Какое влияние марганца на свойство стали

Какое влияние марганца на свойство стали thumbnail

Содержание:

  • Влияние марганца на структуру и свойства стали

Влияние марганца на структуру и свойства стали

  • Влияние марганца на структуру и характеристики стали Марганец является Карбидообразующим элементом. Использование углерода дает карбиды Mn3C Mangan, которые более стабильны и долговечны, чем карбид железа (цементит).При введении марганца в железоуглеродистый сплав (чугун, сталь) чистые карбиды марганца не образуются, но образуются сложные (двойные) карбиды цементного типа (Fe-Mn) 3C, в которых часть атомов железа всегда замещается марганцем atoms. In Высокомарганцевые аустенитные стали, 1C00 входят в состав таких множественных карбидов 1390 ′ Одна тысяча триста * 1200 Одна тысяча сто Хм. 。 910° ^ 900 В 300. 200. 100 л- 13.2 Тридцать м п + а-ffn (53 63 минута. 730 ′ 10 20 30 iO 50 60 70 SO 90 nn содержание марганца. U. (Вес) Рис.23.

Схема системы Fe-Mp. Влияние марганца на структуру и свойства стали 89 С большим количеством марганца, чем железа(около 80% Mn и 20% Fe), и перлитной марганцевой стали со средним содержанием менее 3% Mn, этот карбид содержит больше железа, чем марганца (около 80% Fe и 20% Mn). В промежуточной марганцевой стали (класс перлита) марганец частично связан с образованием углерода и двойных карбидов, а частично с твердым раствором с iron. In кроме того, распределение марганца между карбидом и твердым раствором этой стали составляет приблизительно соотношение 1.. 4, то есть 4 раза с карбидом марганца 150. 600. г Лу. Мне 150. Один Один ЯГ ! > я-я-я-Я-Я-Я-Я-Я-Я-я… г «) 3-6 О •— •—.  / Яг ’ •—_ < г’ ) 6/9 Шесть 24.

Влияние марганца на критические точки сталей 0,4% C (a) и 0,9% C (b) Меньше, чем твердый раствор.

Людмила Фирмаль

Например, если общее содержание марганца в Стали равно 1,5%, то для карбидов оно составит около 0,3%, для твердых растворов-1,2%, а для карбидов-0,4 общее содержание составит 2,0%.% , Твердый раствор 1,6%, ЕТК. Марганец » снижает концентрацию углерода в perlite. In на диаграмме состояния железоуглеродистой системы под влиянием марганца точка кодирования 5 смещается влево в направлении, отклоняющемся от содержания углерода. Каждый процент марганца снижает концентрацию углерода в перлите на 0,05-0,06%, так, например, в сталях, содержащих 4% Mn, содержание перлита составляет всего 0,6%.

Точка е, на которую влияет (максимальная концентрация углерода в Фэт) марганец, незначительно смещается в сторону right. In другими словами, марганец повышает растворимость углерода в аустените. На рисунке 24 показано влияние марганца на критические точки 0,4 и 0,9% С стали. Из этого рисунка следует, что если увеличить количество марганца с 0,5 до 3,0 и нормализовать сплав углеродистой стали с 0,4% С, то точка% перлитной конверсии последовательно снижается, а точка% перлитной конверсии-АР постепенно проходит. Выше 3,5% Мп появляется марганцевая сталь, которая является точкой мартенситного превращения M. 

  • То есть при охлаждении стали на воздухе с увеличением содержания марганца(нормализованного) происходят точно такие же структурные изменения(происходит при увеличении скорости охлаждения простой углеродистой стали).Аустенит для стали с равномерным содержанием мартенсита или среднего углерода значительно легче, чем для стали с высоким содержанием углерода. На рисунке показано, что в стали 6% Mn, 0,4% C теряется точка тру плотного превращения, получается структура, состоящая из 100% мартенсита, и содержание марганца 0,9% C P стали, осаждается большое количество богатых марганцем карбидов, аустенит на его периферии истощается, что делает Манган нестабильным, и за короткий промежуток времени содержание марганца при охлаждении в зоне метаморфоза разлагается как смесь феррита и цементита. —

Если расход углерода превышает 0,9%, наряду с мартенситом или аустенитом, то вдоль границ зерен, где осаждается карбид марганца, всегда появляется труцит. Марганец вносит большой вклад в аустенитное переохлаждение. Поэтому под воздействием перлитной стали гистерезис между критическими точками увеличивается, а критическая скорость закалки уменьшается sharply. In в этом отношении марганец занимает 1-е место среди других легирующих веществ elements.

