Какой оксид проявляет только основные свойства

Какой оксид проявляет только основные свойства thumbnail

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода  в степни окисления – 2 и какого-нибудь другого элемента.

ОксидыОксиды могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl2 + H2O.

В результате химических реакций можно получать и другие соли:

CuO + SO3 → CuSO4.

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N2O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова «основание»), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na2O, K2O, MgO, CaO и т.д.

ОксидыХимические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na2O + H2O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na2O + SO3 → Na2SO4.

3. Реагируют с кислотами, образуя соль и воду:

CuO + H2SO4 → CuSO4 + H2O.

4. Реагируют с амфотерными оксидами:

Li2O + Al2O3 → 2LiAlO2.

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO2, SO3, P2O5, N2O3, Cl2O5, Mn2O7 и т.д. Кислотные оксиды растворяются  в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO3 + H2O → H2SO4.

Но не все кислотные оксиды непосредственно реагируют с водой (SiO2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO2 + CaO → CaCO3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO2 + Ba(OH)2 → BaCO3 + H2O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH)2 и H2ZnO2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl2 + H2O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na2 ZnO2 + H2O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция: 

ZnO + 2 NaOH + H2O => Na2[Zn(OH)4].

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле. Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Источник

Определение

Оксиды – бинарные соединения, в состав которых входит кислород в степени окисления -2.

Номенклатура оксидов

Названия оксидов строятся по следующим правилам систематической номенклатуры:

  1. Сначала указывают слово оксид, после него, в родительном падеже, – название второго элемента.

  2. Если элемент, образующий оксид, имеет единственную валентность, то её в названии оксида можно не указывать. Если же элемент имеет переменную валентность и образует несколько оксидов, то валентность элемента обязательно указывается римскими цифрами в скобках в конце записи названия оксида.

  3. При записи химической формулы оксида кислород записывается на последнем месте.

Примеры:

  • $Na_2O$ – оксид натрия

  • $CaO$ – оксид кальция

  • $Al_2O_3$ – оксид алюминия

  • $overset{+7}{Mn_2}O_7$ – оксид марганца (VII) 

  • $overset{+2}{Cr}O$ – оксид хрома (II) 

  • $overset{+3}{Cr_2}O_3$ – оксид хрома (III)

В настоящее время при формировании названий оксидов пользуются правилами систематической номенклатуры. Однако до её появления, пока число известных соединений было не столь велико, широко использовалась тривиальная номенклатура, в которой названия веществ основаны не на особенностях их строения, а на внешнем виде или каких-то специфических свойствах именуемых объектов. Многие тривиальные названия распространены и в наше время.

На смену тривиальной номенклатуре пришла полусистематическая номенклатура. В полусистематических названиях веществ с помощью использования морфем пытались отразить особенности химического строения соединений. Применительно к оксидам вводились следующие названия: закись – для оксидов элементов в низких степенях окисления, окись – для более высоких степеней окисления. Кислотные оксиды часто рассматривали как продукты дегидратации соответствующих кислот и отражали это в виде названия ангидрид: $P_2O_5$ – фосфорный ангидрид, $SO_3$ – серный ангидрид и т.д.

Таблица 1

Формулы и названия некоторых оксидов в соответствии с тривиальной, полусистематической и систематической номенклатурой

ФормулаТривиальное названиеУстаревшее названиеСистематическое название
$N_2O$веселящий газзакись азотаоксид азота (I)
$NO$ окись азотаоксид азота (II)
$N_2O_3$ трёхокись азота, азотистый ангидридоксид азота (III)
$NO_2$бурый газдвуокись азотаоксид азота (IV)
$N_2O_5$ пятиокись азота, азотный ангидридоксид азота (V)
$SO_2$сернистый газдвуокись серы, сернистый ангидридоксид серы (IV)
$SO_3$ трёхокись серы, серный ангидридоксид серы (VI)
$CO$угарный газокись углеродаоксид углерода (II)
$CO_2$углекислый газдвуокись углеродаоксид углерода (IV)
$Na_2O$натрокись натрияоксид натрия
$MgO$жжёная магнезияокись магнияоксид магния
$CaO$жжёная известь, негашёная известьокись кальцияоксид кальция
$Al_2O_3$глинозёмокись алюминияоксид алюминия
$SiO_2$кремнезёмдвуокись кремнияоксид кремния (IV)
$Fe_3O_4$железная окалиназакись-окись железаоксид железа (II, III)
$H_2O$водаокись водородаоксид водорода

КЛАССИФИКАЦИЯ ОКСИДОВ

Оксиды делятся на две большие группы: солеобразующие и несолеобразующие. Последние, как вытекает из названия, не образуют солей.

