Какое свойство умножения выражает равенство

  • Переместительное свойство умножения
  • Сочетательное свойство умножения
  • Распределительное свойство умножения

Переместительное свойство умножения

От перестановки сомножителей местами произведение не меняется.

Следовательно, для любых чисел  a  и  b  верно равенство:

a · b = b · a,

выражающее переместительное свойство умножения.

Примеры:

6 · 7 = 7 · 6 = 42;

4 · 2 · 3 = 3 · 2 · 4 = 24.

Обратите внимание, что данное свойство можно применять и к произведениям, в которых более двух множителей.

Сочетательное свойство умножения

Результат умножения трёх и более множителей не изменится, если какую-либо группу множителей заменить их произведением.

Следовательно, для любых чисел  ab  и  c  верно равенство:

a · b · c = (a · b) · c = a · (b · c),

выражающее сочетательное свойство умножения.

Пример:

3 · 2 · 5 = 3 · (2 · 5) = 3 · 10 = 30

или

3 · 2 · 5 = (3 · 2) · 5 = 6 · 5 = 30.

Сочетательное свойство используется для удобства и упрощения вычислений при умножении. Например:

25 · 15 · 4 = (25 · 4) · 15 = 100 · 15 = 1500.

В данном случае можно было вычислить всё последовательно:

25 · 15 · 4 = (25 · 15) · 4 = 375 · 4 = 1500,

но проще и легче сначала умножить  25  на  4  и получить  100,  а уже потом умножить  100  на  15.

Распределительное свойство умножения

Сначала рассмотрим распределительное свойство умножения относительно сложения:

Чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.

Следовательно, для любых чисел  ab  и  m  верно равенство:

m · (a + b) = m · a + m · b,

выражающее распределительное свойство умножения.

Так как в данном случае число и сумма являются множителями, то, поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:

Чтобы сумму чисел умножить на число, можно каждое слагаемое отдельно умножить на это число и полученные произведения сложить.

Следовательно, для любых чисел  ab  и  m  верно равенство:

(a + b) · m = a · m + b · m.

Теперь рассмотрим распределительное свойство умножения относительно вычитания:

Чтобы число умножить на разность чисел, можно это число умножить отдельно на уменьшаемое и вычитаемое и из первого полученного произведения вычесть второе.

Следовательно, для любых чисел  ab  и  m  верно равенство:

m · (ab) = m · am · b.

Так как в данном случае число и разность являются множителями, то поменяв их местами, используя переместительное свойство, можно сформулировать распределительное свойство так:

Чтобы разность чисел умножить на число, можно уменьшаемое и вычитаемое отдельно умножить на это число и из первого полученного произведения вычесть второе.

Следовательно, для любых чисел  ab  и  m  верно равенство:

(ab) · m = a · mb · m.

Переход от умножения:

m · (a + b)    и    m · (ab)

соответственно к сложению и вычитанию:

m · a + m · b    и    m · am · b

называется раскрытием скобок.

Переход от сложения и вычитания:

m · a + m · b    и    m · am · b

к умножению:

m · (a + b)    и    m · (ab)

называется вынесением общего множителя за скобки.

Источник

Распределительное свойство умножения

Краткое описание

Используемый в школе распределительный закон умножения позволяет ученикам максимально быстро выполнить все необходимые вычисления. Знание определенных нюансов поможет решить сложные уравнения и различные задачи. Процесс умножения представляет собой сокращенный процесс сложения. А это означает, что первый множитель выступает в роли числа, которое складывается само с собой определенное количество раз, соответствующее второму множителю. Пример: 4 * 8 = 4+4+4+4+4+4+4+4 = 32.

Распределительный закон умножения

Элементарное математическое умножение было изобретено в то время, когда у человечества возникла необходимость выполнять большие вычисления, которые просто неудобно записывать в виде элементарного сложения. Всем хорошо известно, что можно 8 раз сложить число 4, а можно 4 раза сложить число 8, но итоговый результат от этого не поменяется. Именно в этом и состоит смысл переместительного умножения всех задействованных элементов. Умножение позволило человеку решить довольно много проблем, но вместе с этим в алгебру пришло и деление, но уже как противоположная математическая операция.

