сложения. Решили небольшой пример, чтобы показать применение сочетательного свойства на практике.

Тест по теме

Доска почёта

Чтобы попасть сюда – пройдите тест.

    

  • Какое свойство сложения применили

    Татьяна Семенова

    10/10

Оценка статьи

Средняя оценка: 4.6. Всего получено оценок: 258.

Источник

Тема: Свойства сложения.

Цель: познакомить со свойством сложения, основанным на группировке слагаемых.

 – стремятся развивать внимание, память, логическое мышление, навыки сотрудничества со сверстниками и со взрослыми;

– проявляют самостоятельность.

– иметь представление о понятиях “переместительное свойство”, “сочетательное свойство”;

– уметь решать задачи изученных видов.

– прогнозируют результат деятельности, контролируют и оценивают, собственную деятельность и деятельность партнеров образовательному процессу, при необходимости вносят корректировки.

– аргументируют свою точку зрения, при возникновении спорных ситуаций не создают конфликтов.

Методы и формы обучения : частично- поисковый; индивидуальная, фронтальная, групповая.

Образовательные ресурсы: Книгопечатная продукция : М.И. Моро  Математика. 2 класс. Часть 1.

Технические средства обучения:   Компьютер.  Медиапроектор.

Этапы урока

Деятельность учителя

Деятельность учащихся

Формирование УУД

1. Мотивация  к учебной деятельности.

Цель:  создание условий для возникновения у учеников внутренней потребности включения в учебную деятельность

Эмоциональный настрой на урок.

Дети, вам повезло? (Да!)

В классе светло? (Да!)

Прозвенел уже звонок? (Да!)

Уже закончился урок? (Нет!)

Только начался урок? (Да!)

Хотите учиться? (Да!)

Значит можно всем садиться!

Настраиваемся на урок.

– Будем учиться оценивать свою деятельность. Прочитайте.

– внимательно;

– правильно;

– дружно;

– быстро.

Правильно формулировать собственное мнение.

 (Р/УУД).

2. Актуализация знаний.

Цель:  обеспечение готовности учащихся к включению в продуктивную обучающую деятельность, повторение изученного материала, необходимого для «открытия нового знания».

На карточках задание.

–  Посмотрите.

– Будете работать в парах.

– 1 вариант решает первое выражение,

– 2 вариант – второе выражение, и т.д.

Задание: Решите  числовые выражения,  впишите буквы и расшифруйте слово:

6 + 9 =  15        в

11 – 3 = 8         й

8 + 4 = 12         с

16 – 6 = 10       о

9 + 2 = 11         т

13 – 8 = 5         с

4 + 8 = 12         о

14 – 7 = 7         в

На экране:

– Поднимите руки, кто закончил.

– Прочитайте слово, которое получилось.

– Как вы понимаете  слово «свойство»?

– Найдите два похожих выражения.

– Чем они похожи?

– Чем отличаются?

– Какое свойство  вспомнили?

– Это свойство поможет нам решать более сложные числовые выражения.

– А сейчас, те дети, у которых получилось слово «свойство» поставьте себе 4 балла (по количеству правильно решённых выражений).

Если вы допустили 1-2 ошибки – 2 балла.

– Оценим работу. Мы работали:  

– Дети решают числовые выражения, расшифровывают слово.

– Поясняют.

– от перестановки слагаемых сумма не изменится

– Внимательно, дружно, быстро, правильно.

Выделение и осознание того, что уже пройдено (Р/УУД).

Смыслообразование (Л/УУД).

Слушать и понимать речь других (К /УУД)

3. Самоопределение к деятельности.

Цель: обсуждение цели урока.

Практическая работа.

– Возьмите конверты.

– Выложите 4 круга, затем 3 треугольника и 7 квадратов.

– Сколько всего фигур выложили?

– Как их удобнее сосчитать?

4 + 3 + 7     записываю на доске

Вывод:  оказывается, эту сумму можно посчитать разными способами.

– Чему мы будем учиться?

– Складывать числа в любом порядке.

4. Постановка целей.

