Какое свойство вещества называется электрическим сопротивлением
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 июля 2019; проверки требуют 3 правки.
Электри́ческое сопротивле́ние — физическая величина, характеризующая свойство проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1]
Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.
Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как
где
R — сопротивление, Ом;
U — разность электрических потенциалов (напряжение) на концах проводника, В;
I — сила тока, протекающего между концами проводника под действием разности потенциалов, А.
История[править | править код]
В 1826 г. Георг Ом экспериментальным путем открыл основной закон электрической цепи, научился вычислять сопротивление металлических проводников и вывел закон Ома. Таким образом, в первом периоде развития электротехники (1800 –1831 годы) были созданы предпосылки для ее развития, для последующих применений электрического тока.
Само понятие «сопротивление» появилось задолго до изысканий Георга Ома. Впервые этот термин применил и употребил русский ученый Василий Владимирович Петров. Он установил количественную зависимость силы тока от площади поперечного сечения проводника: он утверждал, что при использовании более толстой проволоки происходит «более сильное действие… и весьма скорое течение гальвани-вольтовской жидкости». Кроме того, Петров четко указал на то, что при увеличении сечения проводника (при употреблении одной и той же гальванической батареи) сила тока в нем возрастает.[2]
Единицы и размерности[править | править код]
Размерность электрического сопротивления в Международной системе величин: dim R = L2MT −3I −2. В Международной системе единиц (СИ), основанной на Международной системе величин, единицей сопротивления является ом (русское обозначение: Ом; международное: Ω). В системе СГС как таковой единица сопротивления не имеет специального названия, однако в её расширениях (СГСЭ, СГСМ и гауссова система единиц) используются[3]:
- статом (в СГСЭ и гауссовой системе, 1 statΩ = (109c−2) с/см = 898 755 178 736,818 Ом (точно) ≈ 8,98755·1011 Ом, равен сопротивлению проводника, через который под напряжением 1 статвольт течёт ток 1 статампер);
- абом (в СГСМ, 1 abΩ = 1·10−9 Ом = 1 наноом, равен сопротивлению проводника, через который под напряжением 1 абвольт течёт ток 1 абампер).
Размерность сопротивления в СГСЭ и гауссовой системе равна TL−1 (то есть совпадает с размерностью обратной скорости, с/см), в СГСМ — LT−1 (то есть совпадает с размерностью скорости, см/с)[4].
Обратной величиной по отношению к сопротивлению является электропроводность, единицей измерения которой в системе СИ служит сименс (1 См = 1 Ом−1), в системе СГСЭ (и гауссовой) статсименс и в СГСМ — абсименс[5].
Физика явления[править | править код]
Высокая электропроводность металлов связана с тем, что в них имеется большое количество носителей тока — электронов проводимости, образующихся из валентных электронов атомов металла, которые не принадлежат определённому атому. Электрический ток в металле возникает под действием внешнего электрического поля, которое вызывает упорядоченное движение электронов. Движущиеся под действием поля электроны рассеиваются на неоднородностях ионной решётки (на примесях, дефектах решётки, а также нарушениях периодической структуры, связанной с тепловыми колебаниями ионов). При этом электроны теряют импульс, а энергия их движения преобразуются во внутреннюю энергию кристаллической решётки, что и приводит к нагреванию проводника при прохождении по нему электрического тока.
В других средах (полупроводниках, диэлектриках, электролитах, неполярных жидкостях, газах и т. д.) в зависимости от природы носителей заряда физическая причина сопротивления может быть иной. Линейная зависимость, выраженная законом Ома, соблюдается не во всех случаях.
Сопротивление проводника при прочих равных условиях зависит от его геометрии и от удельного электрического сопротивления материала, из которого он состоит.
Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:
где ρ — удельное сопротивление вещества проводника, Ом·м, l — длина проводника, м, а S — площадь сечения, м².
Сопротивление однородного проводника также зависит от температуры.
Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади сечения.