In стол. На рис. 17 приведены данные о влиянии марганца на критическую скорость закалки механической стали.
Людмила Фирмаль

Таблица 17 Влияние марганца на критическую скорость закалки среднеуглеродистой стали машиностроение с.% 0.48 0.47 0.46 0.46 MP、% 0.57 1.18 1.80 2.20 Температура закалки 850. 840. 830. Восемьсот двадцать Критическая скорость отверждения,°С / с 520. 120. Тридцать пять Восемь Как видно из таблицы, в станкостроительной стали из углеродистой стали Мп составляет — 1,8%, поэтому изделие диаметром до 20-25 мм погружают не в воду, а в следующую. В эвтектоидных и за〜эвтектоидных сталей 0.8-1.2%, влияние марганца на структуру и свойства стали 91 Эффект марганца и снижение критической скорости закалки еще сильнее. Снижая критическую скорость отверждения, марганец значительно улучшает упрочняющие свойства steel.

In стол. Эффект марганца показан на рисунке 18 и полностью излечим в образцах различного диаметра, изготовленных из углерода и среднего марганца В конструкционной стали, она твердеет на 820-850°пока охлаждающ с водой и маслом. Таблица 18 Диаметр отвержденного образца Состав стали、% И 0.48 0.47 0.46 Mp 0.57 1.18 1.80 Диаметр отверждаемого изделия при отверждении, мм В масле Четыре Двадцать Сорок В воде Двенадцать Сорок 60. Из данных, приведенных в этой таблице, его можно закалить маслом для отверждения изделий из среднеуглеродистых конструкционных сталей диаметром 1,80% Мп и длиной до 40 мм. Для качества закаленных изделий большое значение имеет влияние легирующих элементов на температуру мартенситного превращения и количество удерживаемого аустенита в структуре закаленной стали.

Чем ниже точка мартенситного превращения, тем сильнее упрочнение «будет удерживать больше в структуре аустенитной стали, что снизит твердость и прочность стали». кроме того, когда количество остаточного аустенита увеличивается, предел усталости стали резко падает, когда детали используются с переменными нагрузками. Марганец является одним из легирующих элементов, способствующих переохлаждению аустенита и повышению его стабильности. 1 при увеличении содержания марганца и закалке стали температура мартенситного превращения снижается, а количество удерживаемого аустенита увеличивается.

Количество остаточного аустенита в марганцевой стали очень сильно зависит от температуры нагрева стали перед закалкой: даже незначительное повышение температуры закалки марганцевой стали сопровождается повышением стабильности Фета. На рис. 25 показано влияние марганца на содержание мартенсита и остаточного аустенита в сталях, содержащих 0,5, 0,8 и 1,0% С, при закалке от оптимальной температуры. That92 марганцевой стали В структуре 2% MN высокоуглеродистой закаленной стали количество остаточного аустенита достигает 30-40%. При нагреве перлитно-марганцевой стали под воздействием Mn более 2% с содержанием углерода 0,4-0,5% скорость роста зерен резко возрастает и сталь становится чувствительной к перегреву.