Несолеобразующими называют оксиды, которые не вступают во взаимодействие ни с щелочами, ни с кислотами и не образуют солей. Эти оксиды образованы неметаллами.

Несолеобразующих оксидов немного, их необходимо запомнить: $N_2O$, $NO$, $CO$, $SiO$.

Солеобразующими называют оксиды, способные взаимодействовать с кислотами или с основаниями с образованием солей.

Солеобразующие оксиды делятся на основные, кислотные и амфотерные оксиды.

Основные оксиды – оксиды, которым соответствуют основные гидроксиды (основания).

Основные оксиды образованы типичными металлами (щелочными, щелочноземельными, магнием), а также переходными металлами в низких степенях окисления (кроме $ZnO$).

Примеры основных оксидов: $Li_2O$, $Na_2O$, $K_2O$, $MgO$, $CaO$, $BaO$, $overset{+2}{Fe}O$, $overset{+2}{Cr}O$, $overset{+1}{Cu_2}O$, $overset{+2}{Cu}O$, $overset{+2}{Mn}O$ и др.

Кислотные оксиды – оксиды, которым соответствуют кислотные гидроксиды (кислоты).

Кислотные оксиды образованы неметаллами (за исключением несолеобразующих оксидов $CO$, $SiO$, $NO$, $N_2O$), а также переходными металлами в высоких степенях окисления.

Примеры кислотных оксидов: $Cl_2O_7$, $SO_3$, $SO_2$, $N_2O_5$, $NO_2$, $N_2O_3$, $P_2O_5$, $P_2O_3$, $CO_2$, $SiO_2$, $B_2O_3$, $overset{+6}{Cr}O_3$, $overset{+7}{Mn_2}O_7$ и др.

Амфотерными называются оксиды, которые в зависимости от условий проявляют основные или кислотные свойства. Им соответствуют амфотерные гидроксиды.

К амфотерным оксидам относятся оксид бериллия $BeO$, оксид алюминия $Al_2O_3$, оксид цинка $ZnO$, а также оксиды переходных металлов в промежуточных степенях окисления.

Примеры амфотерных оксидов: $Al_2O_3$, $overset{+3}{Fe_2}O_3$, $overset{+3}{Cr_2}O_3$, $overset{+4}{Mn}O_2$, $overset{+2}{Sn}O$, $overset{+4}{Sn}O_2$, $overset{+5}{V_2}O_5$, $ZnO$, $BeO$ и др.

Какой оксид проявляет только основные свойства

Основные оксиды взаимодействуют с кислотами с образованием соли и воды. Это оксиды металлов (кроме некоторых переходных металлов в высших степенях окисления), твердые вещества.

Основным оксидам соответствуют основания, в которых металл имеет такую же степень окисления, как в оксиде, при этом степень окисления равна числу гидроксильных групп.

Например, оксиду натрия $overset{+1}{Na}_2O$  соответствует гидроксид натрия $overset{+1}{Na}OH$;

оксиду кальция $overset{+2}{Ca}O$  соответствует гидроксид кальция $overset{+2}{Ca}(OH)_2$;

оксиду железа (II) $overset{+2}{Fe}O$  соответствует гидроксид железа (II)  $overset{+2}{Fe}(OH)_2$.

Кислотные оксиды взаимодействуют с щелочами с образованием соли и воды, им соответствуют кислоты. Это оксиды неметаллов ($mathrm{CO_2, SO_2, SO_3, N_2O_5}$) или переходных металлов в высших степенях окисления ($mathrm{CrO_3, Mn_2O_7}$).

Оксиду соответствует кислота в случае, если степень окисления элемента в обоих соединениях одинакова, при этом степень окисления кислотного остатка равна количеству атомов водорода.