Сопротивление металлов снижается при понижении температуры; при температурах порядка нескольких кельвинов сопротивление большинства металлов и сплавов стремится или становится равным нулю (эффект сверхпроводимости). Напротив, сопротивление полупроводников и изоляторов при снижении температуры (в некотором диапазоне) растёт. Сопротивление также меняется по мере увеличения тока/напряжения, протекающего через проводник/полупроводник.
Зависимость сопротивления от материала, длины и площади поперечного сечения проводника[править | править код]
В металле подвижными носителями зарядов являются свободные электроны. Можно считать, что при своем хаотическом движении они ведут себя подобно молекулам газа. Поэтому в классической физике свободные электроны в металлах называют электронным газом и в первом приближении считают, что к нему применимы законы, установленные для идеального газа.
Плотность электронного газа и строение кристаллической решетки зависят от рода металла. Поэтому сопротивление проводника должно зависеть от рода его вещества. Кроме того, оно должно еще зависеть от длины проводника, площади его поперечного сечения и от температуры.
Влияние сечения проводника на его сопротивление объясняется тем, что при уменьшении сечения поток электронов в проводнике при одной и той же силе тока становится более плотным, поэтому и взаимодействие электронов с частицами вещества в проводнике становится сильнее.
Из формулы
видно, что сопротивление проводника прямо пропорционально его длине и обратно пропорционально площади его поперечного сечения. Величину ρ, характеризующую зависимость сопротивления проводника от материала, из которого он сделан, и от внешних условий, называют удельным сопротивлением вещества. Удельное сопротивление различных веществ при расчетах берут из таблиц.
Величину, обратную удельному сопротивлению, называют удельной проводимостью вещества и обозначают σ.
Сопротивление тела человека[править | править код]
- Для расчёта опасной величины силы тока, протекающего через человека при попадании его под электрическое напряжение частотой 50 Гц, сопротивление тела человека условно принимается равным 1 кОм[6]. Эта величина имеет малое отношение к реальному сопротивлению человеческого тела. В реальности сопротивление человека не является омическим, так как эта величина, во-первых, нелинейна по отношению к приложенному напряжению, во-вторых меняется во времени, в третьих, гораздо меньше у человека, который волнуется и, следовательно, потеет и т. д.
- Серьёзные поражения тканей человека наблюдаются обычно при прохождении тока силой около 100 мА. Совершенно безопасным считается ток силой до 1 мА. Удельное сопротивление тела человека зависит от состояния кожных покровов. Сухая кожа обладает удельным сопротивлением порядка 10000 Ом·м, поэтому опасные токи могут быть достигнуты только при значительном напряжении. Однако при наличии сырости сопротивление тела человека резко снижается и безопасным может считаться напряжение только ниже 12 В. Удельное сопротивление крови 1 Ом·м при 50 Гц[7].
Метрологические аспекты[править | править код]
Приборы для измерения сопротивления[править | править код]
- Омметр
- Измерительный мост
- Амперметр и вольтметр (сопротивление находится по формуле)
Средства воспроизведения сопротивления[править | править код]
- Магазин сопротивлений — набор резисторов
- Катушки электрического сопротивления
Государственный эталон сопротивления[править | править код]
- ГЭТ 14-91 Государственный первичный эталон единицы электрического сопротивления. Институт-хранитель: ВНИИМ.
Статическое и динамическое сопротивление[править | править код]
В теории нелинейных цепей используются понятия статического и динамического сопротивлений. Статическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение напряжения на элементе к току в нем. Динамическим сопротивлением нелинейного элемента электрической цепи в заданной точке его ВАХ называют отношение бесконечно
малого приращения напряжения к соответствующему приращению тока.
См. также[править | править код]
- Сверхпроводимость
- Закон Ома
- Закон Барлоу
- Удельное электрическое сопротивление
- Электрическая проводимость
- Отрицательное сопротивление
- Внутреннее сопротивление
- Импеданс
- Волновое сопротивление
- Активное сопротивление
- Реактивное сопротивление
Примечания[править | править код]
Ссылки[править | править код]
- Таблица удельного сопротивления проводников
- Электрическое сопротивление проводников
Литература[править | править код]
- В. Г. Герасимов, Э. В. Кузнецов, О. В. Николаева. Электротехника и электроника. Кн. 1. Электрические и магнитные цепи. — М.: Энергоатомиздат, 1996. — 288 с. — ISBN 5-283-05005-X.