Цель:  проговаривание детьми цели и темы урока.

Стр. 44.

– Прочитайте цель урока.

– Формулируют цель урока.

Определять и формулировать цель деятельности на уроке (Р/УУД).

5.  Работа по теме урока.

Цель:  обеспечение восприятия, осмысления и первичного запоминания детьми изученной темы.

№ 1. Коллективное выполнение с комментированием.

– Прочитайте задание.

– Сформулируйте задание.

Читайте также:  Какими свойствами обладали коацерватные капли

– Чем похожи все числовые выражения?

– Чем отличаются?

– Какое свойство применили?

Вывод: результат сложения не изменится, если поменять слагаемые местами.

– Это свойство называют переместительным.   (поменяли местами).    Экран

– Обратимся к геометрическим фигурам.

– Как удобно сосчитать их?

– Как показать, что это действие выполним первым?

– Что скажете о результатах сложения?

– Как складывали?

– Оказывается, это тоже свойство. В математике – это свойство называют сочетательным. Экран

– Прочитайте вывод: результат сложения не изменится, если соседние слагаемые заменить их суммой.

– Выполняют задание, проговаривая свойства сложения.

– Заключим в скобки.

– Одинаковые.

– Соседние слагаемые заменили их суммой.

Проводить анализ учебного материала (П /УУД)

Ориентироваться в учебнике (П /УУД)

Слушать и понимать речь других (К /УУД)

6. Первичное закрепление.

Цель: обеспечение усвоения новых знаний и способов действий на уровне применения в измененной ситуации.

На экране – числовое выражение:

6 + 7 + 8 + 9 + 3 + 4 + 1 + 2 =

– Объясните как вы будете вычислять,  используя оба свойства сложения. ( в любом порядке, как удобнее).

Итог на экране:

(6+4) +(7+3) + (8+2) + (9+1) =

– Почему так объединяли?

– На листочках записано выражение: 14 + 15+ 6 +5 вычислите, используя оба свойства.

– Вычислите, работая в парах.

– Начнут решение 1 вариант.

– Проверим.   Экран.

– Что помогло быстро найти значение выражения?

– Оцените свою работу, поставьте 1 балл, если всё правильно.

– Как работали?

-Устно комментируют.

– Чтобы получить круглое число.

Работают в парах.

(14+6) + (15+5)=40

– Перестановка слагаемых и замена слагаемых суммой.

– Быстро, дружно, правильно, внимательно

Слушать и понимать речь других (К /УУД)

Определять правила работы в паре (Л /УУД)

7. Решение задач.

Цель: совершенствовать умение решать задачи.

– А сейчас  будете  работать над задачей на стр.47 № 6.

– Прочитайте задачу.

– Прочитайте условие. Вопрос.

– О чём задача?

– Кто участвовал в турнире?

– Что известно?

– Что нужно узнать?

– Какая это задача?

– Попробуйте сами записать решение и ответ.

– Проверим. Поставь 2 балла, если решил сам и правильно.

– Как мы работали?

9. Рефлексия.

Цель:  выявление качества и уровня овладения знаниями.

– Ребята, какова тема урока?

– Какую цель вы поставили вначале урока?

– Как вы считаете, достигли ли цели?

 – Почему?

– Где нам это пригодится?

Осознание результатов своей учебной деятельности.

Самооценка  результатов своей работы и работы всего класса.

– Познакомились со свойствами, научились их применять.

– При работе с большими числами.

Устанавливать связь между целью деятельности и ее результатом (Л /УУД)

Совместно с учителем и одноклассниками давать оценку деятельности  на уроке (Р/УУД).

9. Подведение итогов.

Цель:  анализ и оценка успешности достижения цели;

Спасибо за сотрудничество! Урок окончен.