Например, оксиду углерода (IV) $overset{+4}{C}O_2$ соответствует угольная кислота  $H_2overset{+4}{C}O_3$;

оксиду серы (IV) $overset{+4}{S}O_2$  соответствует сернистая кислота $H_2overset{+4}{S}O_3$;

оксиду серы (VI) $overset{+6}{S}O_3$  соответствует серная кислота $H_2overset{+6}{S}O_4$;

оксиду азота (V) $overset{+3}{N}_2O_3$ соответствует азотистая кислота $Hoverset{+3}{N}O_2$;

оксиду азота (V) $overset{+5}{N}_2O_5$ соответствует азотная кислота $Hoverset{+5}{N}O_3$;

оксиду азота (IV) $overset{+4}{N}O_2$ соответствует сразу две кислоты:  азотная —  $Hoverset{+5}{N}O_3$ и азотистая — $Hoverset{+3}{N}O_2$;  

оксиду хлора  (IV) $Cloverset{+4}O_2$ соответствует хлорноватая  $Hoverset{+3}{Cl}O_2$ и хлористая $Hoverset{+5}{Cl}O_3$  кислоты. 

Обратите внимание: если элемент в оксиде проявляет степень окисления, отличную от той, которую он проявляет в кислоте, такой оксид является несолеобразующим!

Например: углерод в угарном газе $overset{+2}{C}O$ проявляет степень окисления +2, в то время как в единственной кислоте, содержащей углерод,  $H_2overset{+4}{C}O_3$ его степень окисления равна +4. Поэтому оксид углерода (II) относится к несолеобразующим оксидам.

Амфотерные оксиды проявляют в зависимости от условий свойства основных или кислотных оксидов.

Им соответствуют амфотерные основания. 

Например, оксиду железа (III) $overset{+3}{Fe}_2O_3$  соответствует гидроксид железа (III)  $overset{+3}{Fe}(OH)_3$

оксиду алюминия $overset{+3}{Al}_2O_3$  соответствует гидроксид алюминия  $overset{+3}{Al}(OH)_3$

оксиду хрома (III) $overset{+3}{Cr}_2O_3$  соответствует гидроксид хрома (III)  $overset{+3}{Cr}(OH)_3$

В таблице представлены основные свойства кислотных, основных и амфотерных оксидов.

основные амфотерныекислотные

Взаимодействуют с кислотами с образованием соли и воды.

Это оксиды металлов (кроме некоторых переходных металлов в высших степенях окисления), твердые вещества

CaO, FeO, Cu$_2$O

оксиды, проявляющие в зависимости от условий свойства основных или кислотных оксидов.

Им соответствуют амфотерные основания

Это твердые вещества.

Al$_2$O$_3$, ZnO, Fe$_2$O$_3$, $Cr_2O_3$, BeO

взаимодействуют с щелочами с образованием соли и воды, им соответствуют кислоты.

Это оксиды неметаллов (CO$_2$, SO$_2$, SO$_3$, N$_2$O$_5$) или переходных металлов в высших степенях окисления (CrO$_3$, Mn$_2$O$_7$)

Газы, жидкости, твердые тела

Прим. Некоторые (NO$_2$, ClO$_2$) образуют сразу две кислоты

ФИЗИЧЕСКИЕ СВОЙСТВА ОКСИДОВ

Основные и амфотерные оксиды при комнатной температуре – твердые вещества ($CaO$, $Fe_2O_3$ и др.); кислотные оксиды – твёрдые вещества ($P_2O_5$, $SiO_2$), жидкости ($SO_3$, $Сl_2О_7$ и др.) или газы ($NO_2$, $SO_2$ и др.). Все несолеообразующие оксиды являются газами, кроме $SiO$, который является твердым веществом. Однако, нужно помнить, что кремниевую кислоту $H_2SiO_3$ нельзя получить непосредственно из оксида кремния, добавляя воду! Эту кислоту можно получить косвенным путем из солей кремния  – силикатов.

Оксиды металлов могут быть окрашены в разные цвета: оксиды щелочных и щелочно-земельных металлов обычно белого цвета, оксиды переходных металлов $Cr_2O_3$ – зеленый; $HgO$ – красно-оранжевый; $CuO$ – черный, а $Cu_2O$ – красный.

