Какое свойство твердых тел можно получать металлы

Какое свойство твердых тел можно получать металлы thumbnail

Barsk­o
[98.4K]

5 лет назад

Основное свойство, которое можно использовать для получения различных металлов из твердых тел – это плавкость. Под воздействием высоких температур можно расплавить твердое тело (к примеру руду содержащую железо), и в итоге получить металл.

модератор выбрал этот ответ лучшим

дольф­аника
[365K]

5 лет назад

Когда твердое тело переходит в жидкое, то это называется в металлургической промышленности плавкой, плавлением. В процессе плавления из руды получают металл через повышение температуры. А если при плавке к одному металлу добавить другой, то получаемый металл приобретает другие свойства. Так чугун отличается по свойствам от алюминия, а сталь от железа.

Свойства металлов позволяют их широко применять в производстве, а потребитель получает наиболее удобный для использования продукт. Например, консервная банка открывается легко, но в последние годы, видимо, в металл стали добавлять другое сырье, потому что открывашками некоторые банки не открываются. крышки гнутся.

Как известно в природе металлы находятся чаще всего в форме руды – полезного ископаемого в котором содержатся компоненты того или иного металла и минералы. Чистые металлы в природе встречаются редко и относятся к благородным. Из твердого же тела, руды, получить металл можно используя свойство такого тела при повышении температуры переходить из твердого состояния в жидкое, то есть плавление. При этом температура плавления входящих в руду минералов различная, так же как и их удельный вес. Поэтому в расплаве легко добиться отделения центрального компонента-металла от всевозможных примесей и таким образом получить чистый металл.

Колюч­ка 555
[58.3K]

4 года назад

Конечно же это плавкость. Для придания определенной формы металлу, будь то нож или мясорубка, его доводят до температуры плавления и выше. Можно жидкий металл залить в форму и получить изделие или нагреть до такого состояния, когда он становится поддатлив и его можно гнуть.

Вкус Лайма
[42.1K]

3 года назад

Речь идет о плавкости. Благодаря данному свойству, твердые тела при определенной температуре (высокой) могут менять состояние и становиться жидкостью. У разных твердых тел температура плавления различается. По этому критерию металлы делят на тугоплавкие и легкоплавкие.

Марле­на
[16K]

4 года назад

Есть такое свойство у твердых тел – плавкость. Они плавятся и с помощью этого свойства можно получать металлы. Причем разные металлы. Под воздействием температуры и получаются металлы, к примеру из руды.

Наверное прежде – это температура плавления, при которой металлы переходят в жидкое состояние, а примеси окисляются..

Для лучшего получения металлов применяют окислители примесей, в виде присадок и восстановители металла (например кокс).

Это относится для металлов, получаемых выплавлением из руды (например железа из чугуна).

Для некоторых металлов-это получение из расплава (алюминий из бокситов).

Металлы можно получить благодаря плавкости твёрдых тел, которые в своём составе содержат соединения компонентов этих металлов – полезные ископаемые или руда (железная руда, свинцовая руда, золотая руда, никелевая руда, цинковая руда и т. д).

Плавкость – способность элемента переходить из твёрдого состояния в жидкое под воздействием температуры.

Мой ответ: это свойство – плавкость.

storu­s
[72.4K]

2 года назад

Способность твердых тел, которая позволяет из руды получать металл, называется плавкостью. Благодаря ей наши далёкие предки научились делать различные прочные инструменты и оружие.

Плавкость позволяет металлу при определённой температуре переходить из твердого состояния в жидкое. Таким образом можно очистить его от примесей и получить чистый материал.

kacev­alova
[27.7K]

5 лет назад

Я не сильна в физике и химии но знаю точно что только благодаря такому свойству как “ПЛАВЛЕНИЯ”, проведя/пройдя процесс плавления металлов, по окончанию мы можем получить металл :

  • разной формы
  • смешанного/разного состава
  • разного веса
  • разного цвета.

Знаете ответ?