<При нагреве марганцевой стали на 0,2-0,3% С до 3% марганца не будет увеличиваться, но это снизит скорость роста зерна и уменьшит склонность стали к перегреву[69]. В среднеуглеродистой конструкционной стали 0,4-0,5% с предел текучести и прочность увеличатся за счет влияния марганца после закалки и высокого отпуска(улучшения), но пластичность и вязкость значительно уменьшатся, а в мягкой стали с повышением содержания марганца примерно на 3% менее 0,2-0,3% прочность стали возрастет без выраженного снижения пластичности и пластичности[69]. На рисунке 26 представлена диаграмма соотношения углерода и марганца. Восемьдесят%б 0 Один- Да. 300. О * ОО • 「- В ’У’ Три г / / / * В、 х г с MP.% Рисунок 25.Остаточное содержание аустенита в закаленных сталях с различным влиянием марганца на точку мартенситного превращения (м») и содержание углерода: / −1.0% с; 2-0. 8%C; 3-0, 5%C требуется для получения Высокопрочная марганцево-стойкая инженерная сталь.

Этот рисунок показывает, что благодаря правильному сочетанию прочности и вязкости, чем выше содержание марганца в стали, тем ниже содержание углерода. При цементации стали марганец несколько ускоряет процесс цементации, увеличивая концентрацию углерода на поверхности цементного изделия. При длительном давлении при цементации в цементном слое стали, содержащем 1,5-2,0% Mn, рост зерен наблюдается редко, рост зерен под влиянием марганца, особенно в низкоуглеродистых кернах. На фиг. 27 представлена структурная схема марганцевой стали, из которой нормализуется образец, чтобы показать влияние марганца на структуру и характеристики стали.

Марганцевую сталь диаметром 25 мм можно классифицировать на 3 класса, в зависимости от микроструктуры, в зависимости от содержания в ней углерода и марганца.1) перлит. 2) мартенсит и 3) аустенит. < 0,4-0,5% C сталь имеет перлитную структуру до 2,0% Mp, а когда содержание 1,5% Mp уже превышает 0,8% C, в стали начинает появляться мартенсит structure. At в то же время этот показатель показывает, что углерод и марганец взаимно замещают и дополняют друг друга. Чем выше содержание углерода в стали、 26. C и MP совместное влияние. 27.Структурная схема механических свойств марганцевой стали и стали Бист(рисунок) Для получения неравновесных мартенситных или аустенитных структур требуется меньше марганца. В машиностроении широко используются только 2 класса марганцевой стали.

Перлит, содержащий 0,1-0,8% C при 0,7-2,0% Mn и аустенит, содержащий 1,0-1% 10-14% Mn при 4% C. При изотермическом превращении аустенита марганцевой стали с содержанием марганца до 2% Общий вид С-образной диаграммы практически не изменяется по сравнению с диаграммой углеродистой стали в течение инкубационного периода и времени полного изотермического превращения аустенита под действием марганца. Инжир. 図28は 、 0.Является фигурой изотермического превращения аустенитной стали 5 %. C и 1.8%Mp, для сравнения, показывает простой показатель углеродистой стали 0.5% C на том же рисунке. В медленно охлаждаемой углеродистой стали Nieco со сбалансированной структурой содержание марганца составляет до 10-12% 94 марганцевой стали Вызывает относительно небольшое увеличение твердости.

Поэтому, когда определенное количество марганца добавляется к перлитной стали, критическая скорость закалки в основном снижается, и прокаливаемость улучшается. 200 секунд a * u > время, sen u * 28.Иллюстрация изотермического превращения углеродистой стали 50 (слева) и аустенитной марганцевой стали 50Г2 (справа) На рис. 29 представлен график влияния марганца на твердость стали при 1% С после воздушного охлаждения (2) и 0,5% С после печи. Когда содержание марганца увеличивается и сталь нормализуется 60. Пятьдесят 8-0. Th / / 、 —• Х _ 29.

Нормализующее 0,5% C (1}и отжигающее (2) влияние марганца на твердость стали 3 4 Mp % От 0,4 до 4,0% твердость стали постоянно увеличивается. При более чем 4% Мп в структуре начинает появляться γ-марганцевая техническая сталь класса перлита 95. Твердость стали составляет reduced. In отожженная перлитная сталь, твердость под воздействием марганца почти не увеличивается.