Оксид кремния $SiO_2$ – самое распространенное твердое вещество на Земле. Он входит в состав почвы (песок), горных пород и минералов. Драгоценные камни, такие как изумруд, сапфир, горный хрусталь имеют в своей структуре молекулы оксида кремния, при этом атомы кремния и кислорода образуют атомную кристаллическую решетку, и, поэтому представляют собой тугоплавкие, твердые, но хрупкие кристаллы правильной формы:

     Какой оксид проявляет только основные свойстваКакой оксид проявляет только основные свойстваКакой оксид проявляет только основные свойства

   Бурый газ (оксид азота(IV))           Оксид железа (III)                                 Оксид кремния

ХИМИЧЕСКИЕ СВОЙСТВА ОКСИДОВ

ХИМИЧЕСКИЕ СВОЙСТВА ОСНОВНЫХ ОКСИДОВ

Исходное веществоРеагентПродукты реакцииУравнение реакции
$K_2O$вода растворимое основание (щелочь)*

$K_2O + H_2O = 2KOH$

MgOкислотасоль и вода

$MgO  + 2HCl = MgCl_2 + H_2O$

CaOкислотный оксидсоль

$ CaO + CO_2 = CaCO_3$

$Na_2O$амфотерный оксидсоль

$Na_2O + ZnO = Na_2ZnO_2$

* Взаимодействие основного оксида с водой протекает только в случае, если образуется растворимое основание, т.е. щелочь. В случае возможного образования нерастворимого основания реакция не идет, например:

$MgO + H_2O not = Mg(OH)_2 downarrow$

ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОТНЫХ ОКСИДОВ

Исходное веществоРеагентПродукты реакции Уравнение реакции 

$SO_3$

$N_2O_5$

 вода соответствующая растворимая*
 кислота

 $SO_3 + H_2O = H_2SO_4$

$N_2O_5 + H_2O = 2HNO_3$

$SiO_2 + H_2O not = H_2SiO_3 downarrow$

$SO_2$ щелочь соль и вода$SO_2 + 2NaOH = Na_2SO_3 + H_2O$
$P_2O_5$ основный оксид соль$P_2O_5 + 3Na_2O = 2Na_3PO_4 $
$SO_3$ амфотерный оксид соль

$ZnO + SO_3= ZnSO_4 $

*Реакция не протекает в случае,если образуется нерастворимая кислота, например: $SiO_2 + H_2O not = H_2SiO_3 downarrow$

Кислотные оксиды образуют соли, соответствующие определенной кислоте. Если у элемента может быть две или более кислот, то следует ориентироваться на степень окисления этого элемента в оксиде и кислоте: она должна быть одинаковой. Для лучшего понимания превращений кислотных оксидов в соли советуем воспользоваться следующим алгоритмом (на примере взаимодействия оксида азота(V) с гидроксидом кальция): $N_2O_5 + Ca(OH)_2 rightarrow$

1) Определим степень окисления азота в оксиде: $overset{X}{N}_2 overset{-2}{O_5} $ X=10/2=+5

2) Вспомним, какие кислоты образует азот и определим в каждой его степень окисления:

$hspace{2cm} overset{+1}{H}overset{x}{N}overset{-2}{O_2}hspace{3cm} overset{+1}{H}overset{x}{N}overset{-2}{O_3}hspace{2cm}  $

$1cdot (+1) +1 cdot x + 2cdot(−2) = 0   hspace{0.5cm} 1cdot (+1) +1 cdot x + 3cdot(−2) = 0 $

$hspace{2cm} x = +3 hspace{3.2cm} x = +5$

Значит оксиду азота (V) соответствует азотная кислота, и $N_2O_5$ при взаимодействии с щелочами образует ее соли – нитраты ($NO_3^ – $):

$N_2O_5 + Ca(OH)_2 = Ca(NO_3)_2 + H_2O$

Воспользовавшись этим алгоритмом, можно составить следующие логические ряды:

$N_2O_5 rightarrow HNO_3$          ст.ок=+5     образует соли нитраты $NO_3^ – $

$ N_2O_3 rightarrow HNO_2$          ст.ок=+3     образует соли нитриты $NO_2^ –$

$P_2O_5 rightarrow H_3PO_4$       ст.ок=+5    образует соли нитраты $PO_4^{3 -}$ 

Для наглядного запоминания этого принципа можно воспользоваться таблицей, приведенной ниже.

