Какое значение в жизни клетки имеет свойство самокопирования днк

Какое значение в жизни клетки имеет свойство самокопирования днк thumbnail

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.

Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.

Нуклеиновые кислоты входят в состав важнейшего органа клетки — ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима помощь для доставки закодированного плана из ядра к месту синтеза. Такую помощь оказывают молекулы РНК.

Процесс  начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается.

После дальнейших изменений этот вид закодированной РНК готов.

РНК выходит из ядра и направляется к месту синтеза белка, где буквы РНК расшифровываются. Каждый набор из трех букв РНК образует «слово», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. По мере прочтения и перевода сообщения РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка.
Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все возможности укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 1027 лет. А для образования в организме цепочки из 20 аминокислот требуется не более  одной секунды — и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства.

На Земле живет около 7 млрд людей. Если не считать 25—30 млн пар однояйцовых близнецов, то генетически все люди разные: каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются  различиями в  генотипах—наборах генов организма;  у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках  — следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода, который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности  (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три – 64                              четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот                                   

поэтому одна аминокислота может кодироваться несколькими триплетами.

Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК, т.к. она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции).

В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами:  триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.

Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код — единая система записи наследственной ин­формации в молекулах нуклеиновых кислот в виде последова­тельности нуклеотидов. Генетический код основан на использо­вании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода:

1. Генетический код триплетен. Триплет (кодон) — последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав бел­ков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот оста­ются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказыва­ется равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 43 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов — 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА — являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК,   не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одно­временно с избыточностью коду присуще свойство однозначнос­ти: каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. по­следовательность нуклеотидов в гене точно соответствует после­довательности аминокислот в белке.

5. Генетический код непере­крываем и компактен, т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов).

6. Генетический код универсален, т. е. ядер­ные гены всех организмов одинаковым образом кодируют инфор­мацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Существуют таблицы генетического кода для расшифровки кодонов и-РНК и построения цепочек белковых молекул.

Реакции матричного синтеза.  

В живых системах встречается реакции, неизвестные в неживой природе — реакции матричного синтеза.

Термином “матрица” в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки — на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.

Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК.

Мономерные молекулы, из которых синтезируется полимер, — нуклеотиды или аминокислоты — в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит “сшивание” мономерных звеньев в полимерную цепь, и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти “сборка” только какого-то одного полимера.

Матричный тип реакций — специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого — его способности к воспроизведению себе подобного.

 К реакциям матричного синтеза относят:

1. репликацию ДНК— процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.

Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться — процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. транскрипцию – синтез и-РНК на ДНК, процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК.

И-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. трансляцию— синтез белка на и-РНК; процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде.

4. синтез РНК или ДНК на РНК вирусов

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы:

нетранскрибируемая цепь ДНК А Т Г Г Г Ц ТАТ

транскрибируемая цепь ДНК Т А Ц Ц Ц Г А Т А

транскрипция ДНК ß ß ß

кодоны мРНК А У Г Г Г Ц У А У

трансляция мРНК ß ß ß

антикодоны тРНК У А Ц Ц Ц Г А У А

аминокислоты белка метионин глицин тирозин

Таким образом, биосинтез белка  – это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Молекулы белков по существу представляют собой полипептидные цепочки, составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться. Эта активация происходит под действием особых ферментов.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК. Каждой аминокислоте соответствует строго специфическая т-РНК, которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК. Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника –  матричной или информационной РНК (м-РНК или и-РНК), которая синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план — в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и-РНК и далее на белок.

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет), взаимодействует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНК присоединяется другая т-РНК с другой аминокислотой и так  до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка.

А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы.

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому.

В процессе синтеза белка участвует одновременно не одна, а несколько рибосом — полирибосомы.

Основные этапы передачи генетической информации:

синтез на ДНК как на матрице и-РНК (транскрипция)

синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция).

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У эукариот  транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка — рибосомам. Лишь после этого наступает следующий этап — трансляция.

У прокариот транскрипция и трансляция идут одновременно.

Таким образом,

местом синтеза белков и всех ферментов в клетке являются рибосомы — это как бы «фабрики» белка, как бы сборочный цех, куда поступают все материалы, необходимые для сборки полипептидной цепочки белка из аминокислот. Природа синтезируемого белка  зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строение и-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядок расположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, от строения ДНК.

Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теория называется потому, что нуклеиновые кислоты играют как бы роль матриц, в которых записана вся информация относительно последовательности аминокислотных остатков в молекуле белка.

Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода является крупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярного механизма наследственности.