Источник

Электроны в атоме имеют определенные дискретные значения (уровни) энергии. При сближении атомов друг с другом и при образовании кристалла у электронов появляется возможность обмениваться местами, проходить через потенциальные барьеры. В результате таких переходов одинаковые уровни энергии расщепляются, причем разность соседних уровней энергии определяется энергией взаимодействия атомов друг с другом. Число атомов в одном кубическом сантиметре кристалла N ~ 1022. Каждый атомный уровень расщепляется на N уровней, расстояния между которыми тем меньше, чем больше N. В пределе $N to infty$ они сливаются, образуя зоны разрешенных значений энергии, ширина которых тем больше, чем больше взаимодействие между соседними атомами. На каждый уровень в зоне в соответствии с принципом Паули можно поместить два электрона с противоположными спинами, а всего в зону – 2N электронов. Зонное состояние электрона похоже и на состояние электрона в атоме, и на состояние свободного электрона, поскольку он может перемещаться от атома к атому.

Таким образом, состояние электрона в кристалле будет описываться заданием номера зоны, которой он принадлежит, и квазиимпульсом, определяющим его энергию в зоне. Выше уже отмечалось, что понятие квазиимпульса является важным и подчеркивает его отличие в твердом теле от импульса свободной частицы. Так как квазиимпульс – вектор, удобно говорить о пространстве квазиимпульсов, или p-пространстве (как для свободных электронов) . Если зона заполнена электронами, то это означает, что в р-пространстве данной зоны все места заняты электронами: в каждой точке пространства по два электрона.

Если зона заполнена частично, то в р-пространстве есть свободные от электронов области. Поверхность равных энергий, отделяющая занятые состояния от свободных, и есть поверхность Ферми. Электроны могут изменять свой квазиимпульс, если им есть куда перемещаться в р-пространстве. Если же все р-пространство занято электронами, то подобный процесс невозможен – принцип Паули это запрещает

. Поэтому кристаллы, у которых есть частично заполненные зоны, должны проводить электрический ток – это металлы. Металлическое состояние возникает и тогда, когда перекрываются заполненные и пустые зоны.

Читайте также:  Какие из нижеприведенных свойств для неравенств правильные

Кристаллы, у которых есть только полностью заполненные и полностью пустые зоны, являются изоляторами, или диэлектриками. Те из изоляторов, у которых при тепловом возбуждении заметное число электронов попадает в пустую зону, называются полупроводниками и могут проводить ток при конечных температурах. Возможна ситуация, когда при абсолютном нуле зоны незначительно перекрываются. Такого рода объекты называются полуметаллами (например, висмут, олово) и ведут себя при низких температурах как металлы, а при высоких как полупроводники. У полуметаллов объем, охватываемый поверхностью Ферми, мал по сравнению с объемом ячейки р-пространства, доступным для электронов. У бесщелевых полупроводников, у которых расстояние между заполненной и пустой зонами равно нулю, поверхность Ферми – линия или точка. У изоляторов площадь поверхности Ферми равна нулю – ее просто нет. Энергия электрона в кристалле уже не квадратичная функция импульса, как для свободных электронов.

Источник

Что такое металл? Казалось бы, а что тут думать и гадать? Металл – это что-то довольно тяжелое, прочное, с характерным металлическим блеском, хорошо проводит тепло и электричество, пластичное, можно ковать. Вот сталь, например.

Однако, оказывается, что все далеко не так просто, и металлы относятся именно к металлам только по некой совокупности характеристик и то, достаточно условно.

Когда мы говорим – «металл», то чаще всего подразумеваем достаточно узкую группу химических элементов, таких как: железо, медь, алюминий, золото и серебро. Можно сказать, что это – «классические металлы», но химики столкнулись с задачей классификации металлов достаточно давно и до сих пор прийти к единому мнению не могут. Все достаточно условно.

Возьмем, к примеру, обычную ртуть. По совокупности признаков ее принято считать металлом, но, простите, это – жидкость, а как же кристаллическая решетка, в которой появляются свободные электроны и на этом основана хорошая электропроводность и тому подобные свойства металлов?

Но идем далее, металл в нашем представлении, прежде всего, ассоциируется со сталью, материалом очень прочным, из которого делают ножи, применяемые на кухне. Но среди металлов есть не только жидкие, такие как ртуть, галлий или франций, а более похожие на пластилин, такие как калий, натрий и литий. И еще десяток металлов, которые сегодня можно получить не только в микроскопических дозах, в химической лаборатории и пригодных только для изучения химических же свойств этих металлов, а уже в качестве, условно говоря, слитков, но которые такие же мягкие, как пластилин.