Ключевые особенности

Чтобы даже на начальном этапе ученик мог выполнить умножение суммы некоторых чисел, необходимо просто умножить каждое слагаемое по отдельности и сложить полученный результат. К примеру: (j + d) * s = sj + sd либо s * (j + d) = sj + sd. Чтобы немного упростить способ решения задачи, описанное правило можно использовать в обратном порядке: s * j + s * d = s * (j + d). В этом случае общий множитель выносится за пределы скобок.

Если попробовать задействовать многофункциональное распределительное свойство сложения, то в итоге можно будет решить следующие математические примеры:

Ученик выполняет умножение

  • Классическая задача: 35 * 6. Следует представить число 35 как сумму двух чисел 30 и 5, которую просто нужно перемножить на 6: (30 + 5) * 6. Все вычисления выполняются элементарно: 30 * 6 + 5 * 6 = 210.
  • Еще один пример: 4 * (20 + 13). Для решения нужно умножить число 4 на каждое задействованное слагаемое: 4 * 20 + 4 * 13. Сложение примет следующий вид: 80 + 52 = 132.
  • Также следует рассмотреть более сложный пример: 8 * (45 — 3). Необходимо перемножить на число 9 уменьшаемое 45, а также вычитаемое 3. Пример: 8 * 45 — 8 * 3. Если все сделать верно, то итоговый результат примет следующий вид: 360 — 24 = 336.

Умелое применение распределительного свойства умножения поможет избежать распространенных ошибок. Так, основное правило актуально не только по отношению к сумме, но и к разности двух и более выражений. Для укрепления полученных навыков можно попробовать самостоятельно придумать задачу.

Основные математические возможности

Чтобы можно было выполнить определенные арифметические действия по отношению к числу, необходимо поочередно умножить его на каждое слагаемое и в итоге сложить полученные произведения. А это значит, что для любых частных чисел l, r, w верным будет следующее равенство: w * (l + r) = w * l + w * r. Этот пример отлично выражает распределительный закон сложения и последующего умножения. Так как число и сумма являются множителями, то после смены их места расположения, задействовав для этого переместительное свойство, можно будет сформировать наиболее подходящее свойство.

Всего специалисты выделяют три свойства распределительного умножения:

  • Элементарное сочетательное. Именно это свойство применяется для тех примеров, где используется минимум 3 множителя. Основная мысль сочетательного свойства в том, что можно легко перемножить первые два множителя, а только потом умножить результат на третий множитель. Стоит учесть, что порядок перемножения может быть абсолютно любым.
  • Переместительное. Произведение не меняется от перемены мест множителя. Для примера из двух множителей это свойство не является критичным, но для заданий с тремя и более множителями это направление может сэкономить много свободного времени.
  • Распределительное. В математике это свойство получило большой спрос для умножения числа на сумму либо разность. Распределительный подход сокращает время решения задачи при правильном подходе. Суть свойства в том, что во время умножения числа на разность либо конкретную сумму можно каждое слагаемое умножить на основное число, а уже потом выполнить сложение.

Законы умножения

Все перечисленные направления имеют свои особенности и правила использования на практике, которые обязательно нужно учесть для лучшего усвоения этой темы.

Правила вычитания

Умножение и последующее вычитание натуральных чисел обязательно связывается распределительным свойством. Учащимся обязательно нужно запомнить формулировку этого правила: умножить определенную разность двух рациональных чисел на конкретное число — это вычитание из произведения уменьшаемого числа произведения данного или неизвестного вычитаемого числа. Все математические примеры записываются при помощи обычных букв: (s — r)* n = s * n — r * n. Задействованными символами могут называться определенные рациональные целые и дробные числа.

