Какой из металлов имеет наибольшие металлические свойства
English A.
11 июня · < 100
В данном случае, когда выбор идет между 4 вариантами ответа, правильным решением будет натрий.
Вообще же самым “металличным металлом” является франций.
Удачки)
Перечислите основные свойства металлов. Назовите чем эти свойства обусловлены?
Дипломированный специалист в прикладной математике и физике. Профессиональный химик -… · chemiday.com
Металлы хорошо проводят тепло и электричество – это обусловлено подвижностью электронов в кристаллической решётке металлов.
Металлы блестят (“металлический блеск”) – также обусловлено наличием подвижных, почти свободных электронов в решётке.
Большинство металлов химически активны и легко выступают в роли восстановителя – это обусловлено наличием слабо связанного 1 , 2 или 3-х электронов на внешнем электронном уровне.
Чему равен заряд ядра атома кальция?
Книги, звери и еда – это хобби навсегда.
Заряд ядра химического элемента равен количеству протонов в ядре, умноженному на заряд протона. Количество протонов в ядре совпадает с порядковым номером элемента в периодической таблице Менделеева. Номер кальция 20, а заряд протона равен 1.6*10^(-19) Кл, следовательно, заряд ядра атома кальция равен Q=20*1.6*10^(-19)=3.2*10^(-18) Кл.
Прочитать ещё 1 ответ
⦁ Как строение металлов и неметаллов обуславливает их свойства?
Невское Оборудование поставщик металлообрабатывающего оборудования и станков · spbstanki.ru
Ваш вопрос имеет отношение скорее к химии. Металлы имеют немолекулярное строение и сходные физические свойства: это твердые вещества (кроме ртути), они обладают характерным металлическим блеском, не имеют запаха, хорошо проводят тепло и электрический ток, а также имеют немолекулярное строение. Неметаллы также имеют свой набор свойств, отличающихся от металлов: отсутствует металлический блеск, имеют низкую электропроводность и теплопроводность; большинство неметаллов имеет молекулярное строение (кислород, азот, хлор, фтор и т.д.); неметаллы могут существовать в трех формах: жидком (бром), твердом (сера, иод, белый фосфор) и газообразном состоянии (водород, кислород, азот, инертные газы и т.д.).
Все эти свойства обусловлены строением металлов и неметаллов:
Высокую электропроводность металлов обуславливают свободные электроны, перемещающиеся по кристаллической решётке под действием электрических полей. При нагревании электропроводность уменьшается;
Металлический блеск металлов, пластичность и другие свойства обусловлены их кристаллическим строением, в узлах кристаллической решетки расположены отдельные атомы. Они слабо удерживают валентные электроны, которые по этой причине свободно перемещаются по всему объему металла, формируя единое электронное облако и в равной степени притягиваются всеми атомами.
Высокая теплопроводность металлов происходит из-за наличия свободных электронов. Находясь в непрерывном движении, электроны постоянно сталкиваются с ионами и обмениваются с ними энергией. Поэтому колебания ионов, усилившиеся в данной части металла вследствие нагревания, сейчас же передаются соседним ионам, от них – следующим и т.д., и тепловое состояние металла быстро выравнивается; вся масса металла принимает одинаковую температуру.
Металлы – восстановители (отдают электроны) они вступают в химические реакции с неметаллами, образуя оксиды, гидроксиды, соли. Самыми активными являются щелочные и щелочноземельные металлы, расположенные в I и II группах таблицы Менделеева. Благородные металлы (Au, Ag, Pt) малоактивны и не взаимодействуют с кислородом и водой;
Неметаллические свойства связаны со способностью атомов элементов присоединять к себе электроны. Притяжение внешних электронов к ядру тем сильнее, чем меньше размеры атома и больше заряд ядра. В периоде с ростом заряда ядра от элемента к элементу радиус атома уменьшается, сильнее становится притяжение внешних электронов к ядру и неметаллические свойства усиливаются.
Какой химический элемент произошел бы от соединения всех остальных элементов?
Researcher, Institute of Physics, University of Tartu
Химический элемент – это некоторая абстрактная совокупность атомов с одинаковым числом протонов в ядре. То есть, где бы такие атомы не находились, в состав чего бы они ни входили, они будут атомами данного элемента. Грубо говоря, химический элемент – это сорт атомов. Как “антоновка” – это сорт яблок. Яблоко может расти на дереве или лежать в ящике, но все равно будет “антоновкой”.
Реальным выражением этой абстрактной совокупности являются так называемые “простые вещества”, то есть, вещества состоящие только из атомов одного “сорта”. Скажем, железо. Кусок железа состоит только из атомов железа. Как на дереве антоновки растут только яблоки антоновки.
