Какое свойство водяного пара используется в теплообменниках

Вода — однородное химическое соединение, молекула которой состоит из трех атомов, принадлежащих двум химическим элементам — водороду и кислороду. Вода является прекрасным растворителем, поэтому все природные воды представляют собой растворы, содержащие разнообразные вещества — соли, газы.
Вода и водяной пар как рабочее тело и теплоноситель получили наибольшее применение в промышленности. Это объясняется широким распространением воды в природе, а также тем, что вода и водяной пар обладают относительно хорошими термодинамическими характеристиками.
Так, теплоемкость воды выше теплоемкости многих других жидкостей и твердых тел и в пределах от 0 до 100 °С при атмосферном давлении она равна 4,19 кДж/(кг- К), или 4,19 кДж/(кг °С). Теплопроводность воды Вт/(м-К), в отличие от теплопроводности других жидких и твердых тел с повышением температуры до 120… 140°С увеличивается, а при дальнейшем повышении температуры — уменьшается. Плотность воды изменяется с температурой. Наибольшей плотностью вода обладает при 4 °С.
Процесс перехода воды из жидкого состояния в газообразное (пар) называется испарением, а из газообразного в жидкое — конденсацией. Превращение воды в пар может протекать как при испарении, так и при кипении. Испарение — это процесс образования пара, происходящий с поверхности жидкости при любой температуре. При испарении молекулы воды отрываются от поверхности жидкости, имея относительно большие скорости. Вследствие этого средняя скорость движения молекул в массе воды уменьшается и температура жидкости понижается.
При подводе теплоты в процессе нагревания температура жидкости и интенсивность ее испарения увеличиваются, и при определенных температуре и давлении жидкость закипает.
Кипение — это процесс интенсивного парообразования во всей массе жидкости, который получает развитие при ее нагревании, т.е. подводе к системе определенного количества теплоты. При атмосферном давлении температура кипения составляет приблизительно 100 °С. С повышением давления температура кипения возрастает и, наоборот, в условиях пониженного давления (высоко в горах) температура кипения снижается.
Количество теплоты, которое необходимо сообщить воде для превращения ее из жидкого состояния в парообразное при температуре кипения, называется скрытой теплотой парообразования г. С повышением давления скрытая теплота парообразования уменьшается (табл. 1.1).
Ранее было отмечено, что конденсация — это процесс превращения пара в жидкость, называемую конденсатом.
Таблица 1.1 Свойства воды и сухого насыщенного пара
Абсолютное давление | Температура кипения, °С | Плотность пара, кг/м3 | Удельный объем пара, м3/кг | Энтальпия. кДж/кг | Скрытая теплота парообразования, кДж/кг | ||
МПа | кгс/см2 | кипящей воды | пара | ||||
0,02 | 0,2 | 59,67 | 0,129 | 7,789 | 250,7 | 2617,0 | 2366,3 |
0,04 | 0,4 | 75,42 | 0,246 | 4,066 | 316,7 | 2643,9 | 2327,2 |
0,06 | 0,6 | 85,45 | 0,360 | 2,782 | 359,1 | 2660,7 | 2301,6 |
0,08 | 0,8 | 92.99 | 0,471 | 2,125 | 390,6 | 2672,9 | 2282,3 |
0,10 | 1,0 | 99,09 | 0,580 | 1,725 | 416,6 | 2682,9 | 2266,3 |
0,12 | 1,2 | 104,5 | 0,687 | 1,455 | 438,5 | 2691,0 | 2252,5 |
0,17 | 1,7 | 115,00 | 0,956 | 1,044 | 483,0 | 2709,0 | 2226,0 |
0,20 | 2,0 | 119,62 | 1,109 | 0,902 | 499,8 | 2714,5 | 2210,9 |