Смотрите также:

Решение задач по материаловедению

Источник

Условные обозначения химических элементов:

хром ( Cr ) — Х
никель ( Ni ) — Н
молибден ( Mo ) — М
титан ( Ti ) — Т
медь ( Cu ) — Д
ванадий ( V ) — Ф
вольфрам ( W ) — В
азот ( N ) — А
алюминий ( Аl ) — Ю
бериллий ( Be ) — Л
бор ( B ) — Р
висмут ( Вi ) — Ви
галлий ( Ga ) — Гл
иридий ( Ir ) — И
кадмий ( Cd ) — Кд
кобальт ( Co ) — К
кремний ( Si ) — C
магний ( Mg ) — Ш
марганец ( Mn ) — Г
свинец ( Pb ) — АС
ниобий ( Nb) — Б
селен ( Se ) — Е
углерод ( C ) — У
фосфор ( P ) — П
цирконий ( Zr ) — Ц

 ВЛИЯНИЕ ПРИМЕСЕЙ НА СТАЛЬ И ЕЕ СВОЙСТВА

Углерод — находится в стали обычно в виде химического соединения Fe3C, называемого цементитом. С увеличением содержания углерода до 1,2% твердость, прочность и упругость стали увеличиваются, но пластичность и сопротивление удару понижаются, а обрабатываемость ухудшается, ухудшается и свариваемость.

Кремний — если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает.(Полезная примесь; вводят в качестве активного раскислителя и остается в стали в кол-ве 0,4%)

Марганец —  как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. (Полезная примесь; вводят в сталь для раскисления и остается в ней в кол-ве 0,3-0,8%. Марганец уменьшает вредное влияние кислорода и серы.

Сера —  является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, — свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. ( От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды MnS).

Фосфор — также является вредной примесью. Снижает вязкость при пониженных температурах, то есть вызывает хладноломкость. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

 ЛЕГИРУЮЩИЕ ЭЛЕМЕНТЫ И ИХ ВЛИЯНИЕ НА СВОЙСТВА СТАЛИ

Хром (Х) — наиболее дешевый и распространенный элемент. Он повышает твердость и прочность, незначительно уменьшая пластичность, увеличивает коррозионную стойкость; содержание больших количеств хрома делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Никель (Н) — сообщает стали коррозионную стойкость, высокую прочность и пластичность, увеличивает прокаливаемость, оказывает влияние на изменение коэффициента теплового расширения. Никель – дорогой металл, его стараются заменить более дешевым.

Вольфрам (В) — образует в стали очень твердые химические соединения – карбиды, резко увеличивающие твердость и красностойкость. Вольфрам препятствует росту зерен при нагреве, способствует устранению хрупкости при отпуске. Это дорогой и дефицитный металл.

Ванадий (Ф) — повышает твердость и прочность, измельчает зерно. Увеличивает плотность стали, так как является хорошим раскислителем, он дорог и дефицитен.

Кремний (С)-  в количестве свыше 1% оказывает особое влияние на свойства стали: содержание 1-1,5% Si увеличивает прочность, при этом вязкость сохраняется. При большем содержании кремния увеличивается электросопротивление и магнитопроницаемость. Кремний увеличивает также упругость, кислостойкость, окалиностойкость.

Марганец (Г) —  при содержании свыше 1% увеличивает твердость, износоустойчивость, стойкость против ударных нагрузок, не уменьшая пластичности.

Кобальт (К) — повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Молибден (М) — увеличивает красностойкость, упругость, предел прочности на растяжение, антикоррозионные свойства и сопротивление окислению при высоких температурах.

Титан (Т) — повышает прочность и плотность стали, способствует измельчению зерна, является хорошим раскислителем, улучшает обрабатываемость и сопротивление коррозии.

Ниобий (Б) — улучшает кислостойкость и способствует уменьшению коррозии в сварных конструкциях.

Алюминий (Ю) — повышает жаростойкость и окалиностойкость.

Медь (Д) — увеличивает антикоррозионные свойства, она вводится главным образом в строительную сталь.

Церий — повышает прочность и особенно пластичность.