Противоположное пластичности свойство – твердость и хрупкость так же в полной мере присутствуют среди свойств разнообразных металлов. Можно сослаться на чугун, но чугун – это сплав, сплав железа с углеродом, а если рассматривать «химически чистые» образцы, то среди металлов есть такие как вольфрам, известный не только тем, что из него делают нити накаливания в лампочках, но и применяют при изготовлении металлорежущего инструмента. К таким же абсолютно непластичным металлам относятся висмут и марганец.

Таким образом, получается, что всеобъемлющих характеристик химического элемента, по которым его можно отнести к металлам – не существует. Существует только совокупность характеристик, в том числе и химические свойства, по которым, с достаточной степенью условности, тот или иной химический элемент можно отнести к металлам. Существенно упрощает ситуацию только то, что в обыденной жизни мы сталкиваемся с достаточно ограниченным кругом веществ, которые относятся к металлам.

Тот же вольфрам мы можем встретить только в виде тончайшей нити в герметичной колбе электрической лампочки. А свинец и олово, в противоположность вольфраму, обладающие большой пластичностью и низкой температурой плавления, и, что немаловажно – почти нетоксичные, по большому счету, встречаются только у рыбаков и электриков, и так со всеми остальными металлами.

Единственными свойствами, объединяющими наибольшую группу химических элементов, являются высокая электропроводность, теплопроводность и характерный «металлический блеск». Но «разброс» значений весьма велик.

Но опять же этим металлическим блеском и хорошей электропроводностью обладает графит, одна из форм углерода.

Поэтому вывод может быть только один – не заморачиваться, да и в обыденной жизни это не нужно.

Источник

Какое свойство твердых тел можно получать металлы

Известно, что все простые вещества условно можно разделить на простые вещества-металлы и простые вещества-неметаллы.

МЕТАЛЛЫ, по определению М. В. Ломоносова — это «светлые тела, которые ковать можно». Обычно это ковкие блестящие материалы, обладающие высокой тепло- и электропроводностью. Эти физические и многие химические свойства металлов связаны со способностью их атомов ОТДАВАТЬ электроны.

НЕМЕТАЛЛЫ, напротив, способны ПРИСОЕДИНЯТЬ электроны в химических процессах. Большинство неметаллов проявляют противоположные металлам свойства: не блестят, не проводят электрический ток, не куются. Являясь противоположными по свойствам, металлы и неметаллы легко реагируют друг с другом.

Эта часть Самоучителя посвящена краткому освещению свойств металлов и неметаллов. Описывая свойства элементов, желательно придерживаться следующей логической схемы:

1. Вначале описать строение атома (указать распределение валентных электронов), сделать вывод о принадлежности данного элемента к металлам или неметаллам, определить его валентные состояния (степени окисления) — см. урок 3;

2. Затем описать свойства простого вещества, составив уравнения реакций

  • с кислородом;
  • с водородом;
  • с металлами (для неметаллов) или с неметаллами (для металлов);
  • с водой;
  • с кислотами или со щелочами (там, где это возможно);
  • с растворами солей;

3. Затем нужно описать свойства важнейших соединений (водородных соединений, оксидов, гидроксидов, солей). При этом вначале следует определить характер (кислотный или основной) данного соединения, а затем, вспомнив свойства соединений этого класса, составить необходимые уравнения реакций;

4. И наконец нужно описать качественные реакции на катионы (анионы), содержащие этот элемент, способы получения простого вещества и важнейших соединений этого химического элемента, указать практическое применение изучаемых веществ этого элемента.

Так, если вы определите, что оксид кислотный, то он будет реагировать с водой, основными оксидами, основаниями (см. урок 2.1) и ему будет соответствовать кислотный гидроксид (кислота). При описании свойств этой кислоты также полезно заглядывать в соответствующий раздел: урок 2.2.

Читайте также:  Какие свойства у ландыша

Внутреннее строение и физические свойства металлов

Металлы — это простые вещества, атомы которых могут только отдавать электроны. Такая особенность металлов связана с тем, что на внешнем уровне этих атомов мало электронов (чаще всего от 1 до 3) или внешние электроны расположены далеко от ядра. Чем меньше электронов на внешнем уровне атома и чем дальше они расположены от ядра, — тем активнее металл (ярче выражены его металлические свойства).