0,50 | 5,0 | 151.11 | 2,620 | 0,382 | 554,8 | 2756,5 | 2117,6 |
0,90 | 9,0 | 174,33 | 4,456 | 0.219 | 741,3 | 2781,7 | 2040,4 |
1,40 | 14,0 | 194,13 | 6,974 | 0,143 | 828,7 | 2798,0 | 1969,4 |
2,00 | 20,0 | 211,38 | 9,852 | 0,102 | 906,8 | 2807,7 | 1909,9 |
4,00 | 40,0 | 249,18 | 19,700 | 0,051 | 1085,3 | 2809,8 | 1724,5 |
5,00 | 50,0 | 262,70 | 25,000 | 0,040 | 1149,3 | 2795,6 | 1646,3 |
6,00 | 60,0 | 274,29 | 30,300 | 0,033 | 1208,4 | 2786,8 | 1578,4 |
7,00 | 70,0 | 284,48 | 35,714 | 0,028 | 1266.6 | 2775,5 | 1513,8 |
8,00 | 80.0 | 293,62 | 41,667 | 0,024 | 1311,1 | 2762,0 | 1451,0 |
9,00 | 90,0 | 301,92 | 47,619 | 0,021 | 1357,1 | 2747,0 | 1389.8 |
10,00 | 100,0 | 309,53 | 55,556 | 0,018 | 1401,1 | 2730,2 | 1329,1 |
Количество теплоты, выделяющееся при конденсации 1 кг пара и численно равное г, называется теплотой конденсации пара.
Пар, имеющий максимальную плотность при конкретном давлении, называется насыщенным. Насыщенный водяной пар может быть влажным и сухим. Насыщенным является пар, полученный при кипении воды и имеющий с ней одинаковую температуру при том же давлении. В объеме влажного насыщенного пара в виде мельчайших капелек находится вода, которая образуется при разрыве оболочек паровых пузырьков. Сухой насыщенный пар, имея температуру насыщения, влаги не содержит.
Пар, температура которого для определенного давления превышает температуру насыщенного пара, называется перегретым. Разность температур перегретого и сухого насыщенного пара при том же давлении называется перегревом пара.
Важной характеристикой влажного насыщенного водяного пара является степень его сухости X которая определяет долю пара в пароводяной смеси. Соответственно Y — доля жидкости, т.е.
Х= 1-Y
Отделение капель воды от пара называется сепарацией, а устройства, предназначенные для этой цели, — сепараторами.
Энтальпия влажного насыщенного пара ∆hx, кДж/кг, выражается через степень сухости следующим образом:
∆hx = ∆h’ + rХ;
где ∆h’ — энтальпия воды при температуре кипения, кДж/кг; r — скрытая теплота парообразования, кДж/кг.
Энтальпия перегретого пара ∆hn.n, кДж/кг, равна
∆hn.n = ∆h” + сп(tп.п-tн.п),
где ∆h” — энтальпия сухого насыщенного пара, кДж/кг; сп — удельная теплоемкость пара, кДж/(кг-°С); tп.п, tн.п — температура перегретого и насыщенного пара, °С.
В табл. 1.1 приведены изменения отдельных показателей воды и водяного пара с повышением давления.
Источник
Для того чтобы понять, как работает конденсатор, регенеративные и сетевые подогреватели, ядерные реакторы и многие другие элементы ТЭС, ТЭЦ и АЭС, необходимо знать некоторые свойства воды и водяного пара, который является рабочим телом паротурбинных установок (ПТУ). Их свойства в значительной степени определяют конструкцию паровой турбины и других элементов ПТУ.
Вода — это практически несжимаемая жидкость: при изменении давления в широких пределах ее плотность изменяется очень мало.
Если воду нагреть в открытом сосуде (рис. 1.1), то при определенной температуре начинается ее кипение и образование над ее поверхностью пара. Температура кипящей воды и образующегося при кипении пара одинаковы и неизменны в процессе всего выкипания жидкости. Если описанный выше опыт поставить при атмосферном давлении (760 мм рт. сг.), то кипение и испарение будут происходить при 100 °С.