Таблица. Формулы и названия кислот, кислотных остатков и соответствующих кислотных оксидов

Формула кислоты Название кислоты Формула кислотного остатка Название кислотного остатка  Соответствующий кислотный оксид
 HF Фтороводород, плавиковая$ F^-$ Фторид 
 HCl Хлороводород, соляная$ Cl^-$ Хлорид 
 HBr Бромоводород $Br-$ Бромид 
 HIЙодоводород $I^-$ Йодид  
 $H_2S$Сероводород$S^{2-}$Сульфид 
HCNЦиановодородная$CN^-$Цианид 
$HNO_2$Азотистая$NO^{2-}$Нитрит$N_2O_3$
$HNO_3$Азотная$NO^{3-}$Нитрат$N_2O_5$
$H_3PO_4$Ортофосфорная$mathrm{PO_4^{3-}}$Фосфат$P_2O_5$
$ H_3AsO_4$ Мышьяковая$mathrm{AsO_4^{3-}}$ Арсенат$As_2O_5$
$ H_2SO_3$ Сернистая$mathrm{SO_3^{2-}}$ Сульфит$SO_2$
$ H_2SO_4$ Серная$mathrm{SO_4^{2-}}$Сульфат$SO_3$
 $H_2CO_3$ Угольная$mathrm{CO_3^{2-}}$ Карбонат$CO_2$
$ H_2SiO_3$ Кремниевая$mathrm{SiO_3^{2-}}$ Силикат$SiO_2$
$ H_2CrO_4$ Хромовая$mathrm{CrO_4^{2-}}$ Хромат$CrO_3$
$ H_2Cr_2O_7$ Дихромовая $mathrm{Cr_2O_7^{2-}}$ Дихромат $CrO_3$
$HMnO_4$ Марганцовая $mathrm{MnO_4^{-}}$ Перманганат$Mn_2O_7$
 $HClO$ Хлорноватистая $mathrm{ClO^-}$Гипохлорит$Cl_2O$
$ HClO_2$Хлористая$mathrm{ClO_2^{-}}$Хлорит$Cl_2O_3$
$ HClO_3$ Хлорноватая $mathrm{ClO_3^{-}}$ Хлорат$Cl_2O_5$
$ HClO_4$ Хлорная $mathrm{ClO_4^{-}}$ Перхлорат$Cl_2O_7$
 $HCOOH$ Метановая, муравьиная $mathrm{HCOO^-}$ Формиат 
 $CH_3COOH$ Этановая, уксусная $mathrm{CH_3COO^-}$ Ацетат 
$ H_2C_2O_4$ Этандиовая, щавелевая  $mathrm{C_2O_4^-}$ Оксалат 

ХИМИЧЕСКИЕ СВОЙСТВА АМФОТЕРНЫХ ОКСИДОВ

Исходное веществоРеагентПродукты реакции Уравнение реакции 
$ZnO, Al_2O_3$ вода$not = $

не взаимодействуют

$ZnO$кислотный оксид соль $ ZnO + SO_3= ZnSO_4 $
  основный оксид соль

$ZnO + Na_2O  = Na_2ZnO_2$

 
$Al_2O_3$кислота соль

$ Al_2O_3 + 6HNO_3 =  2Al(NO_3)_3 + 3H_2O $

$Al_2O_3$щелочь щелочь в расплаве — соль+вода

$Al_2O_3  + 2NaOH (т)xrightarrow[t, ^circ C]{}$

$ 2NaAlO_2  + H_2O $

$Al_2O_3$щелочь в растворе — комплексная соль

$Al_2O_3  + 6NaOH (p-p)  + 3H_2O  = $

$=2Na_3[Al(OH)_6]$

СПОСОБЫ ПОЛУЧЕНИЯ ОКСИДОВ

1) взаимодействие простых веществ с кислородом

$mathrm{2Ca + O_2 = 2CaO}$

$mathrm{S + O_2 = SO_2}$

2)  взаимодействие сложных веществ с кислородом

$mathrm{2ZnS + 3O_2 = 2ZnO + SO_2}$

3) разложение некоторых солей при нагревании

$mathrm{CaCO_3 =  CaO + CO_2}$

$mathrm{2CuSO_4 = 2CuO + 2SO_2 + O_2}$

Примечание: соли натрия и калия обычно не разлагаются с образованием оксидов. Подробнее смотрите тему “Разложение солей”

