Какой конечный продукт азотистого обмена характерен для птиц

Какой конечный продукт азотистого обмена характерен для птиц thumbnail

https://shpargalka. my1.ru/

90. Какие конечные продукты азотистого обмена выделяют хрящевые, костные рыб, рептилии, птиц и млекопитающих.

Среди приспособлений, позволивших пресмыкающимся перейти к наземному образу жизни, важное место занимает смена мезонефрической (туловищной) почки (круглоротые, рыбы, земноводные) метанефрической (тазовой) почкой и связанная с этим перестройка водно-солевого обмена. При этом изменился состав выводимых из организма продуктов азотистого обмена. Его конечными продуктами бывают несколько веществ — аммиак, мочевая кислота, мочевина, креатин, креатинин и др., но, как правило, какое-нибудь одно из них преобладает. Костистые пресноводные рыбы выделяют преимущественно аммиак, который выводится не только почками, но и через жаберные лепестки. У морских костистых рыб наравне с аммиаком в заметных количествах выделяется мочевина, окись триметиламина, креатин и креатинин. В то же время все современные хрящевые рыбы, а среди костных двоякодышащие и кистеперые выводят мочевину. У одного вида — двоякодышащей рыбы протоптеруса — оба типа выделения могут сменять друг друга: выделение аммиака (аммонотелия) преобладает в активном состоянии и мочевины (уреотелия) — в период спячки. Первичным, видимо, было выведение аммиака — конечного продукта азотистого обмена. Но его высокая токсичность требует быстрого выведения из организма, что в пресных водах облегчается постоянным поступлением воды через покровы. При ограниченном поступлении воды возникает необходимость перевода аммиака в менее токсичные соединения — мочевину и триметиламиноксид — с помощью ферментов в печени и почках. Мочевина выделяется в просвет канальца нефрона железистыми клетками. Этот процесс обеспечивается формированием воротной системы почек, появившейся уже у рыб и хорошо развитой у земноводных. Можно заметить, что воротная система почек есть, как правило, у тех групп позвоночных, которые по тем или иным причинам вынуждены экономить воду.

У пресмыкающихся эта потребность особенно возросла. Приспособлением к жизни на суше у них явилось не только усиление секреторного аппарата стенок почечных канальцев, но и переход на новый тип экскреции — на выведение из организма по преимуществу слабо растворимой в воде мочевой кислоты. Она преобладает в моче большинства пресмыкающихся и выводится в виде взвеси мелких кристалликов («белая моча»); лишь у водных черепах в моче преобладает мочевина, выводимая в водном растворе

89. Дифференцировка пищеварительного тракта в ряду позвоночных.

Органы пищеварения

Система пищеварительных органов представлена трубкой, начинающейся ротовым отверстием и заканчивающейся анальным отверстием. Эпителий пищеварительного тракта является энтодермальным. Только в области ротового и анального отверстий энтодермальный эпителий незаметно переходит в эктодермальный.

Пищеварительный тракт подразделяется на следующие основные отделы:

1.  ротовая полость, служащая для принятия пищи;

2.  глотка — отдел, всегда связанный с органами дыхания: у рыб в глотку открываются жаберные щели, у наземных позвоночных в глотке располагается гортанная щель; глотку справедливо называют дыхательным отделом пищеварительной трубки;

3.  пищевод;

4.  желудок — расширение кишечного тракта, имеющее в некоторых случаях весьма сложное устройство;

5.  кишечник, в типичном случае подразделяющийся на переднюю, или тонкую, среднюю, или толстую, и заднюю, или прямую, кишку.

Морфологическое усложнение кишечного тракта в ряду позвоночных идёт по пути его удлинения и дифференцировки на отделы. В пищеварительную трубку открываются протоки трёх видов пищеварительных желёз: слюнных, печени, поджелудочной.

Слюнные железы — приобретение наземных позвоночных. В них преобразуются слизистые железы ротовой полости. Секрет их смачивает пищу и способствует расщеплению углеводов.