Цирконий (Ц) — оказывает особое влияние на величину и рост зерна в стали, измельчает зерно и позволяет получать сталь с заранее заданной зернистостью.

Лантан, цезий, неодим — уменьшают пористость, способствуют уменьшению содержания серы в стали, улучшают качество поверхности, измельчают зерно.

Источник

Каждый химический элемент, входящий в состав стали, по-своему влияет на ее механические свойства – улучшает или ухудшает.

Углерод (С), являющийся обязательным элементом и находящимся в стали обычно в виде химического соединения Fe3C (карбид железа), с увеличением его содержания до 1,2% повышает твердость, прочность и упругость стали и уменьшает вязкость и способность к свариваемости. При этом также ухудшаются обрабатываемость и свариваемость.

Кремний (Si) считается полезной примесью, и вводится в качестве активного раскислителя. Как правило, он содержится в стали в небольшом количестве (в пределах до 0,4%) и заметного влияния на ее свойства не оказывает. Но при содержании кремния более 2% сталь становится хрупкой и при ковке разрушается.

Марганец (Mn) содержится в обыкновенной углеродистой стали в небольшом количестве (0,3-0,8%) и серьезного влияния на ее свойства не оказывает. Марганец уменьшает вредное влияние кислорода и серы, повышает твердость и прочность стали, ее режущие свойства, увеличивает прокаливаемость, но снижает стойкость к ударным нагрузкам.

Сера (S) и фосфор (Р) являются вредными примесями. Их содержание даже в незначительных количествах оказывает вредное влияние на механические свойства стали. Содержание в стали более 0,045% серы делает сталь красноломкой, т.е. такой, которая при ковке в нагретом состоянии дает трещины. От красноломкости сталь предохраняет марганец, который связывает серу в сульфиды (MnS). Содержание в стали более 0,045% фосфора, делает сталь хладноломкой, т.е. легко ломающейся в холодном состоянии. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

Ниобий (Nb) улучшает кислостойкость стали и способствует уменьшению коррозии в сварных конструкциях.

Титан (Тi) повышает прочность, плотность и пластичность стали, улучшает обрабатываемость и сопротивление коррозии. Повышает прокаливаемость стали при малых содержаниях и понижает при больших.

Хром (Cr) повышает прочность, закаливаемость и жаростойкость, режущие свойства и стойкость на истирание, но снижает вязкость и теплопроводность стали. Содержание большого количества хрома (в обычных сортах стали доходит до 2%, а в специальных – до 25%) делает сталь нержавеющей и обеспечивает устойчивость магнитных сил.

Молибден (Mo) повышает прочностные характеристики стали, увеличивает твердость, красностойкость, антикоррозионные свойства. Делает ее теплоустойчивой, увеличивает несущую способность конструкций при ударных нагрузках и высоких температурах. Затрудняет сварку, так как активно окисляется и выгорает.

Никель (Ni) увеличивает вязкость, прочность и упругость, но несколько снижает теплопроводность стали. Никелевые стали хорошо куются. Значительное содержание никеля делает сталь немагнитной, коррозионностойкой и жаропрочной.

Вольфрам (W) образуя в стали твердые химические соединения – карбиды, резко увеличивает твердость и красностойкость. Увеличивает работоспособность стали при высоких температурах, ее прокаливаемость, повышает сопротивление стали к коррозии и истиранию, уменьшает свариваемость.

Ванадий (V) обеспечивает мелкозернистость стали, повышает твердость и прочность. Увеличивает плотность стали, так как является хорошим раскислителем. Снижает чувствительность стали к перегреву и улучшает свариваемость.

Кобальт (Co) повышает жаропрочность, магнитные свойства, увеличивает сопротивление удару.

Алюминий (Аl) является активным раскислителем. Делает сталь мелкозернистой, однородной по химическому составу, предотвращает старение, улучшает штампуемость, повышает твердость и прочность, увеличивает сопротивление окислению при высоких температурах.

Медь (Cu) влияет на повышение коррозионной стойкости, предела текучести и прокаливаемости. На свариваемость не влияет.