Источник

На чтение 10 мин.
Обновлено 02.05.2019

В земной жизни способом образования новых клеток является ми-тотическое деление уже существующих. Этот процесс организован в форме митотического (пролиферативного) цикла, решающего важнейшую биоинформационно-генетическую задачу – обеспечение клеток дочерних поколений генетической информацией, полноценной в количественном и качественном (смысловом) отношении. Структура цикла и принципы его регуляции рассмотрены в главе 3. Здесь же речь идет о процессе самокопирования (самовоспроизведения) или реплика-ции1 ДНК в синтетическом (S) периоде интерфазы митотического цикла или же в гаметогенезе – перед первым делением мейоза.

Генетический материал эукариот имеет хромосомную организацию. В каждой хромосоме находится комплекс из двух взаимокомплементарных молекул (цепей) ДНК, закрученных в спираль. В ходе репликации вдоль каждой такой молекулы (цепи) «строится» комплементарная полинуклеотидная цепь. Репликация ДНК, таким образом, представляет собой симметричный процесс в том смысле, что обе молекулы биспирали выполняют роль матриц. Дезоксирибонуклеотиды выстраиваются в дочернюю молекулу в соответствии с правилом компле-ментарности: адениловый нуклеотид (А) встает в пару с тимидиловым (Т), а гуаниловый (Г) с цитидиловым (Ц) и наоборот. В итоге на основе одной биспирали ДНК возникают две, идентичные по информационному наполнению. Способ удвоения, при котором каждая возникающая вследствие репликации двойная спираль образована одной предсуще-ствующей материнской молекулой ДНК и одной заново образованной дочерней, называют полуконсервативным (рис. 2.25).

ДНК эукариот удваивается не одним блоком от начала и до конца биспирали, а участками или репликонами со средним размером порядка 30 мкм (1600 тыс. нуклеотидов в так называемой лидирующей цепи биспирали ДНК, см. здесь же, ниже). В ДНК хромосом соматической клетки человека насчитывается до 50 тыс. репликонов. В некоторых ре-пликонах удвоение ДНК происходит одновременно, в других – в раз-

1 Термин «репликация» обычно используют для обозначения самокопирования ДНК; термин «редупликация» чаще используют для обозначения удвоения хромосом.

Рис. 2.25. Полуконсервативный способ редупликации ДНК: I – материнская би-спираль ДНК; II – достраивание комплементарных полинуклеотидных цепей; III – две дочерние биспирали ДНК

ное время. Так, репликация ДНК гетерохроматиновых участков, будучи наиболее поздней, осуществляется в конце периода S. ДНК центромер-ных отделов хромосом удваивается даже не в периоде S интерфазы, а в начале анафазы предыдущего митоза непосредственно перед расхождением дочерних хромосом.

Самоудвоение происходит группами по 10-100 репликонов. Репли-конный формат самокопирования ДНК дает выигрыш по времени. Если бы молекула ДНК реплицировалась одним репликоном, то при скорости синтеза у человека порядка 0,5 мкм/мин (в среднем 100 п.н./с у эука-риот и 1500 п.н./с у прокариот) на удвоение хромосомы 1 (длина 8 см) потребовалось бы около 3 мес. Благодаря полирепликонной организации процесс самоудвоения всей ДНК в S периоде интерфазы занимает у млекопитающих, в среднем, 7-12 ч in vivo и 6-8 ч in vitro. Количество точек начала репликации (активируемых репликонов) и ее скорость меняется в зависимости от стадии индивидуального развития организма, типа клеток и стадии гистогенеза, на которой они находятся, условий их существования. Так, в сперматогониях на одну хромосому приходится в

среднем порядка 40 точек начала репликации (продолжительность периода S 15 ч), а на более поздних стадиях сперматогенеза в сперматоци-тах хромосомы имеют по 5-6 этих точек (продолжительность периода S 100 ч).

Для того чтобы пошла репликация, необходим пул субстратов (предшественников) в высоко энергизированном состоянии – дезок-сирибонуклеозидтрифосфаты тимина, аденина, цитозина и гуанина.

В процессе репликации ДНК выделяют фазы инициации (начало, старт), элонгации (удлинение, приращение) и терминации (завершение, окончание).