Печень и поджелудочная железа развиваются путём выпячивания переднего отдела эмбриональной кишки. Функции обеих желёз шире, чем только пищеварительные. Так, печень кроме выделения желчи, эмульгирующей жиры и активизирующей действие других пищеварительных ферментов, служит важным органом обмена веществ. Здесь нейтрализуются некоторые вредные продукты распада, накапливается гликоген. Ферменты поджелудочной железы расщепляют белки, жиры и углеводы. Одновременно поджелудочная железа служит органом внутренней секреции.

88. Показать усложнение дыхательной системы в ряду: земноводные, рептилии, птицы, млекопитающие. Особенности дыхательной системы птиц. Механизм дыхания у птиц.

Жабры имеются также у моллюсков, рыб и некоторых амфибий. Газы диффундируют через тонкий жаберный эпителий в кровь и разносятся по всему организму. Каждое животное, дышащее при помощи жабр, имеет какое-либо приспособление, обеспечивающее непрерывное омывание их током воды (открывание рта рыбами, движение жаберных крышек, постоянное движение всего тела и др.).

Развитие легочного дыхания имеет свою длительную эволюцию. Развитие легких намечается у некоторых рыб, у ископаемых предков которых был вырост на переднем конце пищеварительного тракта. У той ветви рыб, которая впоследствии дала начало наземным позвоночным животным, из этого выроста развилось легкое. У других рыб он превратился в плавательный пузырь, т. е. в орган, который в основном служит для облегчения плавания, хотя иногда несет и дыхательную функцию. Легкие большинства примитивных амфибий – тритонов, амбистом и др. – имеют вид простых мешков, покрытых снаружи капиллярами. Легкие лягушек и жаб имеют внутри складки, увеличивающие дыхательную поверхность. Лягушки и жабы не обладают грудной клеткой и у них нет межреберных мышц, поэтому у них существует нагнетательный тип дыхания, основанный на действии клапанов в ноздрях и мышц в области горла. Когда открыты носовые клапаны, дно ротовой полости опускается (рот закрыт) и в нее входит воздух. Затем носовые клапаны закрываются и мышцы горла, сокращаясь, уменьшают размеры ротовой полости и вытесняют воздух в легкие.

Эволюция дыхательной системы происходила в направлении постепенного расчленения легкого на более мелкие полости, так что строение легких у рептилий, птиц и млекопитающих постепенно усложняется. У ряда рептилий (например у хамелеона) легкие снабжены придаточными воздушными мешками, которые раздуваются при наполнении воздухом. Легкие птиц также имеют воздушные мешки, распространяющиеся по всему телу. Благодаря им воздух может проходить через легкое и полностью обновляться при каждом вдохе. У птиц при полете существует двойное дыхание, когда воздух в легких насыщается кислородом при вдохе и выдохе. Кроме того, воздушные мешки играют роль мехов, продувающих воздух через легкие за счет сокращения летательных мышц.

Легкие млекопитающих имеют более сложное и совершенное строение, обеспечивающие достаточное насыщение кислородом всех клеток тела, и тем самым, обеспечивают высокий обмен веществ.

87. Особенности дыхательной системы в ряду круглоротые, хрящевые и костные рыбы.

у круглоротых образуются жаберные щели, соединяющие полость глотки с внешней средой. Из выстилающей жаберные щели энтодермы формируются чечевицеобразные жаберные мешки, внутренняя поверхность которых покрыта многочисленными складками. Мешок внутренним узким каналом открывается в полость глотки, а наружным – на боковой поверхности тела животного. Просветы между межжаберными перегородками и жаберными мешками-околожаберные синусы – заполнены лимфой. У миксин от 5 до 16 пар жаберных мешков; у семейства бделлостомовые каждый из них открывается наружу самостоятельным отверстием, а у семейства миксииовые наружные каналы жаберных мешков каждой стороны, соединяясь, открываются наружу общим отверстием примерно посредине тела. У миног 7 пар жаберных мешков, каждый из которых открывается наружу самостоятельным отверстием. У личинок (пескороек) каждый мешок внутренним отверстием открывается в глотку, у взрослых миног – в дыхательную трубку.

