Какого строение и свойства нейронов
Строение
Общее строение нейрона выглядит следующим образом: есть тело (сома), в котором содержатся ядро и другие органоиды, и отростки – аксон и дендриты:
- Аксон присутствует всего один – это отросток, по которому нервный импульс идет от данной клетки к другим. Другими словами, аксон – канал выхода сигнала.
- Дендриты, соответственно, – каналы входа сигналов, и их может быть как очень много, так и совсем мало. Количество дендритов зависит от типа нейрона, и об этом мы поговорим позже.
Рис. 1. Схема нейрона
Аксоны и дендриты
Аксоны – отростки, которые могут достигать в длину более метра. Чтобы сигнал не “рассеивался” по пути от одной клетки к другой, большинство аксонов в теле покрыты миелиновой оболочкой, состоящей из клеток нейроглии (общее обозначение вспомогательных клеток нервной ткани). Оболочка обеспечивает изоляцию одного аксона от других и не позволяет электрическому импульсу рассеяться. Благодаря миелиновой оболочке, проведение импульса по аксону осуществляется быстрее. Дендриты более короткие и не покрыты миелином.
Эндоплазматическая сеть (ЭПС) и комплекс Гольджи
Наиболее важными органоидами, помимо ядра, являются шероховатая ЭПС, имеющая рибосомы и осуществляющая синтез белков, и аппарат Гольджи, синтезирующий различные органические вещества и “упаковывающий” их в мембранные пузырьки. Почему эти системы так важны для функциональной деятельности нейрона – будет понятно далее.
Типы нейронов
А сейчас разберем, какие бывают типы по количеству отростков, и в чем их особенности:
- Униполярные имеют только один аксон. Это – чувствительные клетки, в которых возникает возбуждение, и они проводят его далее по аксону.
- Псевдоуниполярные. От тела отходит один небольшой “хвостик”, но он ветвится на два – один из них представляет собой аксон, а другой – дендрит. Такие нейроны находятся, в частности, в нервных узлах спинного мозга.
- Биполярные. Как следует из названия, отростка у них два – аксон и дендрит. Их можно найти в органах чувств, например, на сетчатке глаза.
- Мультиполярные. Имеют один аксон и множество дендритов, расходящихся вокруг подобно щупальцам. Как правило, именно так изображают эти клетки в учебниках, и таких клеток большинство.
Важно! Мультиполярные – преобладают в центральной нервной системе (ЦНС). К ним поступают сигналы от множества соседних нейронов – каждый мультиполярный нейрон может быть связан с 1000 других!
Рис. 2. Схема строения нейрона
Функции нейронов
Какие функции есть у нервной ткани? Нервная система, наряду с эндокринной, осуществляет координацию деятельности всего организма. Каждый нейрон является частью цепи в координации того или иного физиологического (или же психического) процесса. Говоря вообще, основная функция нейрона заключается в получении и передаче информации. Это справедливо в отношении любой клетки рассматриваемой системы, ведь именно этим она и занимается – получает от одних клеток и передает другим информацию в форме нервных импульсов. Однако для различных нейронов выделяют и более специфические функции. Виды нейронов по функциям:
- Афферентные (чувствительные): получают информацию непосредственно от рецепторов, осуществляя взаимодействие между внешним миром и нашей нервной системой.
- Эфферентные (двигательные): отвечают за осуществление конкретных действий – сокращение мышцы, выделение секрета железой.
- Ассоциативные (вставочные): это все “средние” нейроны в цепочке, их может не быть вовсе или быть несколько в одной рефлекторной дуге. Они сосредоточены в ЦНС, отвечают за обработку информации и, говоря грубо, принятие нервной системой решений о действии организма.
Рис. 3. Типы нейронов
Передача нервного импульса
Каким образом импульс передается между клетками? Этот вопрос интереснее, чем кажется на первый взгляд. Сейчас мы поймем, зачем же нейронам сильно развитые ЭПС и аппарат Гольджи. Место контакта аксона с дендритом, телом другого нейрона или эффектором называется синапс. Помимо связи между клетками, синапс также осуществляет перекодировку сигнала, меняя различные его характеристики (частоту, амплитуду). Рассмотрим подробнее схему работы синаптической передачи нервного импульса:
- Электрический нервный импульс возбуждает мембрану нейрона. Наиболее возбудимая часть на теле таких клеток – аксонный холмик, с него и начинается общее возбуждение клетки. Оно передается далее по мембране аксона и достигает его конца – пресинаптической мембраны.
- Внутри аксона содержатся пузырьки с нейромедиаторами – биологически активными органическими веществами. Помните про ЭПС и аппарат Гольджи? Именно эти системы отвечают за синтез и транспорт веществ-медиаторов к аксонному окончанию.