Но если мы возьмем ржавчину, оксид железа, то атомы железа в нем все равно останутся атомами химического элемента “железо”, хотя кусок ржавчины не будет куском железа, а будет куском оксида железа, сложного вещества, то есть, вещества, состоящего из атомов разных элементов. Это как в ящик сложить яблоки антоновки и, например, грушевки. Будет ящик с двумя сортами яблок. И нельзя будет назвать какого-то одного сорта для всех этих яблок.
В связи с этим вопрос “какой химический элемент произошел бы от соединения всех остальных элементов?” не имеет смысла. От соединения атомов разных элементов получаются сложные вещества, а не химические элементы. Атомы разных сортов по определению не могут составлять “химического элемента”, это было бы логическим противоречием с определением понятия “химический элемент”. Это то же самое, что спросить “какой сорт яблок получится, если сложить в один ящик яблоки антоновки, гольден, семеренко и т.д.?” Никакого сорта не получится, будет просто ящик с разными яблоками.
Источник
Металлы в обыденной жизни стали применять в древности. Медь была первым элементом, который начал использовать человек, так как в природе её было просто найти, и она легко обрабатывалась. Неслучайно археологами найдены многочисленные предметы, сделанные из меди. В ходе своего развития люди научились делать сплавы, из которых изготавливались орудия труда, а затем и оружие. В наши дни проводятся исследования для выявления прочнейших металлов. Давайте узнаем больше о свойствах и использовании десяти самых прочных металлов в мире.
10. Титан
Его называют металлом будущего, поскольку окончательное его место в жизни людей пока не определено. Человек быстро оценил его лучшие качества. Титан лёгкий и высокопрочный, устойчивый к высоким температурам, отличается низкой плотностью, стойкостью к коррозии. Сферы применения: авиационная техника и ракетная отрасль, судостроение. Титановые сплавы имеют большие перспективы применения, но сдерживаются его высокой стоимостью и недостаточной распространённостью.
9. Уран
Наиболее распространенный металл, отличается большой прочностью, в привычных условиях слабо радиоактивен. Обнаружение учёными урана считается открытием планетарного масштаба. Наделен парамагнитными свойствами, гибкий, ковкий и относительно пластичный, благодаря таким качествам нашёл применение в разнообразных производственных сферах: является основой для ядерного оружия, соединения урана используются в производстве стекол, в качестве красителей.
8. Вольфрам
Характеризуется высокой тугоплавкостью, также принадлежит к прочнейшим металлам на планете Земля. Являясь твёрдым элементом бело-серого цвета с характерным блеском, вольфрам высокопрочный, тугоплавкий, устойчив к воздействию кислотной и щелочной среды. Наделен ковкостью, при повышении температур W саморазогревается, а также растягивается в тоненькую нить, используемую в лампах.
7. Рений
Парамагнитный рений, один из более «тяжёлых» элементов высокой плотности (21.03 г/см3). На земле RE существует в чистом виде, особенно значительно содержание в виде примеси в молибдените до 0,5%. Ярко выраженными свойствами RE считаются высочайшая прочность, жаростойкость, характеризуется тугоплавкостью, стойкостью к окислению, пластичностью, малой коррозией при воздействии многих химических веществ. Рений — дорогостоящий металл. Сферы применения многообразны: электроника, ракетостроение, авиастроение (например, производство запчастей для сверхзвуковых истребителей), металлургическая отрасль, медицина, судостроение.
6. Осмий
Металл серебристо-светлой окраски, отливающий голубизной. Входя в группу платиноидов, считается одним из более плотных элементов. Характеризуется твёрдостью. Os является хрупким металлом, но при этом характеризуется устойчивостью к механическому воздействию и влиянию кислой среды. Учёными засвидетельствовано присутствие осмия в металлических метеоритах. Образуя идеальный состав с другими элементами, получил широкое использование в медицине, электронике, химии и нефтехимии, ракетостроении, нашёл широкое применение при производстве ручек.
5. Бериллий
Металл серого цвета с серебристым оттенком, приобретающий при соприкосновении с воздухом матовый оттенок по причине образования оксидной плёнки. Металл, характеризующийся твёрдостью, высоко токсичный. В отличие от других металлов прекрасно проводит тепло и характеризуется низким электрическим сопротивлением. Обладая уникальными свойствами, Be получил применение в авиакосмической области, ракетостроении, ядерной энергетике, металлургической промышленности, атомной энергетике, лазерной технике. Учитывая высокую твёрдость Ве, его применяют для получения легирующих сплавов, материалов, отличающихся своими огнеупорными качествами.