Эту температуру называют температурой кипения, или температурой насыщения и обозначают /н. Последнее название связано с тем, что при спокойном кипении над поверхностью воды образуется сухой насыщенный пар — пар, в котором отсутствуют капельки воды. Если темпера- туру сухого насыщенного пара снизить (а это можно сделать только путем одновременного снижения давления), то часть пара сконденсируется и в нем появятся капельки воды. Такой пар называется влажным. Если, наоборот, сухой насыщенный пар нагреть, то он окажется перегретым по отношению к состоянию насыщения.
Рис. 1.1. Образование сухого насыщенного пара
Если снизить давление в сосуде, то кипение и испарение будут происходить при меньшей температуре. Это используется в так называемых вакуумных деаэраторах, установленных в системах подпитки теплосети: достаточно в сосуде (деаэраторе) создать давление в 0,5 кгс/см2 * 50 кПа, и она закипит всего при температуре 81 °С.
Наоборот, если повысить давление в сосуде, то она закипит и начнет испаряться при более высокой температуре.
Это свойство широко используют в больницах для стерилизации мединст- рументов при повышенной температуре в автоклавах, для быстрого приготовления пищи и т.д. Оно очень широко используется в различном оборудовании ТЭС. Например, в стандартном деаэраторе поддерживается давление 6 кгс/см2 * 0,6 МПа, и вода в нем закипает при нагреве до 159 °С.
В барабане барабанных котлов поддерживается давление 140 кгс/см2 =
Рис. 1.2. Связь между температурой и давлением кипения (конденсации, испарения) с указанием областей работы:
/ — конденсаторы паровых турбин; 2 — сетевые подогреватели; 3 — парогенераторы АЭС; 4 — барабаны современных котлов
= 13,7 МПа, и поэтому в нем генерируется насыщенный пар с температурой примерно 335 °С. В парогенераторах двухконтурных АЭС нагрев и испарение воды происходит при давлении 6 МПа, и поэтому температура образующегося насыщенного пара составляет 275,6 °С.
Важно четко усвоить, что температура насыщения однозначно определяется давлением над ее поверхностью. Эта однозначная связь представлена на рис. 1.2.
Тепловая энергия, расходуемая на поддержание кипения в сосуде, затрачивается на разрыв связей между молекулами воды, т.е. на ее испарение. Молекулы испарившейся жидкости обладают большей энергией на величину удельной теплоты парообразования г, представляющей собой количество тепловой энергии, необходимой для испарения 1 кг кипящей жидкости. Измеряется величина г в кДж/кг или ккал/кг.
Плотность сухого насыщенного пара, естественно, меньше, чем воды, и так же, как температура насыщения, она однозначно определяется давлением. Чем выше давление, тем больше плотность пара. При давлении р = = 22,115 МПа плотность воды и сухого насыщенного пара совпадают, температура насыщения /н = /кр = 374,12 °С, а теплота парообразования г = 0. Столь своеобразное состояние, характеризуемое отмеченными параметрами, называется критическим, а они сами — критическими. В критическом состоянии плотность воды и пара совпадают и они, по существу, неразличимы.
Рассмотренный опыт по испарению и образованию сухого насыщенного пара можно провести в обратном порядке.
Рис. 1.3. Принцип работы теплообменников тепловых электростанций, использующих теплоту конденсации пара
Представим себе, что в сосуд, показанный на рис. 1.3, а, некоторое время подается насыщенный пар при открытом в атмосферу вентиле I, после чего вентили / и 2 закрываются и сосуд оказывается под некоторым давлением пара. Если теперь этот сосуд начать охлаждать, поместив его в среду с достаточно низкой температурой, то пар будет конденсироваться, отдавая тепловую энергию через стенку сосуда окружающей среде. При этом давление пара над зеркалом воды в сосуде будет уменьшаться и всегда совпадать с давлением насыщения, соответствующем температуре образующейся жидкости. Это соответствие определяется связью между давлением и температурой насыщения, представленной на рис. 1.2. Если, например, изначально через сосуд протекал сухой насыщенный пар с температурой 100 °С (и соответственно с давлением 1 кгс/см2 * 100 кПа), а затем сосуд вместе с содержащимся в нем паром охладили до 81 °С, то часть пара сконденсируется и в сосуде установится давление 0,5 кгс/см2 * « 50 кПа, т.е. вакуум.