Умножение и последующее вычитание натуральных чисел

Элементарные примеры распределительного свойства умножения позволяют ученикам освоить технику решения распространенных математических задач. Если необходимо убедиться в равенстве уравнения 5 * (8 — 3) = 5 * 8 — 5 * 3, тогда нужно выполнить несколько арифметических действий. Так как пример 8 − 3 всегда равен 5, то произведение 5 * (8 — 3) всегда будет иметь следующий результат: 5 * 5 = 5+5+5+5+5=25. Теперь нужно вычислить разность между 5 * 8 и 5 * 3. Решение выглядит следующим образом: 5 * 8 − 5 * 3 = (5+5+5+5+5+5+5+5) — (5+5+5) = 40 — 15 = 25. Это значит, что равенство 5 * (8 − 3) = 5 * 8 − 5 * 3.

Использование двух и более слагаемых

Распространенное в алгебре распределительное свойство элементарного умножения активно применяется не только по отношению к двум слагаемым, но и для неограниченного количества арифметических элементов. Этот подход можно применить для всех форм дробей, что очень удобно. Стандартная формула имеет следующий вид:

  • d x (e + t + h) = d x e + d x t + d x h .
  • d x (e — t — h) = dxe — dxt — dxh.

Распределительное свойство элементарного умножения

В качестве примера следует рассмотреть следующее уравнение: 678 * 4. Чтобы понять все нюансы, надо представить число 678 как сумму трех чисел: 600, 70 и 8. Если это сделать, то в итоге можно получить следующее решение: (600 + 70 + 8) * 4 = 600 * 4 + 70 * 4 + 8 * 4 = 2400 + 280 + 32 = 2712. Для более быстрого решения задачи нужно упростить несколько выражений, используя для этого упомянутое ранее свойство.

Если в качестве примера взять уравнение 8 * (4х + 3у), тогда первым делом раскрывают имеющиеся скобки, применяя для этого распределительный закон умножения: 8 * 4х + 8 * 3у = 32х + 24у. Конечно, полученный результат сложить просто невозможно, так как заявленные слагаемые не являются подобными, к тому же они имеют разную буквенную часть. Именно поэтому ответ будет выглядеть следующим образом: 32х + 24у.

Если ученик научится использовать при решении различных примеров универсальное распределительное свойство сложения и умножения, то в итоге он сможет легко решать даже самые сложные математические примеры, так как многие ситуации можно свести к устному счету. Также будет существенно экономиться время при решении многоуровневых задач. Благодаря полученным знаниям, можно будет с легкостью упростить выражения. Эксперты рекомендуют дважды проверять выполненную работу, так как только в этом случае можно будет избежать ошибок.

Умножение нуля

Несмотря на то что ноль не относится к категории естественных чисел, этому направлению тоже нужно уделить повышенное внимание. Это связано с тем, что такое свойство используется во время умножения натуральных чисел столбиком. Если строго соблюдать смысл умножения, тогда произведение 0 * х, где х выступает в роли произвольного естественного числа больше единицы, представляет собой сумму х слагаемых. В такой ситуации актуальной является следующая формула: 0 * х = 0+0+0+0+….+0. Свойства математического сложения позволяют специалистам утверждать, что последняя сумма неизбежно будет равна нулю.

Чтобы иметь возможность сохранить справедливость элементарного умножения используемого числа на единицу, можно считать верным следующее равенство: 0 * 1 = 0. Это значит, что для любого естественного числа х выполняется равенство 0 * х = 0. Чтобы оставалось актуальным переместительное свойство умножения, нужно помнить о справедливости равенства х * 0 = 0 для всех натуральных чисел х.

Умножение нуля

Произведение естественного числа и нуля равно нулю 0 * х = 0, а также х * 0 = 0. Используемый x представляет собой произвольное натуральное число. Экспертами было доказано, что последнее утверждение играет важную роль формулировки свойства умножения ранее полученного числа и нуля. К примеру, произведение чисел 87 и 0 равно нулю. Если попробовать умножить 0 на 897689, то в итоге тоже получим ноль.

Распределительное свойство относительно разности

Правильное решение математических уравнений возможно только в том случае, если ученик предварительно хорошо изучил теоретическую часть этой темы. Чтобы выполнить элементарное умножение разности на число, необходимо предварительно умножить на него уменьшаемое, а только после этого — вычитаемое, и выполнить вычисление полученных результатов. Пример: g x (y — u) = g x y — g x u или (y — u) x g = g x y — g x u .