4. Хром
Хром – металл бело-голубого цвета. Характеризуется высокой прочностью, твёрдостью, ярко выраженными магнитными свойствами, не подвергается водородному охрупчиванию, стойкий к влиянию кислотной и щелочной среды. Его используют, создавая различные сплавы, а те в свою очередь востребованы для изготовления медоборудования. Кроме того, Cr применяется при синтезе искусственных рубинов, соли хрома четырехвалентного используют для сохранения древесины и дубления кож.
3. Тантал
Тантал входит в тройку прочнейших элементов на земле. Его характеризуют серо-металлический цвет с серебристым блеском, высокая твёрдость и атомная плотность. Образующаяся сверху оксидная плёнка придаёт ему свинцовый отлив. Несмотря на высокую твёрдость и прочность, это металл характеризуется пластичностью, и по такому качеству сравним с золотом. Металл тугоплавкий, стойкий к коррозии и окислению. Нашел активное применение в металлургии, строительстве энергетических установок, химической отрасли.
2. Рутений
Имя 2-го по прочности металла на древнем языке означает – Россия. Металл имеет серебристый цвет, относится к платиноидам, содержится в тканях мышц у всех живущих на земле существ. Высокопрочный металл, твёрдый, тугоплавкий, обладает стойкостью к воздействию химических веществ, способен образовывать комплексные соединения. Рутений используется в космической отрасли, медицине, электронике, в качестве добавки, придающей золоту чёрный цвет.
1. Иридий
Лидером среди всех металлов, обладающих высокой прочностью, считается Иридий. Твёрдый и тугоплавкий элемент серо-белого цвета принадлежит к платиноидам. Сегодня на поверхности Земли почти не встречается, но нередко встречается в соединениях с осмием. По причине твердости воздействие на металл затруднено, а значит и обработка, стоек под влиянием химических веществ. Его значение в обыденной жизни весьма велико. Иридий используется для придания таким металлам, как титан, хром и вольфрам лучшей устойчивости к влиянию кислотной и щелочной среды. Применяется для изготовления термопар, топливных баков, термоэлектрических генераторов, в медицине, нашёл широкое применение для сплавов с платиной у ювелиров.
Источник
В предыдущих частях мы, во-первых, ввели понятие атомного радиуса, к которому не раз сегодня обратимся. Во-вторых, ввели понятие о металлических и неметаллических свойствах. И, в-третьих, научились отличать металлы от неметаллов по таблице Менделеева.
Сегодня поговорим о том, какие закономерности можно выделить в рамках таблицы Менделеева благодаря всем вышеперечисленным знаниям.
Обо всём по порядку
Напомню:
Атомный радиус – условная величина, характеризующая удалённость электронов на внешнем энергетическом уровне от ядра атома.
Условное изображение атомного радиуса атома не примере атома углерода
Металлические свойства – способность атомов химических элементов отдавать электроны
Неметаллические свойства – способность атомов химических элементов эти электроны принимать.
Выделять закономерности в пределах таблицы Менделеева мы будем в двух направлениях:
В пределах подгруппы (сверху – вниз)
Сделаю акцент на том, что работать мы будем исключительно в пределах главных подгрупп
О том, почему атомный радиус в пределах подгруппы (сверху вниз) возрастает, мы говорили здесь.
- А почему же в пределах подгруппы (сверху вниз) усиливаются металлические свойства?
Дело в том, что с в пределах подгруппы с увеличением атомного радиуса возрастает удалённость электронов на внешнем энергетическом уровне от ядра, а чем более электроны удалены от ядра, тем выше запас их свободной энергии, тем менее прочно они связаны с ядром (об этом здесь) – это значит, что тем проще эти электроны будет отдать! А металлические свойства как раз-таки характеризуют способность атомов химических элементов отдавать электроны.
Ещё раз. Чем больше электроны удалены от ядра, тем менее прочно они связаны с ядром, тем проще их оказывается отдать. Я думаю, Вы интуитивно чувствуете эту простую логику, согласно которой прочность связи обратно пропорциональна расстоянию.
- Почему же в пределах подгруппы (сверху вниз) неметаллические свойства ослабевают?
Всё очень просто, неметаллические свойства – прямо противоположное понятие металлическим свойствам, и если одно усиливается, то другое ослабевает.
Как можно проследить данные закономерности? Посмотрим в таблицу Менделеева, а именно в главную подгруппу четвёртой группы.
Белый, зелёный – металлы, красный – неметаллы.