Источник

Свойства и законы сложения чисел в математике

Базовые свойства

Главными элементами сложения являются аргументы (слагаемые). Сумма — результат увеличения значений первого и второго аргументов. На письме эта математическая операция обозначается символом +. Основными свойствами сложения в математике являются:

Базовые свойства сложения чисел

На уроке

  1. Коммутативность: от изменения мест слагаемых сумма не меняется. Это правило также называется переместительным свойством сложения. В буквенном виде коммутативный закон записывается следующим образом: a + b = b + a. Чаще всего он применяется при решении простых уравнений и неравенств.
  2. Ассоциативность: порядок действия не влияет на результат сложения трех и более слагаемых. Называется это правило сочетательным свойством сложения. Ассоциативный закон применяется при группировке или перестановке слагаемых. Буквенная запись сочетательного закона выглядит следующим образом: a + b + c = a + (b + c).
  3. Дистрибутивность: 2 бинарные операции, определенные на одинаковом множестве, всегда находятся в согласованности. В математике это правило именуется распределительным свойством сложения.
  4. Нейтральный элемент: если к первому компоненту сложения прибавить нуль, то сумма будет равна исходному числу. В буквенном виде этот закон записывается так: a + 0 = a. Свойство нейтрального элемента является одним из старейших правил сложения в математике. Оно было сформировано во второй половине VII века в «Исправленном трактате Брахмы».
  5. Обратный элемент: при сложении чисел с одинаковым значением, но разными знаками сумма равна нулю. В буквенном выражении этот математический закон выглядит следующим образом: a + (- a) = 0.

Базовые свойства сложения изучаются в начальной школе со 2 класса. Процесс обучения начинается с простых заданий с двумя компонентами, представленными натуральными числами. По мере обучения увеличивается сложность задач и количество слагаемых. В школе большинство вычислений производится в десятичной системе счисления, поэтому в качестве памятки рекомендуется предоставить ученикам таблицу сложения, где представлены суммы пар чисел от 1 до 10.

Нахождение суммы многозначных чисел

Многозначными называются числа, состоящие из двух и более цифр. Для нахождения их суммы необходимо знание численных разрядов. Цифра, стоящая последней, показывает количество единиц. Далее идут десятки, сотни, тысячи, десятки тысяч, сотни тысяч и миллионы. Многозначные числа складываются столбиком. Сложить можно только одинаковые разряды.

Пример: найти сумму многозначных чисел 125 и 234. Отдельно складываются единицы, десятки и сотни: 5 + 4 = 9, 2 + 3 = 5, 1 + 2 = 3. Суммой является число 359.

Свойства сложения чисел

Для проверки правильности вычислений нужно вычесть из суммы одно из слагаемых. Если разность равна второму слагаемому, то пример решен правильно. Проверку можно осуществить также при помощи калькулятора или иных вычислительных устройств.

Прибавление дробей и смешанных значений

Дробь — часть от целого числа, записываемая в виде x / y. Значение x называется числителем, y — знаменателем. Дробное число представляет собой операцию деления, где делимым является числитель, а делителем — знаменатель. Дробь считается правильной, если числитель не больше знаменателя.

Читайте также:  Какие свойства у вещества химические а какие физические

При складывании дробей с одинаковыми знаменателями необходимо прибавлять только их числители (например, 1/5 + 3/5 = 4/5). Если значения, стоящие под знаком дроби, разные, то необходимо привести выражение к единому знаменателю:

Прибавление дробей и смешанных значений

  1. Найти наименьшее общее кратное для исходных знаменателей дробей.
  2. Определить дополнительные множители для числителей (наименьшее общее кратное поделить на знаменатели).
  3. Найти произведение числителей на дополнительные множители.
  4. Сложить получившиеся дроби с одинаковым знаменателем.

Для упрощения этой процедуры рекомендуется приобрести таблицу умножения. С ее помощью можно легко найти общий знаменатель и дополнительные множители.

Десятичной называется дробь, знаменатель которой равен 10. Она состоит из целой и дробной частей, отделенных запятой. При нахождении суммы десятичные дроби записываются столбиком. Важно, чтобы запятые находились на одном уровне. При неравном количестве разрядов с правой стороны дописываются нули. Если в результате после запятой стоит 0, то он опускается.

Прибавление дробей

Смешанное число — сумма обыкновенной дроби (дробная часть) и целого числа (целая часть).