У хрящевых Основную часть дыхательной системы составляют большие жаберные пластины эктодермального Происхождения, прикрепленные одной из сторон к межжаберным перегородкам. Большая поверхность пластин обеспечивает достаточно интенсивный газообмен. При вдохе глотка расширяется, вода поступает через рот и омывает жаберные пластины. При выдохе объем глотки уменьшается и вода выходит наружу через жаберные щели, число которых у большинства видов 5, а у меньшинства видов 7. Жаберных крышек у хрящевых рыб нет. Кроме упомянутых жаберных щелей у большинства видов сзади глаз имеются рудиментарные жаберные щели — брызгальца, открывающиеся в переднюю часть глотки, куда через них поступает вода при вдохе.

У костных рыб Главными органами дыхательной системы являются жабры, состоящие из многих лепестков, прикрепленных проксимальными концами к жаберным дугам в отличие от жаберных пластин хрящевых рыб, прикрепленных одной стороной к межжаберным перегородкам. Следовательно, поверхность жабр костных рыб значительно больше, чем у хрящевых рыб. Более совершенен и механизм вдоха и выдоха. Довольно значительная часть газообмена (в среднем около 10%) совершается через кожу. В газообмене могут принимать участие плавательный пузырь и некоторые части кишечника.

86. Описать схему артериального и венозного кровообращения млекопитающих

Кровеносная система. У представителей этого класса сердце четырехкамерное (рис. 109).

Рис. 109. Схема кровеносной системы млекопитающих:

/ и 2 — наружная и внутренняя сонные артерии; 3 — подключичная артерия; 4 — левая дуга аорты; 5 — легочная артерия; 6 — левое предсердие; 7 — правое предсердие; 8 — левый желудочек; 9 — правый желудочек; 10 — спинная аорта; 11 — внутренностная артерия; 12 — почечная артерия; 13 — подвздошная артерия; 14 — яремная вена; 75 — подключичная вена; 16 — левая непарная вена; 17 — правая непарная вена; 18 — задняя полая вена; 19 — печеночная вена; 20 — воротная вена печени; 21 — печень; 22 ~ почка; 23 — подвздошная вена

Какой конечный продукт азотистого обмена характерен для птиц

Из за большого объема этот материал размещен на нескольких страницах:

1 2 3 4 5 6 7 8

Источник

АЗОТИСТЫЙ ОБМЕН У ПТИЦ ПРИ РАЗЛИЧНЫХ ТИПАХ КОРМЛЕНИЯ

  • Авторы
  • Файлы работы
  • Сертификаты

Ажибаева З.С. 1, Нурдинов Н.С. 1, Сержанова А.Е. 1

1Международный казахско-турецкий университет имени Ходжи Ахмеда Ясави

 Комментарии

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке “Файлы работы” в формате PDF

Совокупность химических превращений азотсодержащих соединений в организме представляет азотистый обмен. Это – обмен белков, нуклеиновых кислот, содержащих азот липидов, витаминов, гормонов и др. Принято считать, что в белке содержится 16% азота, Определяя содержание азота в кормах и выделенное его количество с калом, мочой и потом, устанавливается азотистый баланс. Различают положительный азотистый баланс, когда в организм с белком поступает азота больше, чем его выделяется из организма (растущий организм) и отрицательный азотистый баланс, когда количество азота с белком поступает в организм меньше, чем выделяется (голодание).

Начальным этапом азотистого обмена является ферментативное расщепление белков и других сложных азотистых соединений в желудочно-кишечном тракте до свободных аминокислот и всасывание их в тонком кишечнике в кровь и лимфу.