Источник
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 декабря 2019; проверки требуют 5 правок.
Уде́льное электри́ческое сопротивле́ние (удельное сопротивление) — физическая величина, характеризующая способность материала препятствовать прохождению электрического тока, выражается в Ом·метр. Удельное электрическое сопротивление принято обозначать греческой буквой ρ. Значение удельного сопротивления зависит от температуры в различных материалах по-разному: в проводниках удельное электрическое сопротивление с повышением температуры возрастает, а в полупроводниках и диэлектриках — наоборот, уменьшается. Величина, учитывающая изменение электрического сопротивления от температуры, называется температурный коэффициент удельного сопротивления. Величина, обратная удельному сопротивлению, называется удельной проводимостью (удельной электропроводностью). В отличие от электрического сопротивления, являющегося свойством проводника и зависящего от его материала, формы и размеров, удельное электрическое сопротивление является свойством только вещества.
Электрическое сопротивление однородного проводника с удельным сопротивлением ρ, длиной l и площадью поперечного сечения S может быть рассчитано по формуле (при этом предполагается, что ни площадь, ни форма поперечного сечения не меняются вдоль проводника). Соответственно, для ρ выполняется
Из последней формулы следует: физический смысл удельного сопротивления вещества заключается в том, что оно представляет собой сопротивление изготовленного из этого вещества однородного проводника единичной длины и с единичной площадью поперечного сечения.
Единицы измерения[править | править код]
Единица измерения удельного сопротивления в Международной системе единиц (СИ) — Ом·м[1]. Из соотношения следует, что единица измерения удельного сопротивления в системе СИ равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 м², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом[2]. Соответственно, удельное сопротивление произвольного вещества, выраженное в единицах СИ, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 м².
В технике также применяется устаревшая внесистемная единица Ом·мм²/м, равная 10−6 от 1 Ом·м[1]. Данная единица равна такому удельному сопротивлению вещества, при котором однородный проводник длиной 1 м с площадью поперечного сечения 1 мм², изготовленный из этого вещества, имеет сопротивление, равное 1 Ом[2]. Соответственно, удельное сопротивление какого-либо вещества, выраженное в этих единицах, численно равно сопротивлению участка электрической цепи, выполненного из данного вещества, длиной 1 м и площадью поперечного сечения 1 мм².
Зависимость от температуры[править | править код]
В проводниках удельное электрическое сопротивление увеличивается с увеличением температуры. Это объясняется тем, что с ростом температуры увеличивается интенсивность колебания атомов в узлах кристаллической решетки проводника, что препятствует движению свободных электронов[3].
В полупроводниках и диэлектриках удельное электрическое сопротивление уменьшается. Это объясняется тем, что с увеличением температуры увеличивается концентрация основных носителей заряда.
Величина, учитывающая изменение удельного электрического сопротивление от температуры называют температурным коэффициентом удельного сопротивления.
Обобщение понятия удельного сопротивления[править | править код]
Кусок резистивного материала с электрическими контактами на обоих концах
Удельное сопротивление можно определить также для неоднородного материала, свойства которого меняются от точки к точке. В этом случае оно является не константой, а скалярной функцией координат — коэффициентом, связывающим напряжённость электрического поля и плотность тока в данной точке . Указанная связь выражается законом Ома в дифференциальной форме:
Эта формула справедлива для неоднородного, но изотропного вещества. Вещество может быть и анизотропно (большинство кристаллов, намагниченная плазма и т. д.), то есть его свойства могут зависеть от направления. В этом случае удельное сопротивление является зависящим от координат тензором второго ранга, содержащим девять компонент . В анизотропном веществе векторы плотности тока и напряжённости электрического поля в каждой данной точке вещества не сонаправлены; связь между ними выражается соотношением
В анизотропном, но однородном веществе тензор от координат не зависит.
Тензор симметричен, то есть для любых и выполняется .