Пар превращается в воду потому, что от него отбирается теплота конденсации, равная теплоте парообразования г. В результате конденсации пара на дне сосуда образуется конденсат, а над зеркалом конденсата — насыщенный водяной пар. Чем сильнее будет охлажден пар в сосуде, тем больше образуется конденсата на его дне и тем более глубокий вакуум будет получен.
На рис. 1.3,6 показана принципиальная схема установки для непрерывной конденсации постоянного поступающего пара. Если в сосуде установить змеевик, по которому пропускать относительно холодную воду, то пар, поступающий в сосуд, будет встречать на своем пути холодную поверхность змеевика и конденсироваться на ней. Если для удаления образующегося конденсата имеется какое-либо устройство, например насос, то будет происходить непрерывная конденсация поступающего пара, а внутри сосуда будет поддерживаться давление, соответствующее температуре образующегося конденсата, примерно равного температуре охлаждающей воды. На описанном принципе основана работа конденсатора, сетевых и регенеративных подогревателей, парогенераторов АЭС и многих других устройств, области работы которых показаны на рис. 1.2.
В турбины ТЭС и ТЭЦ, построенных на докритические параметры, поступает перегретый пар, температура которого больше температуры насыщения (при этом же давлении) на значение А?п.
Поступивший в турбину пар расширяется в ней и в определенной точке турбины проходит через состояние насыщения, а затем становится влажным — смесью сухого насыщенного пара и капель воды. Содержание влаги на выходе из турбины (точнее — за ее последними вращающимися лопатками) для ее надежной работы не должно превышать 10 — 13 %. Влажный пар из турбины поступает в конденсатор, где превращается в воду, имеющую температуру насыщения.
Источник
Всистемах парового отопления используется свойство пара при конденсации выделять скрытую теплоту фазового превращения. При конденсации в нагревательном приборе 1 кг пара помещение получает около 2260 кДж теплоты.
По сравнению с системами водяного отопления системы парового отопления имеют следующие преимущества:
1) благодаря малой плотности пара он перемещается с большими скоростями, вследствие чего требуются меньшие диаметры теплопроводов, чем при водяном отоплении, поэтому стоимость теплопроводов в системах парового отопления ниже, чем в системах водяного отопления;
2) больший коэффициент теплоотдачи от пара к стенкам отопительного прибора (за счет высокой величины скрытой теплоты фазового превращения), благодаря этому и высокой температуре пара площадь поверхности отопительных приборов в системах парового отопления приблизительно на 25—30 % меньше, чем в системах водяного отопления;
3) быстрый прогрев помещений и выключение системы из работы;
4) возможность использовании систем отоплении зданиях повышенной этажности вследствие малой плотности пара.
Однако наряду со всеми перечисленными положительными свойствами, пар имеет ряд существенных недостатков:
1) невозможность центрального качественного регулирования (изменения температуры теплоносителя) подачи теплоты, вследствие чего в помещении трудно поддерживать постоянную и равномерную температуру; обеспечение постоянной температуры достигается путем периодического выключения системы (регулирование «пропусками»), что неудобно в эксплуатации;
2) загрязнение воздуха продуктами сухой возгонки (разложения) органической пыли, оседающей на поверхность отопительных приборов;
3) большие теплопотери паропроводов;
4) сокращение срока службы паропроводов в результате попадания воздуха в систему при периодическом ее отключении, вызывающего интенсификацию коррозии, особенно конденсатопроводов.
Недостатки пара как теплоносителя не позволяют использовать его для отопления жилых домов, общежитий, детских и лечебных учреждений, библиотек, музеев и ряда других.