Аминокислоты, всосавшиеся в кишечнике, расходуются на биосинтез белков и других соединений. Переход аминокислот из крови в клетку является началом процесса биосинтеза специфических белков для организма. Аминокислоты, не использованные для биосинтеза, подвергаются процессам ферментативного распада, с помощью дезаминирования. В результате отщепления α-аминогруппы от аминокислоты образуется соответствующая α-кетокислота (безазотистый остаток) и выделяется молекула аммиака. Аммиак токсичен для ЦНС, поэтому в организме человека и млекопитающих он превращается в нетоксичное хорошо растворимое соединение – мочевину. В виде мочевины, а также в виде солей аммония аммиак выводится из организма. Безазотистый остаток используется для образования аминокислот в реакциях трансаминирования, Основной путь нейтрализации аммиака заключается в синтезе мочевины, протекающем в печени и состоящем из серии последовательных ферментативных реакций. У птиц аммиак обезвреживается путем образования мочевой кислоты, так как в печени птиц отсутствует аргиназа, фермент расщепляющий аргинин на мочевину и орнитин. Мочевая кислота – (триоксипурин) один из конечных продуктов азотистого обмена, выделяемая в экскрементах птиц и рептилий. Повышенное содержание ее наблюдается при нефритах, лейкозах подагре и других заболеваниях.

Конечные продукты азотистого обмена выделяются из организма главным образом с мочой, калом и выдыхаемым воздухом. Объективным показателем образования и выведения конечных продуктов азотистого обмена служит содержание в сыворотке крови остаточного азота, в состав которого входят азот мочевины, мочевой кислоты, свободных аминокислот, креатинина, аммиака, полипептидов и глутамина (Шапвиль, Энни, 1977 и др.). На долю мочевины приходится до 80-85% от всего азота мочи. У животных, которые выделяют мочевину, вода необходима для растворения мочевины в моче. На самом деле, мочевина является естественным мочегонным средством, которое обеспечивает поток мочи. У птиц и пресмыкающихся, чтобы экономить воду азот выделяется в качестве мочевой кислоты в виде твердого вещества смешанной с очень небольшим количеством воды. Преобразование аммиака и синтез мочевой кислоты у птиц представляет собой сложный процесс и требует энергии (Gary C. Packar, Mary J. 1989).

Таким образом, учитывая важную роль азотистого обмена у птиц при усовершенствовании технологии кормления, содержания и повышения генетического потенциала мы провели исследования по определению аммиака и мочевины в плазме крови у предоставленных нам пород уток и кур.

Методы исследования

Метод определения мочевины с глиоксимом (Kulhanek, V. , 1962) и аммиака (реакция с бертолетовой солью (Chaney, A.L., 1962)

Результаты исследования

Результаты исследований показали увеличение содержания аммиака в плазме крови в группах уток с 60% и 100% замещением животного белка растительным. Причем, в группе со 100% замещением наблюдается значительное увеличение – с высокой степенью достоверности (таб. 1, рис. 1).

Таблица 1. Содержание аммиака и мочевины в плазме крови уток. Замещение животного белка в корме на растительный белок на 40%, 60%, 100%.

Параметры

Аммиак, мкМ/л

Мочевина, мг/100мл

Контроль

103,3±0,5

18,8±0,9

1 группа (40%)

106,3±2,1

14,3±0,2

2 группа (60%)

130,3±0,2 P≥0,01

7,2±0,5 P≥0,01

3 группа (100%)

152±2,9 P≥0,001

4,5±0,1 P≥0,001

Рис. 1. Содержание аммиака и мочевины в плазме крови уток. Замещение животного белка в корме на растительный белок на 40%, 60%, 100%.

В таблице 2 приведены данные по изменению содержания аммиака и мочевины в плазме крови у уток разных пород. Как видно из таблицы особых различий по содержанию аммиака у исследуемых пород уток не наблюдается. Что же касается концентрации мочевины, то у пепельных и белогрудых высокое, а у белых и хаки содержание мочевины было низким. Это предполагает снижение синтетической функции печени, а именно, синтез мочевины из аммиака.

Таблица 2. Содержание аммиака и мочевины в плазме крови уток разных пород.