Как и для всякого симметричного тензора, для можно выбрать
ортогональную систему декартовых координат, в которых матрица становится диагональной, то есть приобретает вид, при котором из девяти компонент отличными от нуля являются лишь три: , и . В этом случае, обозначив как , вместо предыдущей формулы получаем более простую
Величины называют главными значениями тензора удельного сопротивления.
Связь с удельной проводимостью[править | править код]
В изотропных материалах связь между удельным сопротивлением и удельной проводимостью выражается равенством
В случае анизотропных материалов связь между компонентами тензора удельного сопротивления и тензора удельной проводимости имеет более сложный характер. Действительно, закон Ома в дифференциальной форме для анизотропных материалов имеет вид:
Из этого равенства и приведённого ранее соотношения для следует, что тензор удельного сопротивления является обратным тензору удельной проводимости. С учётом этого для компонент тензора удельного сопротивления выполняется:
где — определитель матрицы, составленной из компонент тензора . Остальные компоненты тензора удельного сопротивления получаются из приведённых уравнений в результате циклической перестановки индексов 1, 2 и 3[4].
Удельное электрическое сопротивление некоторых веществ[править | править код]
Металлические монокристаллы[править | править код]
В таблице приведены главные значения тензора удельного сопротивления монокристаллов при температуре 20 °C[5].
Кристалл | ρ1=ρ2, 10−8 Ом·м | ρ3, 10−8 Ом·м |
---|---|---|
Олово | 9,9 | 14,3 |
Висмут | 109 | 138 |
Кадмий | 6,8 | 8,3 |
Цинк | 5,91 | 6,13 |
Теллур | 2,90·109 | 5,9·109 |
Металлы и сплавы, применяемые в электротехнике[править | править код]
Разброс значений обусловлен разной химической чистотой металлов, способами изготовления образцов, изученных разными учеными, и непостоянством состава сплавов.
|
|
Значения даны при температуре t = 20 °C. Сопротивления сплавов зависят от их химического состава и могут варьироваться. Для чистых веществ колебания численных значений удельного сопротивления обусловлены различными методами механической и термической обработки, например, отжигом проволоки после волочения.
Другие вещества[править | править код]
Тонкие плёнки[править | править код]
Сопротивление тонких плоских плёнок (когда её толщина много меньше расстояния между контактами) принято называть «удельным сопротивлением на квадрат», Этот параметр удобен тем, что сопротивление квадратного куска проводящей плёнки не зависит от размеров этого квадрата, при приложении напряжения по противоположным сторонам квадрата. При этом сопротивление куска плёнки, если он имеет форму прямоугольника, не зависит от его линейных размеров, а только от отношения длины (измеренной вдоль линий тока) к его ширине L/W: где R — измеренное сопротивление. В общем случае, если форма образца отличается от прямоугольной, и поле в плёнке неоднородное, используют метод ван дер Пау.
См. также[править | править код]
- Электрическое сопротивление
- Сверхпроводимость
- Закон Ома
- Удельная проводимость
- Отрицательное сопротивление
- Импеданс
- Температурный коэффициент электрического сопротивления
Примечания[править | править код]
- ↑ 1 2 Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Издательство стандартов, 1990. — С. 93. — 240 с. — ISBN 5-7050-0118-5.
- ↑ 1 2 Чертов А. Г. Единицы физических величин. — М.: «Высшая школа», 1977. — 287 с.
- ↑ Никулин Н. В., Назаров А. С. Радиоматериалы и радиокомпоненты. — 3-е изд. — М.: Высшая школа, 1986. — 208 с.
- ↑ Давыдов А. С. Теория твёрдого тела. — М.: «Наука», 1976. — С. 191—192. — 646 с.
- ↑ Шувалов Л. А. и др. Физические свойства кристаллов // Современная кристаллография / Гл. ред. Б. К. Вайнштейн. — М.: «Наука», 1981. — Т. 4. — С. 317.
Литература[править | править код]
- Никулин Н. В., Назаров А. С. Радиоматериалы и радиокомпоненты. — 3-е изд., переработанное и дополненное. — М.: Высшая школа, 1986. — С. 6—7. — 208 с.
Источник