Для определения суммы чисел в смешанной записи необходимо отделить целую часть от дроби и сложить их по отдельности, применяя базовые свойства сложения. Если в результате вычислений получилась неправильная дробь, то нужно следовать следующему алгоритму действий:

  1. Найти произведение знаменателя и целой части смешанного числа.
  2. Прибавить к получившемуся числу числитель дробной части.
  3. Результат измерений записать в качестве числителя, а число, стоящее под знаком дроби, оставить без изменений.

В математике процесс преобразования неправильной дроби в смешанное число называется выделением целой части. Если числитель полностью делится на знаменатель, то неправильную дробь можно записать в виде целого числа.

Складывание векторов, пределов и матриц

Вектор — отрезок, имеющий длину и направление. Он является одним из основополагающих понятий линейной алгебры. В буквенном виде он записывается двумя заглавными символами латинского алфавита или одной маленькой латинской буквой. Существует два основных способа сложения векторов:

Складывание векторов

  1. Метод треугольников: на плоскости необходимо отметить произвольную точку и отложить от нее первый вектор. От конца первого отрезка откладывается второй. Начало первого вектора и конец второго нужно соединить. Полученный отрезок является их суммой. Этот способ используется только для нахождения суммы коллинеарных векторов, не лежащих на параллельных прямых.
  2. Правило параллелограмма: нужно отметить на плоскости произвольную точку и отложить от нее оба вектора. Фигура достраивается до параллелограмма. Диагональ этого многоугольника является суммой векторов.

Для нахождения суммы трех и более векторов необходимо отметить на плоскости произвольную точку и последовательно отложить от нее исходные векторы. Отрезок, соединяющий начало первого вектора и конец последнего, является суммой. При сложении важно учитывать, что результат сложения противоположно направленных векторов равен 0. Наглядно способы нахождения суммы векторов проиллюстрированы ниже.

Пределом функции является число, к которой стремится значение функции f (x) при стремлении ее аргумента к заданной точке на графике. Является одним из разделов математического анализа. Предел функции вычисляется по следующей формуле: limx →∞ f (x)= C, где C — число, к которому стремится аргумент функции. Для нахождения предела суммы необходимо сложить функции, стремящиеся к идентичным точкам на заданном графике.

Складывание матриц

Матрица — элемент высшей математики, представленный в виде таблицы прямоугольной формы. Она состоит из неограниченного количества строк и столбцов, где записываются целые, действительные, иррациональные и комплексные числа. В квадратных матрицах количество столбцов и строк совпадает. Нулевой называется таблица, где все компоненты равны 0. Матрицы нашли применение в записи алгебраических и дифференциальных уравнений.

Складывать можно только одноразмерные матрицы (число строк и столбцов совпадает). В противном случае может измениться их исходный размер. При нахождении суммы матриц каждые элементы складываются по отдельности. Нельзя сложить компоненты, находящиеся в разных строках или столбцах. В результате получится матрица с исходным размером. При сложении применяются свойства коммутативности и ассоциативности. Для складывания нулевых матриц важно знать правило нейтрального элемента.

Сложение в двоичной системе счисления

В двоичной системе счисления математические операции выполняются на электронно-вычислительных машинах. В ней применяются только две цифры: 0 и 1. Сложение в этой системе счисления выполняется в столбик. Для вычислений требуется следующая таблица:

Сложение в двоичной системе счисления

Условие математической операции
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Числа, записываемые в столбик, выравниваются по разделителю целой и дробной частей. Если количество разрядов не совпадает, то с правой стороны необходимо добавить нули. При складывании нескольких чисел возможен перенос через 2 и более разряда.

Для упрощения математической операции можно перевести числа из двоичной системы счисления в десятичную. Для этого над каждой цифрой исходного числа слева направо ставится степень, начиная от 0. Каждый элемент умножается на цифру 2, возведенную в соответствующую степень. Результаты вычислений суммируются. С помощью этого способа можно также переводить в восьмеричную и шестнадцатеричную системы счисления.

Источник