4) дегидратация кислот и нерастворимых оснований

$mathrm{ H_2SO_4 = SO_3 + H_2O}$

(точнее: $mathrm{3H_2SO_4 + P_2O_5 = 3SO_3uparrow + 2H_3PO_4}$) 

$mathrm{H_2SiO_3 = SiO_2 + H_2O}$

$mathrm{Cu(OH)_2 = CuO + H_2O}$

5) окисление одних оксидов и восстановление других

$mathrm{MnO_2 + 2H_2 = MnO + 2H_2O}$

$mathrm{2NO + O_2 = 2NO_2}$

$mathrm{Cr_2O_3 + 2Al = Al_2O_3 + 2Cr}$ (алюмотермия)

$mathrm{CuO + C = Cu + CO}$

При этом более активный металл вытесняет менее активный из его оксида. Для сравнения активности металлов следует использовать электрохимический ряд напряжения металлов.

6) вытеснение летучих оксидов из солей менее летучими

$mathrm{Na_2CO_3 + SiO_2  =  Na_2SiO_3 + CO_2uparrow}$

Источник

Подробно про оксиды, их классификацию и способы получения можно прочитать здесь.

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CaO + H2O → Ca(OH)2

CuO + H2O ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота).

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N2O5, NO2, SO3 и т.д.).

Основные оксиды, которым соответствуют щелочиОсновные оксиды, которым соответствуют нерастворимые основания
Реагируют со всеми кислотами и их оксидамиРеагируют только с сильными кислотами и их оксидами
Na2O + SO2 → Na2SO3CuO + N2O5 → Cu(NO3)2

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид  + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи. При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

K2O + Al2O3 → 2KAlO2

CuO + Al2O3 ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al2O3 + H2O = H2Al2O4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO2. Получается алюминат-ион AlO2—. Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие оксидов металлов с восстановителями.

При оценке окислительно-восстановительной активности металлов и их ионов можно использовать электрохимический ряд напряжений металлов:

Какой оксид проявляет только основные свойства

Восстановительные свойства (способность отдавать электроны) у простых веществ-металлов здесь увеличиваются справа налево, окислительные свойства ионов металлов — увеличиваются наоборот, слева направо. При этом некоторые ионы металлов в промежуточных степенях окисления могут проявлять также восстановительные свойства (например ион Fe2+ можно окислить до иона Fe3+).

Более подробно про окислительно-восстановительные реакции можно прочитать здесь.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом.

Углерод (уголь) восстанавливает из оксидов до простых веществ только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C = Fe + CO

Какой оксид проявляет только основные свойства

Активные металлы, расположенные в ряду активности левее алюминия, активно взаимодействуют с углеродом, поэтому при взаимодействии их оксидов с углеродом образуются карбиды и угарный газ:

CaO + 3C = CaC2 + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

Fe2O3 + CO = Al2O3  + CO2

CuO + CO = Cu + CO2

Какой оксид проявляет только основные свойства

4.2. Восстановление водородом.

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия.  Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H2 = Cu + H2O

Какой оксид проявляет только основные свойства

4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например, оксид цинка взаимодействует с алюминием:

3ZnO + 2Al  =  Al2O3 + 3Zn

но не взаимодействует с медью:

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний.  А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Например, цезий взрывается на воздухе.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например: алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al  =  Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO

Какой оксид проявляет только основные свойства

Железо можно вытеснить из оксида с помощью алюминия:

2Fe2O3 + 4Al → 4Fe + 2Al2O3

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например, аммиак восстанавливает оксид меди (II):

3CuO + 2NH3 = 3Cu + 3H2O + N2

5. Взаимодействие оксидов металлов с окислителями.

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe2+, Cr2+, Mn2+ и др.) могут выступать в качестве восстановителей.

Например, оксид железа (II) можно окислить кислородом до оксида железа (III):

4FeO + O2 = 2Fe2O3

Источник