Параметры

Аммиак, мкМ/л

Мочевина, мг/100мл

Контроль

60,3±0,2

34,5±0,1

П (пепельные)

90,7±0,2 P≥0,01

32±0,9

Б2 (белые)

90,6±0,1

4±0,2 P≥0,001

Х (хаки)

95,5±3,03

2,7±0,07 P≥0,001

БлГ (белогрудые)

97,5±2,5 P≥0,001

17,7±0,7 P≥0,01

Рис. 2. Содержание аммиака и мочевины в плазме крови уток разных пород.

Содержание аммиака и мочевины в плазме крови у уток отцовской и материнской линий было следующим: у уток отцовской линий содержание аммиака было значительно выше, чем у уток материнской линий (таб.3, рис.3), соответственно, содержание мочевины у материнской линии было выше, чем у отцовской, что свидетельствует об угнетении азотистого обмена в печени у отцовской линии уток.

Таблица 3. Содержание аммиака и мочевины в плазме крови у уток отцовской (М-1) и материнской ( М-2) линий.

Параметры

Аммиак, мкМ/л

Мочевина, мг/100мл

Контроль

102,6±3,6

85,4±3,5

М-1

156,5±5,7 P≥0,05

64,4±3,6

М-2

77,4±2,6 P≥0,001

91,6±3,7 P≥0,05

Рис. 3. Содержание аммиака и мочевины в плазме крови у уток отцовской (М-1) и материнской ( М-2) линий.

Содержание аммиака и мочевины у кур разных пород колебалось незначительно (таб.4, рис.4). Только у кур Ж1 , т.е. материнской линии, наблюдается увеличение на 60% по аммиаку и на 34% по мочевине, а у остальных групп данные показатели менялись в пределах нормы.

Таблица 4. Содержание аммиака и мочевины в плазме крови кур разных пород.

Параметры

Аммиак, мкМ/л

Мочевина, мг/100мл

Контроль

57,2±0,8

34,5±0,1

Ж1

92±0,1 P≥0,01

46,5±1,4

Ж2

63,3±0,2

26,9±0,4

К2Ж1

50,6±0,1

13±0,1 P≥0,01

К3Ж2

53,3±2,4

20,1±0,9

К3Ж1

65,3±2,3

32,2±0,7

Рис. 4. Содержание аммиака и мочевины в плазме крови кур разных пород.

Проведенные исследования показали небольшие колебания в показателях аммиака и мочевины как у уток, так и у кур разных пород и специализации. Следует отметить, что содержание аммиака в плазме крови у уток несколько выше, чем у кур, а мочевины – ниже. Замещение животного белка на растительный белок в группе уток со 100% замещением содержание аммиака значительно выше. Исходя из полученных данных можно говорить, что более оптимальным и физиологичным оказалось замещение животного белка на растительный белок на 40%. Угнетение функции печени в синтезе мочевины из аммиака наблюдались в группах уток отцовской линии и в группах кур материнской линии.

Литература

  1. Шапвиль Ф., Энни А.-Л., Биосинтез белка, пер. с франц., М., 1977.

  2. Gary С. Packard, Mary J. Nitrogen excretion by embryos of a gallinaceous bird and a reconsideration of the evolutionary origin of uricotely//Canadian journal of Zoology, 1986, 64(3): 691-693, 10.1139/z86-101.

  3. Geraet PA, MacLeod MG, Larbier M, Leclerdq B. Nitrigen metabolism fat and lean chicken//Poult Sci. Nov; 69(11):1911-1921.

  4. Chaney, A.L. Modified reagents for determination of urea and ammonia /A.L. Chaney, E.P. Marbach // Clin. Chem. – 1962. – V. 8. – Р. 130.

  5. Kulhanek, V. Mimoradne citlive a jednoduche stanoveny mocoviny v krevnim seru, mozkomisnem moku a v moci //V. Kulhanek, V Vojtiskova // Vnitr. Lek. – 1965. – № 7. – P. 692-696.

7

Просмотров работы: 1525

Код для цитирования:

Источник