Понять все нюансы помогут следующие три примера:

Решение математических уравнений

  • Для решения уравнения 78 * (12 — 5) принято использовать распределительный закон. Первым делом умножают 78 на оба числа: 78 * 12 — 78 * 5. Необходимо отыскать разность полученных значений: 936 — 390 = 546 и записать полученный результат. Ответ: 546.
  • Следующий пример: 78 * 5. Нужно найти значение математического выражения, используя для этого ранее изученные свойства. Следует представить 78 как разность двух чисел 83 и 5. Решение будет выглядеть следующим образом: 78 * 5 = (83 − 5) * 5 = 83 * 5 − 5 * 5 = 390.
  • Еще один арифметический пример: 9 * (2 + 30). Решение этого уравнения довольно простое: 9 * 2 + 9 * 30 = 18 + 270 = 288.

Решать такие задачи элементарно и быстро, но для этого нужно хорошо усвоить все правила, а также рекомендации специалистов, так как только в этом случае можно будет избежать грубых ошибок.

Манипуляции с натуральным числом

Этот раздел связан с умножением единицы на конкретное число. Если следовать смыслу умножения, то в итоге произведение изучаемого арифметического выражения х будет равно сумме х слагаемых, каждое из которых тоже равно единице. Действует элементарная формула: 1 * х = 1+1+1+….+1 = х. Пример: произведение чисел 1 и 78 равно 78, а результатом умножения 1 и 456 есть число 456.

Умножением единицы на конкретное число

Произведение х * 1 лишено какого-либо смысла, так как это арифметическое выражение представляет собой сумму одного слагаемого, которое равно число х, но сложение определяют для двух и более слагаемых. Чтобы сохранить справедливое переместительное свойство поэтапного умножения, нужно считать верным равенство х * 1 = х.

Опытные математики утверждают, что произведение двух разных чисел, одно из которых приравнивается к нулю, равно другому числу. Это утверждение выступает в качестве официальной формулировки умножения единицы и определенного числа. При помощи букв это свойство записывается так: 1 * х = х * 1 = х. За основу могут использоваться любые натуральные числа.

Многим может показаться, что сегодня нет необходимости разбираться во всех свойствах распределительного умножения, так как под рукой всегда есть калькулятор. Но даже у программ существуют свои ограничения, что просто недопустимо в банковской отрасли и правительственных отраслях. Именно поэтому бухгалтеры в обязательном порядке изучают все особенности применения распределительного закона умножения.

Источник

Цели урока:

  1. Получить равенства, выражающие распределительное свойство
    умножения относительно сложения и вычитания.
  2. Научить учащихся применять это свойство слева направо.
  3. Показать важное практическое значение этого свойства.
  4. Развивать у учащихся логическое мышление. Закрепить навыки работы на
    компьютере.

Оборудование: компьютеры, плакаты со свойствами умножения, с изображениями
машин и яблок, карточки.

Ход урока

1. Вступительное слово учителя.

– Сегодня на уроке мы рассмотрим ещё одно свойство умножения, которое имеет
важное практическое значение, помогает быстро производить умножение многозначных
чисел. Повторим ранее изученные свойства умножения. По ходу изучения новой темы
проверим домашнее задание.

2. Решение устных упражнений.

I. На доске запись:

1 – понедельник
2 – вторник
3 – среда
4 – четверг
5 – пятница
6 – суббота
7 – воскресенье

Задание. Задумайте день недели. Умножить номер задуманного дня на 2. Прибавить к
произведению 5. Умножить сумму на 5. Увеличить произведение в 10 раз. Назвать
результат. Вы загадали … день.

(№ * 2 + 5) * 5 * 10

II. Задание из электронного учебника «Математика 5-11кл.
Новые возможности для усвоения курса математики. Практикум».
ООО «Дрофа»
2004, ООО «ДОС» 2004, CD – ROM, НФПК». Раздел «Математика. Натуральные числа».
Задание №8. Экспресс-контроль. Заполните пустые клетки в цепочке. Вариант 1.