Задание 8.1. Какой металл активнее:

Назовите химические элементы А, Б, В, Г.

Металлы и неметаллы в Периодической системе химических элементов Менделеева (ПСМ) разделяет линия, проведённая от бора к астату. Выше этой линии в главных подгруппах находятся неметаллы (см. урок 3). Остальные химические элементы — металлы.

Задание 8.2. Какие из следующих элементов относятся к металлам: кремний, свинец, сурьма, мышьяк, селен, хром, полоний?

Вопрос. Как можно объяснить тот факт, что кремний — неметалл, а свинец — металл, хотя число внешних электронов у них одинаково?

Существенной особенностью атомов металлов является их большой радиус и наличие слабо связанных с ядром валентных электронов. Для таких атомов величина энергии ионизации* невелика.

* ЭНЕРГИЯ ИОНИЗАЦИИ равна работе, затрачиваемой на удаление одного внешнего электрона из атома (на ионизацию атома), находящегося в основном энергетическом состоянии.

Часть валентных электронов металлов, отрываясь от атомов, становятся «свободными». «Свободные» электроны легко перемещаются между атомами и ионами металлов в кристалле, образуя «электронный газ» (рис. 28).

В последующий момент времени любой из «свободных» электронов может притянуться любым катионом, а любой атом металла может отдать электрон и превратиться в ион (эти процессы показаны на рис. 28 пунктирами).

Таким образом, внутреннее строение металла похоже на слоёный пирог, где положительно заряженные «слои» атомов и ионов металла чередуются с электронными «прослойками» и притягиваются к ним. Наилучшей моделью внутреннего строения металла является стопка стеклянных пластинок, смоченных водой: оторвать одну пластинку от другой очень трудно (металлы прочные), а сдвинуть одну пластинку относительно другой очень легко (металлы пластичные) (рис. 29).

Задание 8.3. Сделайте такую «модель» металла и убедитесь в этих свойствах.

Химическая связь, осуществляемая за счёт «свободных» электронов, называется металлической связью.

«Свободные» электроны обеспечивают также такие физические свойства металлов, как электро- и теплопроводность, пластичность (ковкость), а также металлический блеск.

Задание 8.4. Найдите дома металлические предметы.

Выполняя это задание, вы легко найдёте на кухне металлическую посуду: кастрюли, сковородки, вилки, ложки. Из металлов и их сплавов делают станки, самолёты, автомобили, тепловозы, инструменты. Без металлов невозможна современная цивилизация, так как электрические провода также делают из металлов — Cu и Al. Только металлы годятся для получения антенн для радио- и телеприёмников, из металлов делают и лучшие зеркала. При этом чаще используют не чистые металлы, а их смеси (твёрдые растворы) — СПЛАВЫ.

Сплавы

Металлы легко образуют сплавы — материалы, имеющие металлические свойства и состоящие из двух или большего числа химических элементов (простых веществ), из которых хотя бы один является металлом. Многие металлические сплавы имеют один металл в качестве основы с малыми добавками других компонентов. В принципе, чёткую границу между металлами и сплавами трудно провести, так как даже в самых чистых металлах имеются «следовые» примеси других химических элементов.

Все перечисленные выше предметы — станки, самолёты, автомобили, сковородки, вилки, ложки, ювелирные изделия — делают из сплавов. Металлы-примеси (легирующие компоненты) очень часто изменяют свойства основного металла в лучшую, с точки зрения человека, сторону. Например, и железо и алюминий — довольно мягкие металлы. Но, соединяясь друг с другом или с другими компонентами, они превращаются в сталь, дуралюмин и другие прочные конструкционные материалы. Рассмотрим свойства самых распространённых сплавов.

Сталь — это сплавы железа с углеродом, содержащие последнего до 2 %. В состав легированных сталей входят и другие химические элементы — хром, ванадий, никель. Сталей производится гораздо больше, чем каких-либо других металлов и сплавов, и все виды их возможных применений трудно перечислить. Малоуглеродистая сталь (менее 0,25 % углерода) в больших количествах потребляется в качестве конструкционного материала, а сталь с более высоким содержанием углерода (более 0,55 %) идет на изготовление режущих инструментов: бритвенные лезвия, сверла и др.

