Какой пар называется насыщенным его свойства
Жидкости имеют свойство испаряться. Если бы мы капнули на стол по капле воды, эфира и ртути (только не делайте этого в домашних условиях!), смогли бы наблюдать, как постепенно капли исчезают – испаряются. Одни жидкости испаряются быстрее, другие медленнее. Процесс испарения жидкости еще называется парообразованием. А обратный процесс превращения пара в жидкость – конденсацией.
Эти два процесса иллюстрируют фазовый переход – процесс перехода веществ из одного агрегатного состояния в другое:
- испарение (переход из жидкого в газообразное состояние);
- конденсация (переход из газообразного состояния в жидкое);
- десублимация (переход из газообразного состояния в твердое, минуя жидкую фазу);
- возгонка, она же сублимация (переход из твердого в газообразное состояние, минуя жидкое).
Сейчас, к слову, подходящий сезон, чтобы наблюдать процесс десублимации в природе: иней и изморозь на деревьях и предметах, морозные узоры на окнах – ее результат.
Как образуется насыщенный и ненасыщенный пар
Но вернемся к парообразованию. Мы продолжим экспериментировать и нальем жидкость – воду, например, в открытый сосуд, а к нему подсоединим манометр. Невидимое глазу, в сосуде происходит испарение. Все молекулы жидкости находятся в непрерывном движении. Некоторые движутся так быстро, что их кинетическая энергия оказывается сильнее той, что связывает молекулы жидкости вместе.
Покинув жидкость, эти молекулы продолжают хаотически двигаться в пространстве, подавляющее их большинство рассеивается в нем – так образуется ненасыщенный пар. Лишь небольшая их часть возвращается обратно в жидкость.
Если закроем сосуд, молекул пара постепенно будет становиться все больше. И все больше их будет возвращаться в жидкость. При этом будет увеличиваться давление пара. Это зафиксирует подсоединенный к сосуду манометр.
Спустя какое-то время число молекул, вылетающих из жидкости и возвращающихся в нее, сравняется. Давление пара перестанет изменяться. В результате насыщения пара установится термодинамическое равновесие системы жидкость-пар. То есть испарение и конденсация будут равны.
Свойства насыщенного пара
Чтобы их проиллюстрировать наглядно, используем еще один эксперимент. Призовите всю силу своего воображения, чтобы представить его. Итак, возьмем ртутный манометр, состоящий из двух колен – сообщающихся трубок. В оба налита ртуть, один конец открыт, второй запаян и над ртутью в нем находится еще некоторое количество эфира и его насыщенного пара. Если опускать и поднимать не запаянное колено, уровень ртути в запаянном будет также опускаться и подниматься.
При этом будет изменяться и количество (объем) насыщенного пара эфира. Разность уровней ртутных столбиков в обоих коленах манометра показывает давление насыщенного пара эфира. Оно будет сохраняться неизменным все время.
Отсюда вытекает свойство насыщенного пара – его давление не зависит от занимаемого им объема. Давление насыщенных паров различных жидкостей (воды и эфира, к примеру) разное при одинаковой температуре.
Однако температура насыщенного пара имеет значение. Чем выше температура, тем выше и давление. Давление насыщенного пара с увеличением температуры возрастает быстрее, чем это происходит с ненасыщенным паром. Температура и давление ненасыщенного пара связаны линейной зависимостью.
Можно провести еще один любопытный опыт. Взять пустую колбу без паров жидкости, закрыть ее и подсоединить манометр. Постепенно, по капле, подавать внутрь колбы жидкость. По мере поступления жидкости и ее испарения устанавливается давление насыщенного пара, наибольшее для данной жидкости при данной температуре.
Еще о температуре и насыщенном паре
Температура пара влияет и на скорость конденсации. Так же, как температура жидкости определяет скорость испарения – число молекул, которые вылетают с поверхности жидкости в единицу времени, другими словами.
У насыщенного пара его температура равна температуре жидкости. Чем выше температура насыщенного пара, тем выше его давление и плотность, ниже плотность жидкости. При достижении критической для вещества температуры плотность жидкости и пара одинаковая. Если температура пара выше критической для вещества температуры, физические различия между жидкостью и насыщенным паром стираются.
Определение давления насыщенного пара в смеси с другими газами
Мы сказали о неизменном при постоянной температуре давлении насыщенного пара. Мы определяли давление в «идеальных» условиях: когда в сосуде или колбе присутствуют жидкость и пар только одного вещества. Рассмотрим еще эксперимент, в котором молекулы вещества рассеяны в пространстве в смеси с другими газами.