III. На доске:

1) Прочитать:

  • a + b
  • (a + b) * c
  • m – n
  • m * c – n * c

2) Упростить:

  • 5 * x * 6 * y
  • 3 * 2 * а
  • а * 8 * 7
  • 3 * а * b

3) При каких значениях x равенство обращается в верное:

x + 3 = 3 + x
407 * x = x * 407? Почему?

– Какие свойства умножения применялись?

3. Изучение нового материала.

На доске плакат с изображениями машин.

Рисунок 1.

Задание для 1 группы учащихся (мальчиков).

В гараже в 2-х рядах стоят грузовые и легковые машины. Записать выражения.

  1. Сколько грузовых машин в 1-ом ряду? Сколько легковых?
  2. Сколько грузовых машин во 2-ом ряду? Сколько легковых?
  3. Сколько машин всего в гараже?
  4. Сколько грузовых машин в 1-ом ряду? Сколько грузовых машин в двух рядах?
  5. Сколько легковых машин в 1-ом ряду? Сколько легковых машин в двух рядах?
  6. Сколько всего машин в гараже?

Найти значения выражений 3 и 6. Сравнить эти значения. Записать выражения в
тетрадь. Прочитать равенство.

Задание для 2 группы учащихся (мальчиков).

В гараже в 2-х рядах стоят грузовые и легковые машины. Что означают
выражения:

  • 4 – 3
  • 4 * 2
  • 3 * 2
  • (4 – 3) * 2
  • 4 * 2 – 3 * 2

Найти значения двух последних выражений.

– Значит, между этими выражениями можно поставить знак =.

– Прочитаем равенство: (4 – 3) * 2 = 4 * 2 – 3 * 2.

Плакат с изображениями красных и зелёных яблок.

Рисунок 2.

Задание для 3 группы учащихся (девочек).

Масса одного красного яблока 100 г, одного зелёного 80 г.

Составить выражения.

  1. Какова масса одного красного и одного зелёного яблока вместе?
  2. Какова масса всех яблок вместе?
  3. Какова масса всех красных яблок вместе?
  4. Какова масса всех зелёных яблок вместе?
  5. Какова масса всех яблок?

Найти значения выражений 2 и 5 и сравнить их. Записать это выражение в
тетрадь. Прочитать.

Задание для 4 группы учащихся (девочек).

Масса одного красного яблока 100 г, одного зелёного 80 г.

Составить выражения.

  1. На сколько г масса одного красного яблока больше, чем зелёного?
  2. На сколько г масса всех красных яблок больше, чем зелёных?
  3. Какова масса всех красных яблок?
  4. Какова масса всех зелёных яблок?
  5. На сколько г масса всех красных яблок больше, чем зелёных?

Найти значения выражений 2 и 5.Сравнить их. Прочитать равенство.
Только ли для этих чисел верны равенства?

4. Проверка домашнего задания.

Задание. По краткой записи условия задачи поставить главный вопрос,
составить выражение и найти его значение при данных значениях переменных.

1 группа

Найти значение выражения при а = 82,b = 21, c = 2.

2 группа

Найти значение выражения при а = 82, b = 21, с= 2.

3 группа

Найти значение выражения при а = 60, b = 40, с = 3.

4 группа

Найти значение выражения при а = 60, b =40, с = 3.

Работа в классе.

Сравнить значения выражений.

Для 1 и 2 групп:(а + b) * с и а * с + b * с

Для 3 и 4 групп:(а – b) * с и а * с – b * с

Вывод:

(а + b) * с = а * с + b * с
(а – b) * с = а * с – b * с

– Итак, для любых чисел а, b, с верно:

  • При умножении суммы на число можно умножить на
    это число каждое слагаемое и сложить полученные произведения.
  • При умножении разности на число можно умножить на это число уменьшаемое и
    вычитаемое и из первого произведения вычесть второе.
  • При умножении суммы или разности на число умножение распределяется на каждое
    число, заключённое в скобках. Поэтому это свойство умножения называется
    распределительным свойством умножения относительно сложения и вычитания.

– Прочитаем формулировку свойства по учебнику.

5. Закрепление нового материала.