Железо составляет основу чугуна. Чугуном называется сплав железа с 2–4 % углерода. Важным компонентом чугуна является также кремний. Из чугуна можно отливать самые разнообразные и очень полезные изделия, например крышки для люков, трубопроводную арматуру, блоки цилиндров двигателей и др.

Бронза — сплав меди, обычно с оловом как основным легирующим компонентом, а также с алюминием, кремнием, бериллием, свинцом и другими элементами, за исключением цинка. Оловянные бронзы знали и широко использовали ещё в древности. Большинство античных изделий из бронзы содержат 75–90 % меди и 25–10 % олова, что делает их внешне похожими на золотые, однако они более тугоплавкие. Это очень прочный сплав. Из него делали оружие до тех пор, пока не научились получать железные сплавы. С применением бронзы связана целая эпоха в истории человечества: Бронзовый век.

Латунь — это сплавы меди с Zn, Al, Mg. Это цветные сплавы с невысокой температурой плавления, их легко обрабатывать: резать, сваривать и паять.

Мельхиор — является сплавом меди с никелем, иногда с добавками железа и марганца. По внешним характеристикам мельхиор похож на серебро, но обладает большей механической прочностью. Сплав широко применяют для изготовления посуды и недорогих ювелирных изделий. Большинство современных монет серебристого цвета изготавливают из мельхиора (обычно 75 % меди и 25 % никеля с незначительными добавками марганца).

Дюралюминий, или дюраль — это сплав на основе алюминия с добавлением легирующих элементов — медь, марганец, магний и железо. Он характеризуется своей стальной прочностью и устойчивостью к возможным перегрузкам. Это основной конструкционный материал в авиации и космонавтике.

Химические свойства металлов

Металлы легко отдают электроны, т. е. являются восстановителями. Поэтому они легко реагируют с окислителями.

Вопросы

  1. Какие атомы являются окислителями?
  2. Как называются простые вещества, состоящие из атомов, которые способны принимать электроны?
Читайте также:  Какие свойства характерны для водной среды обитания биология 5 класс

Таким образом, металлы реагируют с неметаллами. В таких реакциях неметаллы, принимая электроны, приобретают обычно НИЗШУЮ степень окисления.

Рассмотрим пример. Пусть алюминий реагирует с серой:

Вопрос. Какой из этих химических элементов способен только отдавать электроны? Сколько электронов?

Алюминий — металл, имеющий на внешнем уровне 3 электрона (III группа!), поэтому он отдаёт 3 электрона:

Поскольку атом алюминия отдает электроны, атом серы принимает их.

Вопрос. Сколько электронов может принять атом серы до завершения внешнего уровня? Почему?

У атома серы на внешнем уровне 6 электронов (VI группа!), следовательно, этот атом принимает 2 электрона:

Таким образом, полученное соединение имеет состав:

В результате получаем уравнение реакции:

Задание 8.5. Составьте, рассуждая аналогично, уравнения реакций:

  • кальций + хлор (Cl2);
  • магний + азот (N2).

Составляя уравнения реакций, помните, что атом металла отдаёт все внешние электроны, а атом неметалла принимает столько электронов, сколько их не хватает до восьми.

Названия полученных в таких реакциях соединений всегда содержат суффикс ИД:

Корень слова в названии происходит от латинского названия неметалла (см. урок 2.4).

Металлы реагируют с растворами кислот (см. урок 2.2). При составлении уравнений подобных реакций и при определении возможности такой реакции следует пользоваться рядом напряжений (рядом активности) металлов:

Металлы, стоящие в этом ряду до водорода, способны вытеснять водород из растворов кислот:

Задание 8.6. Составьте уравнения возможных реакций:

  • магний + серная кислота;
  • никель + соляная кислота;
  • ртуть + соляная кислота.

Все эти металлы в полученных соединениях двухвалентны.

Реакция металла с кислотой возможна, если в результате её получается растворимая соль. Например, магний практически не реагирует с фосфорной кислотой, поскольку его поверхность быстро покрывается слоем нерастворимого фосфата:

Металлы, стоящие после водорода, могут реагировать с некоторыми кислотами, но водород в этих реакциях не выделяется:

Задание 8.7. Какой из металлов — Ва, Mg, Fе, Рb, Сu — может реагировать с раствором серной кислоты? Почему? Составьте уравнения возможных реакций.