В пределах главной подгруппы четвёртой группы мы видим, как неметаллы углерод (C) и кремний (Si) в какой-то момент сменяет металл германий (Ge), и это неслучайно! Мы знаем, что металлические свойства в пределах подгруппы усиливаются, а неметаллические – ослабевают, и именно поэтому в какой-то момент при движении в пределах подгруппы сверху вниз металлические свойства усилились настолько, а неметаллические свойства ослабли настолько, что неметаллы в какой-то момент уступают место металлам.
И данную закономерность Вы можете пронаблюдать в пределах главной подгруппы любой группы!
Почему именно главные подгруппы? Дело в том, что классический вариант таблицы Менделеева, с которым мы чаще всего и работаем, в угоду компактности размещает элементы побочных подгрупп, которые, мы знаем, являются исключительно металлами, таким образом, что они, кажется, игнорируют рассматриваемые нами закономерности, то есть, попросту говоря оказываются исключениями. Ради интереса можете посмотреть на развёрнутый вариант таблицы.
В пределах периода (слева – направо)
Здесь попроще. здесь никаких подгрупп.
Итак, мы знаем, что в пределах периода (слева направо) атомный радиус убывает (об этом здесь). Так что же из этого вытекает?
А то, что металлические свойства будут убывать, а неметаллические – возрастать! Судите сами:
чем меньше атомный радиус, тем ближе электроны на внешнем энергетическом уровне оказываются к ядру, то есть тем более прочно эти электроны оказываются связаны с ядром и тем труднее их оказывается отдать, то есть тем менее выражены оказываются металлические свойства и более выражены неметаллические.
Мы легко можем проследить данную закономерность по таблице Менделеева, пользуясь тем же способом размышления, что и выше:
Белый, зелёный – металлы, красный – неметаллы.
В переделах любого периода (слева – направо) металлы закономерно начинают сменяться неметаллами, так как металлические свойства ослабевают, а неметаллические – возрастают.
Осталось сделать последний штрих – ввести понятие электроотрицательности.
Электроотрицательность – способность атомов химических элементов оттягивать на себя электронную плотность.
Электроотрицательность – понятие тождественное по смыслу неметаллическим свойствам и используется для характеристики неметаллических свойств атома. Оно даже изменяется в пределах таблицы Менделеева аналогичным образом! То есть, в пределах подгруппы (сверху вниз) убывает, а в пределах периода (слева – направо) возрастает.
Таблица электроотрицательности по Полингу
А на этом у меня всё. В следующий раз продолжим обозревать типы химической связи. Спасибо. Пока.
Источник
Слово «металл» заимствовано из немецкого языка и окончательно усвоено в Петровскую эпоху. Первоначально имело общее значение «минерал, руда, металл», а разграничение этих понятий произошло во времена М.В.Ломоносова.
Немецкое слово «metall» произошло от латинского «metallum» — «рудник, металл».
В латинский язык слово пришло из греческого — μεταλλον: «рудник, копь».
В современном понимании, металлы — группа химических элементов, в виде простых веществ, обладающих характерными металлическими свойствами: высокая тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.
Однако в астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия.
Как химические элементы металлы очень распространены. Из 118 химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:
6 элементов в группе щелочных металлов,
6 в группе щёлочноземельных металлов,
38 в группе переходных металлов,
11 в группе лёгких металлов,
7 в группе полуметаллов,
14 в группе лантаноиды + лантан,
14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,
вне определённых групп — бериллий и магний.
Таким образом, к металлам относится 96 элементов из всех открытых.
Свойства металлов
Характерные свойства металлов
Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
Хорошая электропроводность (из неметаллов электропроводностью обладает также углерод)
Возможность лёгкой механической обработки (см.: пластичность; однако некоторые металлы, например, германий и висмут, непластичны)
Высокая плотность (обычно металлы тяжелее неметаллов)
Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
Большая теплопроводность
В реакциях чаще всего являются восстановителями
Физические свойства металлов
Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью.
Температуры плавления чистых металлов лежат в диапазоне от −39°C (ртуть) до 3410°C (вольфрам). За исключением щелочных, металлы плавятся при высокой температуре, однако некоторые, например, олово и свинец, можно расплавить на обычной электрической или газовой плите.
В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22.6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность затруднительно: требуется полностью очистить металлы, так как любые примеси снижают их плотность.
Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0,003 мм, которую используют для золочения изделий. Однако проволока из цинка или олова хрустит при сгибании, марганец и висмут почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла. Очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым.
Все металлы хорошие проводники. Это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность. По этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.
Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей, и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла. Широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.
Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.
Металлы в природе. Добыча и обогащение
Источник