В соответствии со СНиП 2.04.05—86 системы парового отопления рекомендуется устраивать в производственных помещениях, а также в лестничных клетках, пешеходных переходах, вестибюлях и тепловых пунктах.
При паровом отоплениив приборах выделяется теплота фазового превращения в результате конденсации пара. Конденсат удаляется из приборов и возвращается в паровой котел.
Системы парового отопления по способу возвращения конденсата в котел разделяются на замкнутые(рис.2 а) с самотечным возвращением конденсата и разомкнутые(рис.2 б) с перекачкой конденсата насосом.
Рис. 2 Схемы системы парового отопления: а – замкнутая схема; б – разомкнутая схема;
1 – паровой котел с паросборником; 2 – паропровод (Т7); 3 – отопительный прибор; 4 и 5 –
самотечный и напорный конденсатопроводы (Т8); б – воздуховыпускная труба; 7 – конден-
сатный бак; 5 – конденсатный насос; 9 – парораспределительный коллектор
В замкнутой системе конденсат непрерывно поступает в котел под действием разности давления, выраженного столбом конденсата высотой h (см. рис.2 а) и давления пара рп в паросборнике котла. В связи с этим отопительные приборы должны находиться достаточно высоко над паросборником (в зависимости от давления пара в нем).
Воздушное отопление
При воздушном отоплении циркулирующий нагретый воздух охлаждается, передавая теплоту при смешении с воздухом обогреваемых помещений и иногда через их внутренние ограждения. Охлажденный воздух возвращается к нагревателю.
Системы воздушного отопления по способу создания циркуляции воздуха разделяются на системы:
§ с естественной циркуляцией (гравитационные);
§ с механическим побуждением движения воздуха с помощью вентилятора.
В гравитационной системе используется различие в плотности нагретого и окружающего отопительную установку воздуха. Как и в водяной вертикальной гравитационной системе, при различной плотности воздуха в вертикальных частях возникает естественное движение воздуха в системе. При применении вентилятора в системе создается вынужденное движение воздуха.
Воздух, используемый в системах отопления, нагревается до температуры, обычно не превышающей 60 °С, в специальных теплообменниках -калориферах. Калориферы могут обогреваться водой, паром, электричеством или горячими газами. Система воздушного отопления при этом соответственно называется:
§ водовоздушной;
§ паровоздушной;
§ электровоздушной;
§ газовоздушной.
По способу подачи воздуха, системы отопления могут быть:
§ с подачей воздуха сверху наклонными струями в направлении рабочей зоны;
§ с подачей воздуха выше рабочей зоны горизонтальными струями, когда рабочие места находятся в зоне обратного потока воздуха.
Воздушное отопление может быть местным или центральным.
В местной системе воздух нагревается в отопительной установке с теплообменником (калорифером или другим отопительным прибором), находящимся в обогреваемом помещении.
В центральной системе теплообменник (калорифер) размещается в отдельном помещении (камере). Воздух при температуре tвподводится к калориферу по обратному (рециркуляционному) воздуховоду. Горячий воздух при температуре tг перемещаетсявентилятором в обогреваемые помещения по подающим воздуховодам. Основное преимущество воздушного отопления по сравнению с другими видами центрального отопления – уменьшенный расход металла, потому что для устройства воздушного отопления не применяются отопительные приборы и трубы, как, например, при водяном отоплении или паровом отоплении. Еще одно существенное преимущество воздушного отопления перед другими видами отопления – это возможность совмещения его действия с вентиляцией и кондиционированием воздуха. Главным образом воздушное отопление используется в общественных и промышленных зданиях.
Панельно-лучистое отопление
Панельно-лучистое отопление осуществляется с помощью встроенных, пристроенных или подвесных излучающих панелей. Встроенные и пристроенные излучающие панели представляют собой бетонные плиты, в массиве которых заделаны нагревательные элементы, как правило, металлические трубы. Можно также использовать полиэтиленовые трубы (из полиэтилена повышенной термопрочности), трубы из других материалов, каналы в панелях перекрытий и т. п. Бетонные отопительные панели часто совмещают с бетонными ограждающими конструкциями зданий из трехслойных плит.