Для этого возьмем два открытых стеклянных цилиндра и поместим в оба закрытые сосуды с эфиром. Как водится, подсоединим манометры. Один сосуд с эфиром раскрываем, после чего манометр фиксирует повышение давления. Разность между этим давлением и давлением в цилиндре с закрытым сосудом эфира и позволяет узнать давление насыщенного пара эфира.
О давлении и кипении
Испарение возможно не только с поверхности жидкости, но и в ее объеме – тогда его называют кипением. При повышении температуры жидкости образуются пузырьки пара. Когда давление насыщенного пара больше либо равно давлению газа в пузырьках, жидкость испаряется внутрь пузырьков. А те расширяются и поднимаются на поверхность.
Жидкости кипят при разных температурах. В обычных условиях вода закипает при 1000С. Но с изменением атмосферного давления меняется и температура кипения. Так, в горах, где воздух сильно разрежен и атмосферное давление ниже, по мере подъема в горы снижается и температура кипения воды.
Кстати, в герметично закрытом сосуде кипение невозможно вообще.
Еще один пример взаимосвязи давления пара и испарения демонстрирует такая характеристика содержания паров воды в воздухе, как относительная влажность воздуха. Она представляет собой отношение парциального давления паров воды к давлению насыщенного пара и определяется по формуле: φ = р/ро * 100%.
При понижении температуры воздуха концентрация водяных паров в нем повышается, т.е. они становятся более насыщенными. Эта температура называется точкой росы.
Подведем итоги
На несложных примерах мы разобрали суть процесса испарения и образующиеся в его результате ненасыщенный и насыщенный пар. Все эти явления вы ежедневно можете наблюдать вокруг себя: например, видеть высыхающие после дождя лужи на улицах или запотевшее от пара зеркало в ванной комнате. В ванной вы даже можете наблюдать, как сначала происходит парообразование, а потом конденсация скопившейся на зеркале влаги обратно в воду.
Вы также можете использовать эти знания, чтобы сделать свою жизнь более комфортной. Например, зимой во многих квартирах воздух очень сухой, и это плохо сказывается на самочувствии. Вы можете использовать современный прибор-увлажнитель, чтобы сделать его более влажным. Или по старинке поставить в комнате емкость с водой: постепенно испаряясь, вода насытит воздух своими парами.
Поделитесь ссылкой на эту статью со своими одноклассниками и друзьями. Сделать это совсем не сложно – специальные кнопки есть под текстом. А кто-нибудь даже скажет вам спасибо за полезную информацию.
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
Источник
Термины насыщенный пар и перегретый пар относятся к термодинамическому состоянию воды. Вода и пар являются средами, используемыми для теплообмена в котловых установках благодаря своей доступности и высокой теплоемкости. Особенно эффективно передавать тепло посредством испарения и конденсации воды, которая обладает большой скрытой теплоты испарения.
Насыщенный пар (НП) и перегретый пар (ПП) относятся к определенному давлению среды. Первый НП может существовать во влажном и сухом состоянии, а перегретый ПП – только в сухом, поскольку не может содержать в своем составе частиц воды.
Чаще всего эти понятия применяются в теплоэнергетике, для расчета термодинамических циклов в контуре парового котла и в паровых турбинах, генерирующих электрическую энергию на ТЭЦ, ТЭС, ГРЭС и АЭС.
Что такое насыщенный пар
Водяной пар, пребывающий в термодинамическом равновесии с котловой водой, является насыщенным. Это формулировка дает понимание того, что давление насыщенного пара при температуре может иметь только одно значение
В котлоагрегатах парообразование протекает при постоянном давлении и подводе тепла к котловой воде от уходящих газов. Этот процесс базируется на следующих последовательных стадиях: подпитка котла водой, подогрев ее до температуры точки насыщения, и образование сухого насыщенного пара, когда вся жидкость испаряется из него.
В паровых котлах питательная вода, пройдя через экономайзер, попадает в барабан. Из него более холодные потоки под воздействием силы тяжести опускаются по необогреваемым трубам, а поднимаются по подъёмным топочным экранам обогреваемые более горячими дымовыми газами.
Здесь начинается процесс парообразования, поскольку температура воды достигает значения точки насыщения при рабочем давлении в котлоагрегате.
Плотность пароводяной смеси в экранных пакетах уменьшается и становится ниже плотности воды в опускных трубах, что создает напор для движения пароводяной смеси по экранам в барабан, где смесь сепарируется на воду и пар.