- Синаптическая щель – пространство между аксоном этой клетки и дендритом следующей. Под действием электрического возбуждения пресинаптическая мембрана высвобождает медиаторы в пространство синаптической щели. Там они связываются с соответствующими рецепторами на постсинаптической мембране, запуская тем самым возбуждение следующего звена нервной цепочки.
Важно! На уровне нейро-физиологии эти процессы выглядят достаточно сложно, и для глубокого понимания требуются знания не только биологии, но и химии, и физики. Однако основное, что нужно понимать – есть две мембраны, связь между которыми осуществляют медиаторы (буквальный перевод – посредники). От того, какой медиатор выделяется, зависит эффект – возбуждение или торможение следующей клетки.
Подведем итоги: нейроны – клетки нервной системы. Их слаженная работа обеспечивает координацию всех функций организма, начиная от движения и работы внутренних органов и заканчивая высшими психическими процессами. Нейроны передают информацию посредством электрических импульсов, которые проходят по аксону одной клетки и при помощи нейромедиаторов в синапсе передаются другой клетке. Такой с виду простой механизм лежит в основе работы нервной системы. Лучше понять работу всей нервной системы вам также поможет предложенное ниже видео.
Источник
Перед тем, как говорить о том, каково строение и свойства нейронов, необходимо уточнить, что это такое. Нейрон (рецепторный, эффекторный, вставочный) – функциональная и структурная часть нервной системы, представляющая собой электрически возбудимую клетку. Она отвечает за обработку, хранение, передачу информации химическими и электрическими импульсами.
Такие клетки имеют непростое строение, всегда узкоспециализированы, отвечают за определенные функции. В процессе своей работы нейроны способны объединяться друг с другом в единое целое. При множественном соединении выводится такое понятие, как «нейронные сети».
Весь функционал ЦНС и нервной системы человека зависит от того, насколько хорошо нейроны взаимодействуют друг с другом. Только при совместной работе начинают образовываться сигналы, которые передаются железами, мышцами, клетками организма. Запуск и распространение сигналов происходит посредством ионов, генерирующих электрический заряд, проходимый через нейрон.
Общее число таких клеток в головном мозге человека – около 1011, в каждой из которых содержится примерно 10 тыс. синапсов. Если представить, что каждый синапс – это место для хранения информации, то теоретически мозг человека может хранить все данные и знания, которые накоплены человечеством за всю историю его существования.
Физиологические свойства и функции нейронов будут варьироваться в зависимости от того, в какой мозговой структуре они находятся. Объединения нейронов отвечают за регулирование какой-то конкретной функции. Это могут быть самые простые реакции и рефлексы человеческого организма (например, моргание или испуг), а также особо сложный функционал мозговой деятельности.
Особенности строения
Структура включает в себя три основных составляющих:
- Тело. Тело включает в себя нейроплазму, ядро, которое разграничено мембранным веществом. Хромосомы ядра содержат гены, отвечающие за кодировку синтеза белков. Здесь также осуществляется синтез пептидов, которые требуются для обеспечения нормальной работы отростков. Если тело будет повреждено, то в скором времени произойдет и разрушение отростков. При повреждении одного из отростков (при условии сохранения целостности тела) он будет постепенно регенерироваться.
- Дендриты. Образуют дендритное дерево, имеют безграничное число синапсов, сформированных аксонами и дендритами соседних клеток.
- Аксон. Отросток, который, кроме нейронов, не встречается больше ни в одних клетках. Сложно переоценить их значение (например, аксоны ганглиозных клеток ответственны за формирование зрительного нерва).
Классификация нейронов в соответствии с функциональными и морфологическими признаками выглядит следующим образом:
- по числу отростков.
- по типу взаимодействия с другими клетками.
Все нейроны получают грандиозное число электрических импульсов из-за наличия множества синапсов, которые расположены по всей поверхности нейронной структуры. Импульсы также получаются через молекулярные рецепторы ядра. Электрические импульсы передаются разными нейромедиаторами и модуляторами. Поэтому важным функционалом также можно считать способность интеграции полученных сигналов.
Чаще всего сигналы интегрируются и обрабатываются в синапсах, после чего в остальных частях нейронной структуры суммируются постсинаптические потенциалы.
Мозг человека содержит примерно сто миллиардов нейронов. Число будет варьироваться в зависимости от возраста, наличия хронических заболеваний, травм мозговых структур, физической и умственной активности человека.
Развитие и рост нейронов
Современные ученые до сих пор дискутируют на тему деления нервных клеток, т.к. единого мнения по этому вопросу в сфере анатомии на данный момент нет. Многие специалисты в этой области уделяют больше внимания свойствам, а не строению нейронов, что является более важным и актуальным вопросом для современной науки.