Хотя сама репликация происходит в периоде S (синтетический) интерфазы митотического цикла, пререпликативный комплекс образуется в периоде G1 (пресинтетический, постмитотический) интерфазы. Это сложный ферментный комплекс, включающий 15-20 белков, в частности, инициирующие («узнающие») белки, такие как ORS, Cdc6 и Mcm. Названный комплекс, благодаря белкам ORS, связывается с ДНК в точках инициации (начала) репликации. Отличительная черта этих точек – богатство парами А-Т. В таких парах 2 (а не 3, как в парах Г-Ц) водородные связи, что облегчает местную (в точке инициации) денатурацию ДНК с расхождением молекул двойной спирали. Образующиеся при этом одноцепочечные участки ДНК связываются дестабилизирующими белками комплекса (RPA Replication Protein A эукариот или SSB Single Strand Binding рroteins прокариот), молекулы которых выстраиваются вдоль полинуклеотидных цепей-матриц и «растягивают» их, делая азотистые основания доступными для присоединения нуклеотидов. Благодаря описанным событиям между соседними точками начала репликации образуется структура, получившая название « репликативный глаз» и соответствующая участку ДНК с разошедшимися («открывшимися» для репликации) полинуклеотидными цепями материнской биспирали. В точках начала репликации (точки ori) образуются репликативные вилки, начинающие процесс в двух взаимопротивоположных направлениях. С этого момента следует говорить не о пре-, а о репликативном комплексе (рис. 2.26). Такие комплексы являются мультимакромолекулярными образованиями, участники которых – специальные белки, в том числе ферменты – обеспечивают три функции: связь необходимых белков, включая ферменты, с точками начала репликации, раскручивание молекул ДНК и ее местную (в зоне репликации) денатурацию, непосредственно репликацию.

Рис. 2.26. Репликационный комплекс (репликационная вилка): главные участники процесса самокопирования ДНК (схема)

Разделение закрученных в биспираль полинуклеотидных цепей ДНК осуществляется ферментом геликазой при участии дестабилизирующего белка RPA. Местное разделение полинуклеотидных цепей при сохранении двуцепочечной структуры на остальном протяжении биспирали должно было бы приводить к образованию супервитков перед репликационной вилкой. Для снятия напряжения, с необходимостью возникавшего бы в такой ситуации, и создания условий для поступательного продвижения репликационной вилки вся материнская биспираль должна была бы быстро вращаться вокруг своей оси. Это высоко энергозатратный процесс. Эволюция нашла выход: ферменты ДНК топоизомеразы I и II , разрывая, соответственно, одну или обе цепи биспирали ДНК, создают возможность для локального вращения, что ослабляет напряжение и препятствует образованию супервитков.

Ферментом, катализирующим образование дочерних полинуклео-тидных цепей, является ДНК-полимераза, представляющая собой сложный мультимакромолекулярный комплекс. В репликативном образовании ДНК эукариот на отдельных этапах участвуют разные ферменты с функцией ДНК-полимеразы. На старте процесса функционирует комплекс из ферментов α ДНК-полимеразы и праймазы (ферменту

праймазе принадлежит роль РНК-полимеразы, что необходимо для синтеза РНК-праймера, см. здесь же, ниже). Указанный комплекс, будучи вытесненным с 3′-конца начавшей рост полинуклеотидной цепи, уступает место δ ДНК-полимеразе. В клетках эукариот присутствуют также β, ε ДНК-полимеразы, участвующие в процессах репарации молекулярных повреждений ДНК, и γ ДНК-полимераза, катализирующая репликацию ДНК митохондрий.

ДНК-полимеразы не способны начать синтез полинуклеотида самостоятельно путем соединения двух дезоксирибонуклеозидтрифос-фатов. Они лишь присоединяют при помощи фосфодиэфирной связи трифосфонуклеотид-предшественник к уже имеющейся нуклеотидной цепи на 3′-конце. В связи с этим инициация репликации ДНК требует предварительного образования затравки или праймера – короткого фрагмента РНК, образующегося при участии репликационного белка RPA и ферментного комплекса «α ДНК-полимераза-праймаза» (рис. 2.27). Из схемы следует, что матрицей для репликации может служить только молекула ДНК, несущая спаренный с ней РНК-праймер, который имеет свободный 3′-ОН-конец.

Построение одной из дочерних полипептидных цепей (лидирующая) на материнской матрице опережает построение второй (запаздывающая). Элонгацию обеих полинуклеотидных цепей ДНК катализирует фермент δ ДНК-полимераза. Кроме собственно фермента, в репликативный комплекс входят белки RFC Replication Factor C и PCNA Proliferating Cell Nuclear Antigen. Первый блокирует наращивание РНК-праймера на 3′-конце сверх требуемой длины. Второй играет роль «прищепки» или зажима, крепящего δ ДНК-полимеразу к реплици-руемой полинуклеотидной цепи. Участки ДНК лидирующей цепи синтезируются в пределах репликонов как непрерывные достаточно длинные фрагменты, тогда как ДНК запаздывающей цепи образуется короткими (у эукариот 1000-2000 нуклеотидов) участками – фрагменты Ока-заки. Смысл образования запаздывающей цепи фрагментами Оказаки заключается в том, что в пределах такого фрагмента наращивание молекулы происходит, как обычно, в направлении от 5′ к 3′-концу (по типу шитья «назад иголкой»), так как по-иному ДНК-полимераза не работает.