Выполнить №548. Примените распределительное свойство умножения.

  • (68 + а) * 2
  • 17 * (14 – x)
  • (b – 7) * 5
  • 13 * (2 + y)

1) Выбирай задания на оценку.

Задания на оценку «5».

Пример 1. Найдём значение произведения 42 * 50. Представим число 42 в виде суммы чисел
40 и 2.

Получим: 42 * 50 = (40 + 2) * 50. Теперь применим распределительное
свойство:

42 * 50 = (40 + 2) * 50 = 40 * 50 + 2 * 50 = 2 000 +100 = 2 100.

Аналогично решить №546:

а) 91 * 8
в) 6 * 52
д) 202 * 3
ж) 24 * 11
з) 35 * 12
и) 4 * 505

Представить числа 91,52, 202, 11, 12, 505 в виде суммы десятков и единиц и
применить распределительное свойство умножения относительно сложения.

Пример 2. Найдём значение произведения 39 * 80.

Представим число 39 в виде разности 40 и 1.

Получим: 39 * 80 = (40 – 1 ) = 40 * 80 – 1 * 80 = 3 200 – 80 = 3 120.

Решить из №546:

б) 7 * 59
е) 397 * 5
г) 198 * 4
к) 25 * 399

Представить числа 59, 397, 198, 399 в виде разности десятков и единиц и
применить распределительное свойство умножения относительно вычитания.

Задания на оценку «4».

Решить из №546 (а, в, д, ж, з, и). Применить распределительное свойство
умножения относительно сложения.

Решить из № 546 (б, г, е, к). Применить распределительное свойство
умножения относительно вычитания.

Задания на оценку «3».

Решить №546 (а, в, д, ж, з, и). Применить распределительное свойство
умножения относительно сложения.

Решить №546 (б, г, е, к).

Для решения задачи №552 составить выражение и выполнить рисунок.

Расстояние между двумя сёлами 18 км. Из них выехали в разные стороны два
велосипедиста. Один проезжает в час m км, а другой
n км. Какое расстояние будет между ними через 4 ч?

Решение:

Заполнить квадратики.

№549

При каких значениях x верно равенство:

а) 3 * (x + 5) = 3 * x + 15
б) (3 + 5) * x = 3 * x + 5 * x
в) (7 + x) * 5 = 7 * 5 + 8 * 5
г) (x + 2) * 4 = 2 * 4 + 2 * 4
д) (5 – 3) * x = 5 * x – 3 * x
е) (5 – 3) * x = 5 * x – 3 * 2

– Распределительное свойство умножения позволяет
нам быстро умножать многозначные числа.

2) Продолжим проверку домашнего задания.

1) Выполнить умножение:

2) Найти ошибку:

– А почему умножение этих чисел надо записывать так, как в предпоследнем
примере?

– Оказывается, умножение «столбиком» многозначных чисел также основано на
распределительном свойстве умножения.

Рассмотрим пример:

Поэтому произведение 423 на 50 начинаем записывать под десятками.

(Устно. Примеры записаны на обратной стороне доски.)

Вместо
поставьте пропущенные цифры:

Задание из электронного учебника «Математика 5-11кл. Новые
возможности для усвоения курса математики. Практикум». ООО «Дрофа» 2004, ООО
«ДОС» 2004, CD – ROM, НФПК». Раздел «Математика. Натуральные числа». Задание №7.
Экспресс-контроль. Восстановите пропавшие цифры.

6. Подведение итогов урока.

Итак, мы рассмотрели распределительное свойство умножения относительно
сложения и вычитания. Повторим формулировку свойства, прочитаем равенства,
выражающие свойство. Применение распределительного свойства умножения слева
направо можно выразить условием «раскрыть скобки», т. к. в левой части равенства
выражение было заключено в скобки, а в правой скобок нет. При решении устных
упражнений на отгадывание дня недели мы тоже использовали распределительное
свойство умножения относительно сложения.

(№ * 2 + 5) * 5 * 10 = 100 * № + 250, а затем решали уравнение вида:
100 * № + 250 = а

7. Задание на дом.

П.14, №595, 596 (а, б).

Источник