Наиболее распространенная версия – развитие нейрона происходит из клетки, деление которой прекращается еще до момента выпуска отростков. Сначала развивается аксон, после чего дендриты.
Зависимо от основного функционала, места расположения и степени активности, нервные клетки развиваются по-разному. Их размеры существенно варьируются в зависимости от места расположения и выполняемых функций.
Основные свойства
Нервные клетки выполняют огромное количество функций. Основные свойства нейрона выглядят следующим образом: возбудимость, проводимость, раздражимость, лабильность, торможение, утомляемость, инертность, регенерация.
Раздражимость считается общей функцией всех нейронов, а также остальных клеток организма. Это их способность давать адекватный ответ на всевозможные раздражения с помощью изменений на биохимическом уровне. Подобные трансформации обычно сопровождаются изменениями ионного равновесия, ослаблением поляризации электрических зарядов в зоне воздействия раздражителя.
Несмотря на то, что раздражимость является общей способностью всех клеток человеческого организма, наиболее выражено она проявляется именно у нейронов, которые связаны с восприятием запаха, вкуса, света и иных подобных раздражителей. Именно процессы раздражимости, протекающие в нервных клетках, запускают другую способность нейронов – возбудимость.
Нейроны никогда не гибнут от стресса, нервных потрясений и других негативных психоэмоциональных реакций организма. При этом происходит замедление их активной деятельности на некоторое время. Часть ученых отмечает, что клетки в это время «отдыхают».
Возбудимость
Важнейшее физиологическое свойство нервных клеток, которое заключается в генерировании потенциала действия на раздражитель. Под ним подразумеваются различные изменения, происходящие внутри и снаружи организма человека, которые воспринимаются нервной системой, что и приводит к вызову ответной детекторной реакции. Принято различать два вида раздражителей:
- Физические (получение электрических импульсов, механическое воздействие на разные участки тела, изменение окружающей температуры и температуры тела, световое воздействие, наличие или отсутствие света).
- Химические (изменения на биохимическом уровне, которые считываются нервной системой).
При этом наблюдается разная чувствительность нейронов к раздражителю. Она может быть адекватной и не адекватной. Если в организме человека есть структуры и ткани, которые могут воспринимать конкретного раздражителя, то к нему нервные клетки имеют повышенную чувствительность. Подобные раздражители считаются адекватными (электроимпульсы, медиаторы).
Свойство возбудимости актуально только для нервной и мышечной ткани. Также принято считать, что возбудимостью обладает и ткань желез. Если железа активно работает, то могут отмечаться различные биоэлектрические проявления с ее стороны, потому что она включает в себя клетки разных тканей организма.
Соединительная и эпителиальная ткани не обладают свойством возбудимости. Во время их работы не генерируются потенциалы действия даже в том случае, если происходит непосредственное воздействие раздражителя.
Левое полушарие мозга всегда содержит большее количество нейронов, нежели правое. При этом разница совсем незначительная – от нескольких сотен миллионов до нескольких миллиардов.
Проводимость
Разговаривая о том, каковы свойства нейронов, после возбудимости практически всегда отмечают проводимость. Функция проводника у нервной ткани заключается в особенности проведения возникшего в результате воздействия раздражителя возбуждения. В отличие от возбуждения, функцией проводимости наделены все клетки человеческого тела – это общая способность ткани менять тип своей активной деятельности в условиях воздействия раздражителя.
Повышенная проводимость в нейронных структурах наблюдается при развитии доминантного очага возбуждения. В одном нейроне может происходить конвергенция (объединение сигналов множественных входов, которые исходят от одного источника). Подобное актуально для ретикулярной формации и ряда других систем человеческого организма.
При этом клетки, вне зависимости от структур, в которых они располагаются, могут по-разному реагировать на воздействие раздражителя:
- Изменяется выраженность и выполнение процессов по обмену веществ.
- Изменяется уровень проницаемости мембраны клеток.
- Изменяются биоэлектрические проявления нейронов, двигательная активность ионов.
- Ускоряются процессы развития и деления клеток, повышается выраженность структурных и функциональных реакций.
Выраженность этих изменений также может серьезно варьироваться в зависимости от типа раздражителя, ткани и структуры, в которых находятся нейроны.
Часто можно слышать выражение – нужно предотвращать гибель нервных клеток. Но их гибель запрограммировала природа – за один год человек теряет примерно 1% всех своих нейронов, и никак предупредить подобные процессы нельзя.