В закрытой поверхности нагрева при не меняющейся температуре в точке насыщения устанавливается термодинамическое равновесие между котловой водой и водяным паром. Число молекул пара, выделяющихся из поверхности воды за определенное время, будет равняться числу молекул сконденсированного пара, которые перейдут обратно в воду в барабане котла.
Давление насыщенного пара
Давление насыщения в котле зависит от температуры котловой воды в равновесном термодинамическом состоянии. При росте давления, пар сжимается и баланс нарушается. Плотность пара первоначально несколько возрастает, и из паровой среды в котловую воду будет переходить больше молекул конденсата, чем наоборот.
Поскольку количество молекул, переходящих из воды в единицу времени связано исключительно с температурой, то сжатие паровой среды не будет влиять на изменение этого числа.
Процесс будет протекать пока не возникнет термодинамическое равновесие, а следовательно, и концентрация возвращающихся молекул не достигнет первоначального уровня. Таким образом, Тнп напрямую зависит от давления насыщения в котле.
Таблица насыщенного пара
Характеристики сухого НП, приводятся в Таблице водяного пара. В ней указывают Т (С), при точке кипения котловой воды и давление (кПа и мм. рт.ст.) при которой этот процесс протекает.
Дополнительно в таблице могут указываться и другие параметры пара:
- eдельный объем, м3/кг;
- плотность, кг/м3;
- удельная энтальпия, кДж/кг
- удельная теплота парообразования, кДж/кг.
Плотность насыщенного пара
Плотность НП определяют по формуле.
D st = 216,49 * P / (Z st * (t + 273))
Где:
- D st – плотность насыщенного пара в кг / м3;
- P- абсолютное давление пара в барах;
- t – температура в градусах Цельсия;
- Z st – коэффициент сжимаемости насыщенного пара при Р и t.
В этом уравнении символ «Z st» обозначает коэффициент сжимаемости насыщенного пара при абсолютной величине давления насыщенного водяного пара P, бар. Это удобное уравнение действительно для диапазона давления пара от 0,012 до 165 бар, с соответствующим диапазоном температур насыщения от 10 до 360 С.
Влажность насыщенного пара
Когда котлоагрегат нагревает воду, пузырьки, прорывающиеся через слой воды, захватываются паром. Влажный пар определяется как пар, в котором вода присутствует в виде микрокапель паров воды. В этом случае соотношение может составлять от 0 до 1. Если пар имеет 20 % воды по объему — он считается сухим на 80% или имеет долю сухости 0,8.
Таблицы НП содержит значения, такие как температура, энтальпия и удельный объем для сухого НП, но не для влажного. Для того чтобы их определить потребуется воспользоваться формулами, учитывая соотношение двух сред:
Удельный объем (v) мокрого пара
v = X * v g + (1 – X) * v f
Где:
- X = сухость (% / 100);
- v f = удельный объем жидкости;
- v g = удельный объем НП.
Удельная энтальпия пара сухостью Х:
h = h f + X * h fg
Где:
- X = сухость (%);
- h f = удельная энтальпия жидкости;
- h fg = удельная энтальпия НП.
Чем влажнее пар, тем ниже значения удельного объема, теплосодержание, энтальпия и энтропия. Таким образом сухость пара оказывает существенное влияние на все эти значения.
Задачей теплоэнергетиков является организация процессов парообразования в котле с сухостью 100%. Для этого в барабанах котлов устанавливают специальные сепарационные устройства, отделяющие пар от воды.
Перегретый пар
Перегретый пар — это пар с температурой, превышающей его температуру кипения при абсолютном давлении, при котором проводились измерение температуры. Давление и температура перегретого пара не зависят друг от друга, поскольку температура может увеличиваться, в то время как давление остается постоянным.
Процесс перегрева водяного пара на диаграмме Ts представлен на рисунке между состоянием E и кривой насыщенного пара. Чтобы оценить тепловую эффективность цикла, энтальпия должна быть получена из таблиц перегретого пара.
Процесс перегрева — единственный способ увеличить пиковую температуру цикла Ренкина и повысить эффективность без увеличения давления в котле. Это требует добавления в конструкцию котла особого теплообменника, называемого пароперегревателем.
В пароперегревателе дальнейший нагрев при фиксированном давлении приводит к увеличению, как температуры, так и удельного объема. Наибольшее значение перегретого пара заключается в его огромной внутренней энергии, которая может быть использована для кинетической реакции для движения лопастей турбины, создающих вращательное движение вала.
Температура перегретого пара
Характеристики перегретого пара (ПП) аналогичны идеальному газу, но не равны насыщенному пару. Поскольку ПП не обладает зависимостью между температурой и давлением, при конкретном давлении он может вырабатываться в широком температурном диапазоне, что будет зависеть от площади нагрева пароперегревателя.