В качестве теплоносителя при панельном отоплении, как правило, используется нагретая вода; можно использовать нагретый воздухв случае применения в качестве теплоотдающих плит перекрытий с пустотами. Водяные системы панельного отопления следует присоединять к источникам теплоснабжения с умягченной и деаэрированной водой, что необходимо для уменьшения внутреннейкоррозии труб и обеспечения длительного срока эксплуатации.
В зависимости от конструктивных особенностей и способа установки панельно-лучистые системы отопления разделяются на:
§ системы со стеновыми (подоконные и плинтусные) панелями;
§ системы с потолочными панелями;
§ системы с напольными панелями.
Наибольшее распространение в жилищном строительстве получили стеновые совмещенные и приставные подоконные панели. Плинтусные приставные панели применяются в основном для отопления детских учреждений. Напольные панели используются для обогрева лестничных площадок, полов вестибюлей, реже в жилых помещениях.
Системы отопления со стеновыми и подоконными панелями могут быть одно- и двухтрубными. Применение стеновых панелей в однотрубной системе с П-образными стояками позволяет унифицировать нагревательные элементы по этажам.
Электрическое отопление
Прямое электрическое отопление – наиболее перспективный в России, и самый популярный вид в Европе вид. В условиях прямого отопления частного дома электричеством помещения обогревают без участия теплоносителя: электрическая энергия преобразуется в тепловую без всяких посредников.
Электрические системы требуют хорошей теплоизоляции, так как в противном случае владельца ждут большие расходы на электроэнергию. Однако с позиций безопасности для жильцов электроотопление является самым лучшим из современных видов. При планировке электрического отопления дома необходимо учитывать состояние и мощность электрической проводки. Для больших площадей, например для дома, может потребоваться трёхфазная электросеть. Если говорить о дешевизне, то более приемлем вариант использования природного газа, но при этом подводка централизованного газопровода к Вашему дому – дорогое удовольствие, сопряженное с бумажной волокитой и большими затратами времени. Есть возможность использовать в качестве энергоносителя дизельное топливо. Но при таком подходе не обойтись без дополнительных расходов на монтаж, так как топливо требует установку резервуаров и системы подведения его к котельной. Очень важно запланировать отопление дома электричеством в основном проекте здания, так как в дальнейшем установка в уже построенный дом может привести к необходимости ремонта. В любом случае при постройке потребуются квалифицированные специалисты, которые возьмут на себя задачу рационального планирования и обеспечат правильное направление всех работ.
Электроотопление дома имеет много существенных достоинств, среди которых:
· легкость и удобство эксплуатации системы,
· эффективная возможность регулирования отдачи тепла,
· небольшие габаритные размеры отопительных приборов, которые к тому же не требуют особого ухода,
· высокая гигиеничность и экологические достоинства электрических обогревателей,
· бесшумность отопительной системы.
Очень удачным в экономическом плане является выбор в пользу электрообогревателя. Такое приобретение окажется очень полезным для дачников, особенно под Питером, когда необходимо отопление частного дома электричеством, в индивидуальном доме, да и в городской квартире. Чтобы определиться с выбором, надо в первую очередь учитывать цели, для которых предназначен именно такой обогреватель, он должен быть бытового назначения. Широко известные масляные обогреватели на сегодня морально устарели, к тому же имеют ряд существенных недостатков (громоздкость, малая эффективность, неравномерность прогревания воздуха, сжигание кислорода воздуха). В целом такие обогреватели даже могут нанести существенный вред здоровью, вызывать головокружение и потерю сознания при длительной эксплуатации. Не следует забывать и о пожарной небезопасности этого класса приборов. В отсутствие альтернативы такие приборы ранее нашли широкое применение, но в сегодняшних условиях представлено большое количество обогревателей, особенно в магазинах Москвы, более эффективных и безопасных, поэтому приобретать масляные электрообогреватели бессмысленно.
Источник