Лабильность
Под лабильностью нервных клеток подразумевается скорость течения простейших реакций, которые лежат в основе раздражителя. В обычных условиях, при нормальном развитии всех мозговых структур, у человека отмечается максимально возможная скорость течения. Нейроны, которые различаются электрофизиологическими свойствами и размерами, имеют разные значения лабильности за единицу времени.
В одной нервной клетке лабильность различных структур (аксонной и дендритной частей, тела) будет заметно отличаться. Показатели лабильности нервной клетки определяют с помощью степени ее мембранного потенциала.
Показатели мембранного потенциала должны находиться на определенном уровне, чтобы в нейроне могла получиться наиболее подходящая степень возбудимости и лабильности (зачастую вкупе с ритмической активностью). Только в этом случае нервная клетка сможет в полной мере передать полученную информацию в виде электрических импульсов. Подобные процессы и обуславливают работу нервной системы в целом, а также гарантируют нормальное протекание и формирование всех необходимых реакций.
В спинном мозге предельный уровень ритмической активности нервных клеток может достигать значения в 100 импульсов в секунду, что соответствует наиболее оптимальным значениям мембранного потенциала. В обычных условиях данные значения редко превышают уровень в 40-70 импульсов в секунду.
Существенное превышение показателей наблюдается при характерных выраженных реакциях, поступающих со стороны главных отделов ЦНС, мозговых структуры, коры. Частота разрядов при определенных условиях может достигать значений в 250-300 импульсов в секунду, но подобные процессы развиваются крайне редко. Также они являются кратковременными – их быстро сменяют замедленные ритмы активности.
Наиболее высокие показатели частоты разрядов обычно наблюдаются в нервных клетках спинного мозга. В возникающих в результате выраженного воздействия раздражителя очагах начальных реакций частота разрядов может составлять 700-1000 импульсов в секунду. Протекание подобных процессов в нейронных структурах является необходимостью, чтобы клетки спинного мозга могли резко и быстро воздействовать на мотонейроны. Спустя небольшой промежуток времени частота разрядов существенно снижается.
Нейроны существенно различаются по размеру (в зависимости от места расположения и других факторов). Размеры могут варьироваться от 5 до 100 мкм.
Торможение
С точки зрения физиологии человека торможение, как ни странно, является одним из наиболее активных процессов, протекающих в нейронных структурах. Особенности строения и свойств нейронов подразумевают, что торможение вызывается возбуждением. Процессы торможения проявляются в снижении активности или предупреждении вторичной волны возбуждения.
Способность нервных клеток к торможению совместно с функцией возбуждения позволяет обеспечить нормальную работу отдельных органов, систем, тканей организма, а также всего человеческого тела в целом. Одна из наиболее важных характеристик процессов торможения в нейронах – обеспечение защитной (охранной) функции, что актуально для клеток, располагающихся в коре головного мозга. За счет процессов торможения также обеспечивается защита ЦНС от чрезмерного перевозбуждения. Если они нарушены, у человека проявляются негативные психоэмоциональные черты и отклонения.
Важной функцией торможения также является прямое взаимодействие с возбуждением, что позволяет анализировать и синтезировать в центральной нервной системе полученные электрические импульсы. Это помогает правильно согласовывать деятельность и функции всех систем, тканей и органов человеческого тела, а также адекватно контактировать с окружающей средой. Данную функцию также принято называть координационной.
Несмотря на то, что нейроны имеют удивительно малые размеры, современные технологии позволяют ученым провести измерение активности каждого найденного нейрона. Подобные процедуры зачастую проводятся для диагностики различных заболеваний (например, эпилепсии).
Регенерация
К общим признакам всех нейронов относится их способность к физиологической и репаративной регенерации. В нервных клетках она подразумевает протекание следующих процессов:
- Частичное увеличение количества хромосом в ядре.
- Восстановление синапсов (если они были повреждены).
- Развитие и возвращение в обычное состояние отростков (при их повреждении).
- Обновление метаболических и химических компонентов нервных клеток в процессе протекания внутриклеточного обмена веществ.
Если нервная ткань будет повреждена, то в зоне поражения сразу начнет развиваться нейроглия. Это невыраженная дифференцированная ткань, которая делится митозом.
В случае получения повреждений, которые нарушили целостность нервных волокон, происходит распадение периферических частей на отдельные части миелиновых оболочек и осевых цилиндров. Если отсутствуют воспалительные процессы, рубцы соединительной ткани, то есть высокая вероятность восстановления иннервации нервных тканей. Отростки нейронов регенерируются довольно быстро – 2-3 мм за 24 часа.
Вопреки распространенному мнению, нейроны вполне могут восстанавливаться – их генерирование происходит сразу в трех частях организма человека.
Источник