Для всестороннего понимания и анализа процессов, происходящих при легировании и деформировании сталей, важную роль играет знание зависимостей между химическим составом и механическими свойствами.

Целью настоящих исследований является изучение комплексного влияния химического состава на предел текучести σТ арматурной стали класса А500С.

В течение сентября и октября текущего года в Лаборатории испытаний строительных материалов и конструкций ГБУ «Ð¦Ð­Ð˜Ð˜Ð¡» проводились испытания образцов арматурных стержней диаметром от Ø16 до Ø36. Были выполнены более 30 параллельных испытаний. При этом для одной и той же пробы данного типоразмера арматурных стержней определяли фактическую массовую долю химических элементов с помощью оптико-эмиссионного спектрометра PMI-MASTER SORT (рис.1) и механические свойства стали при помощи испытательной машины ИР-1000М-авто (рис.2).

Спектрометр.jpg

Рис.1 – Испытание арматурного стержня для определения химического состава стали.

Разрывная.jpg

Рис.2 – Испытания арматурной стали на растяжение.

Для обеспечения достоверности статистических выводов и содержательной интерпретации результатов исследований сначала определили необходимый объем выборки, т.е. минимальное количество параллельных испытаний. Так как в данном случае испытания проводятся для оценки математического ожидания, то при нормальном распределении исследуемой величины минимально необходимый объем испытаний можно найти из соотношения:

ф1.jpg

где υ – выборочный коэффициент вариации,

tα,k – коэффициент Стьюдента,

α=1-P – уровень значимости (Р – доверительная вероятность),

k = n-1 – число степеней свободы,

ΔМ – максимальная относительная ошибка (допуск) при оценке математического ожидания в долях математического ожидания (ΔМ = γ*δМ, где γ – генеральный коэффициент вариации, δМ – максимальная ошибка при оценке математического ожидания в долях среднеквадратического отклонения).

Как правило, генеральный коэффициент вариации γ неизвестен, и его заменяют выборочным коэффициентом вариации υ, для определения которого нами была проведена серия из десяти предварительных испытаний.

По результатам проведенных испытаний и выполненных расчетов при доверительной вероятности Р=0,95 получен необходимый объем выборки, равной n=26. Фактическое количество испытаний, как было сказано выше, составило 36.

Массив данных, полученных по результатам проведенных параллельных испытаний, был обработан с помощью многофакторного корреляционного анализа.

Уравнение множественной регрессии может быть представлено в виде:

Y = f (β, X) + ε,

где X=(X1, X2,…, Xm) – вектор независимых (исходных) переменных; β – вектор параметров (подлежащих определению); ε – случайная ошибка (отклонение); Y – зависимая (расчетная) переменная.

Разработка множественной корреляционной модели всегда сопряжена с отбором существенных факторов, оказывающих наибольшее влияние на признак-результат. В нашем случае из дальнейшего рассмотрения были исключены три элемента (Аl, Тi, W) по причине их низкой массовой доли (<0,05%) и отсутствия четких показаний спектрометра.

Таким образом, нами получено следующее уравнение регрессии комплексного влияния химических элементов стали на ее предел текучести σТ:

ф2.jpg

В дальнейшем, для определения тесноты корреляционной связи между изучаемыми показателями были проведены дополнительные оценочные испытания – 9 параллельных испытаний арматурных стержней диаметрами Ø16, Ø18 и Ø20 (таблица 1).

т1.jpg

Расчетные значения предела текучести σТ (рис.3) тех же арматурных стержней были определены по разработанной многофакторной корреляционной модели.

г1.jpg

ВЫВОДЫ

1) Величина коэффициента корреляции R подтверждает возможность надёжного прогнозирования предела текучести σТ исходя изхимического состава арматурной стали класса А500С.

2) Применение множественного регрессионного анализа позволит выявить также комплексное влияние химических элементов на другие механические свойства стали (временное сопротивление σВ, относительное удлинение δ5), что является задачей наших дальнейших исследований.

Начальник лаборатории Юсифов Р.Ю.

Ведущий инженер Михальцова Л.М.

Источник