Завершение репликации (терминация) состоит в удалении РНК-праймеров, заполнении нуклеотидами образующихся при этом «брешей», «сшивании» фрагментов ДНК для восстановления целостности молекулы. В этой фазе процесса участвует группа ферментов: РНК-аза Н или просто нуклеаза Н (удаляет праймер, разрушая РНК в гибридных

Рис. 2.27. Образование РНК-затравки, катализируемое РНК-праймазой, в дебюте репликации ДНК (схема)

РНК/ДНК-комплексах; предположительно, у эукариот эту функцию выполняет δ ДНК-полимераза), β ДНК-полимераза (заполняет «бреши»), ДНК-лигаза («пришивает» фрагмент ДНК, заменивший РНК-праймер, к дочерней цепи). У эукариот репликационный синтез ДНК прекращается при встрече репликационных вилок соседних репликонов.

Полирепликонный формат построения лидирующей цепи и образование запаздывающей цепи фрагментами Оказаки приводит к тому, что по завершении процесса дочерние полинуклеотиды ДНК представлены отдельными участками. Целостность (непрерывность) молекул

восстанавливается благодаря активности фермента ДНК-лигазы, катализирующего, как и ДНК-полимераза, образование межнуклеотидной фосфодиэфирной связи. Особенность действия названного фермента в том, что он «сшивает конец в конец» только такие одноцепочечные участки, которые находятся в составе двухцепочечной ДНК.

Самокопирование вирусных и бактериальных ДНК имеет особенности. У прокариот ДНК реплицируется не прерываясь (как один репликон) с одной точки начала репликации и с образованием двух ре-пликационных вилок. Так как реплицирующаяся хромосома (ДНК) исходно кольцевой формы по конфигурации напоминает греческую букву θ (тета), то весь процесс получил название θ-репликации. У ряда вирусов – бактериофаг λ – наблюдается репликация по типу «катящегося кольца» или σ-репликация. Ключевой фермент репликации ДНК прокариот – ДНК-полимераза III. Функционируя в комплексе примерно с 20 белками, названный фермент строит единым блоком лидирующую и запаздывающую (фрагменты Оказаки) полинуклеотидные цепи. Завершение процесса в запаздывающей цепи требует подключения ДНК-полимеразы I, которая заполняет дезоксирибонуклеотидами участки, образующиеся на месте удаляемых праймеров. ДНК-полимераза I в рассматриваемом процессе выполняет три функции. Наряду с катализом образования ДНК на месте РНК-праймеров (ДНК-полимеразная активность), она обеспечивает удаление этих праймеров в запаздывающей цепи («передняя» или «от 5′ к 3’» экзонуклеазная активность), а также редактирование ДНК-текста путем удаления ошибочно встроившихся неспаренных нуклеотидов на растущем конце цепи («задняя» или «от 3′ к 5’» экзонуклеазная активность). ДНК-полимераза I прокариот является, по-видимому, функциональным аналогом одновременно нуклеазы Н, β ДНК-полимеразы и δ ДНК-полимеразы эукариот. ДНК-полимераза III (функциональный аналог α и δ ДНК-полимераз эукариот) лишена «передней» экзонуклеазной активности. ДНК-полимераза II участвует в процессе молекулярной репарации повреждений бактериальной ДНК.

Завершение (терминация) репликации у прокариот характеризуется своими особенностями. В ДНК прокариот присутствует участок из нескольких коротких (23 п.н.) последовательностей – сайты ter. Репликация завершается по достижении репликационной вилкой указанного участка в том случае, если с вышеназванными сайтами связывается продукт гена tus.

Известны примеры, когда механизм репликации, не будучи связанным с клеточным размножением, решает другие задачи. Это происходит,

в частности, при амплификации (увеличение числа ДНК-копий путем многократного самокопирования) генов рРНК в профазе первого деления мейоза при образовании яйцеклеток у амфибий (см. п. 2.4.3.4-а). В описанном случае используется вариант σ-репликации.

Самокопирование митохондриальной ДНК осуществляется с участием фермента γ ДНК-полимеразы. Репликация ДНК – сложный процесс. У человека, например, за процесс репликации и контроль клеточного (митотического) цикла ответственно более 400 генов. Некоторые из них активны на стадии инициации, другие – на стадии элонгации. Далеко не все детали организации и функционирования «репликационной машины» в достаточной мере ясны.

Источник