Металлы реагируют с водой, если они активнее железа (железо также может реагировать с водой). При этом очень активные металлы (Li – Al) реагируют с водой при нормальных условиях или при небольшом нагревании по схеме:

где х — валентность металла.

Задание 8.8. Составьте уравнения реакций по этой схеме для К, Nа, Са. Какие ещё металлы могут реагировать с водой подобным образом?

Возникает вопрос: почему алюминий практически не реагирует с водой? Действительно, мы кипятим воду в алюминиевой посуде, — и… ничего! Дело, в том, что поверхность алюминия защищена оксидной пленкой (условно — Al2O3). Если её разрушить, то начнётся реакция алюминия с водой, причём довольно активная. Полезно знать, что эту плёнку разрушают ионы хлора Cl–. А поскольку ионы алюминия небезопасны для здоровья, следует выполнять правило: в алюминиевой посуде нельзя хранить сильно солёные продукты!

Вопрос. Можно ли хранить в алюминиевой посуде кислые щи, компот?

Менее активные металлы, которые стоят в ряду напряжений после алюминия, реагируют с водой в сильно измельчённом состоянии и при сильном нагревании (выше 100 °C) по схеме:

Металлы, менее активные, чем железо, с водой не реагируют!

Металлы реагируют с растворами солей. При этом более активные металлы вытесняют менее активный металл из раствора его соли:

Задание 8.9. Какие из следующих реакций возможны и почему:

  1. серебро + нитрат меди II;
  2. никель + нитрат свинца II;
  3. медь + нитрат ртути II;
  4. цинк + нитрат никеля II.

Составьте уравнения возможных реакций. Для невозможных поясните, почему они невозможны.

Следует отметить (!), что очень активные металлы, которые при нормальных условиях реагируют с водой, не вытесняют другие металлы из растворов их солей, поскольку они реагируют с водой, а не с солью:

А затем полученная щёлочь реагирует с солью:

Поэтому реакция между сульфатом железа и натрием НЕ сопровождается вытеснением менее активного металла:

Коррозия металлов

Коррозия — самопроизвольный процесс окисления металла под действием факторов окружающей среды.

В природе практически не встречается металлов в свободном виде. Исключение составляют только «благородные», самые неактивные металлы, например золото, платина. Все остальные активно окисляются под действием кислорода, воды, кислот и др. Например, ржавчина образуется на любом незащищённом железном изделии именно в присутствии кислорода или воды. При этом окисляется железо:

а восстанавливаются компоненты атмосферной влаги:

В результате образуется гидроксид железа (II), который, окисляясь, превращается в ржавчину:

Подвергаться коррозии могут и другие металлы, правда, ржавчина на их поверхности не образуется. Так, нет на Земле металла алюминия — самого распространённого металла на планете. Но зато основу многих горных пород и почвы составляет глинозём Al2O3. Дело в том, что алюминий мгновенно окисляется на воздухе. Коррозия металлов наносит колоссальный ущерб, разрушая различные металлические конструкции.

Чтобы уменьшить потери от коррозии, следует устранить причины, которые её вызывают. В первую очередь, металлические предметы следует изолировать от влаги. Это можно сделать разными способами, например, хранить изделие в сухом месте, что далеко не всегда возможно. Кроме того, можно поверхность предмета покрасить, смазать водоотталкивающим составом, создать искусственную оксидную плёнку. В последнем случае в состав сплава вводят хром, который «любезно» распространяет собственную оксидную плёнку на поверхность всего металла. Сталь становится нержавеющей.

Изделия из нержавеющей стали дороги. Поэтому для защиты от коррозии используют тот факт, что менее активный металл не изменяется, т. е. не участвует в процессе. Поэтому если к сохраняемому изделию приварить более активный металл, то, пока он не разрушится, изделие корродировать не будет. Этот способ защиты называется протекторной защитой.

Выводы

Металлы — это простые вещества, которые всегда являются восстановителями. Восстановительная активность металла убывает в ряду напряжений от лития к золоту. По положению металла в ряду напряжений можно определить, как металл реагирует с растворами кислот, с водой, с растворами солей.

Хотите ещё проще? Мы создали новый курс, где максимум за 7 дней вы овладете химией с нуля. Подробннее по ссылке

Источник