Перегретый пар отличается от насыщенного такими преимуществами:
- gри равном давлении насыщения он обладает намного большей температурой;
- обладает большим удельным объемом, что дает экономию энергоресурсов при использовании;
- при снижении он не конденсируется, пока температура не упадет ниже точки насыщения при давлении среды.
Методы регулирования температуры перегретого пара
Довольно часто для технологических процессов, требуется получение перегретого пара строго определенной температуры. Для того чтобы снять ее излишки, обычно используют три метода воздействия на температуру ПП:
- cмешивание разных температурных потоков, когда в ПП впрыскивают котловую воду или паровой теплоноситель меньшего теплосодержания;
- поверхностное охлаждение, заключается в перенаправление ПП через систему специальных теплообменных аппаратов, выполняющих роль охладителей;
- изменение тепловосприятия потока, реализуется через изменение температуры или расхода уходящих котловых газов.
В теплоэнергетике в котлах высокого давления наиболее часто применяют первый метод, путем впрыскивания в поток ПП питательной воды или конденсата от турбогенератора. Впрыском насыщенного пара, как правило, регулируют температуру вторичного перегрева пара.
Получение перегретого пара
Пароперегреватель устройство, устанавливаемый в котлоагрегате, вырабатывает перегретый пар с параметрами, превышающими температуру насыщения в барабане котла. Он относится к особо критичным котловым элементам, поскольку из-за высоких температур ПП металл конструкции функционирует в предельно-допустимых условиях.
Пароперегреватели бывают основного типа, работающие в зоне сверхкритического давления и промежуточного типа, которые направляют пар отработанный в турбине для промперегрева.
Кроме того пароперегреватели классифицируются по тепловосприятию на конвективные, установленные в конвективной части котла, радиационные — расположены около топочных экранов и ширмовые — установленные в верхней части топки. По направлению движения потоков ПП и уходящих котловых газов выпускают ПП : прямоточные, противоточные и смешанные.
Использование перегретого пара в технике
В современных паровых турбинах применяют ПП с температурой перегретого пара существенно выше критической (374C).
Перегретый пар используется в турбинах для повышения теплового КПД. Другое использование перегретого пара:
- Пищевые технологии.
- Технологии очистки.
- Катализ / химическая обработка.
- Технологии поверхностной сушки.
- Технологии отверждения.
- Энергетика.
- Нанотехнологии.
Котлы перегретого пара
В России применяется ГОСТ 3619-76 на паровые котлоагрегаты, в котором установлены параметры насыщенного и перегретого пара, а также паровая производительность и температура воды для питания котла.
Современная российская энергетика использует котлоагрегаты производительностью вырабатывающих 1000/1650/2650/3950 т/ч пара для турбогенераторов соответствующей мощностью 300/500/800/1200 МВт, работающих на сверхкритических параметрах по давлению 25,5 МПа и Тпп=545С.
Схема котла с пароперегревателем
Энергетические котлы классифицируются по давлению пара — высокого от 10 до 14 МПа и сверхкритического свыше 25,5 МПа. Котлоагрегаты сверхвысокого давления, обычно, выполняют с вторичным перегревом пара.
Паровые котлоагрегаты малой и средней паропроизводительности используются для производства насыщенного и перегретого пара с характеристиками до 3,9 МПа и Т=450 С. Они эксплуатируются на промпредприятиях и в жилищно-коммунальном хозяйстве для производственно-технологических нужд и в системах центрального теплоснабжения.
Типичными представителями агрегатов данной категории являются котел Е (ДЕ) производительностью пара от 1 до 25 т/ч, Е (КЕ) производительностью пара до 25 т/ч с газомазутной горелкой и ДКВР производительностью до 20 т/ч. Их применение – источники тепловой энергии для центрального теплоснабжения с параметрами насыщенного и перегретого пара.
Источник
Насыщенный пар.
Если сосуд с жидкостью плотно закрыть, то сначала количество жидкости уменьшится, а затем
будет оставаться постоянным. При неизменной температуре система жидкость – пар
придет в состояние теплового равновесия и будет находиться в нем сколь угодно
долго. Одновременно с процессом испарения происходит и конденсация, оба
процесса в среднем компенсируют друг друга. В первый момент, после того как
жидкость нальют в сосуд и закроют его, жидкость будет испаряться и плотность
пара над ней будет увеличиваться. Однако одновременно с этим будет расти и
число молекул, возвращающихся в жидкость. Чем больше плотность пара, тем
большее число его молекул возвращается в жидкость. В результате в закрытом
сосуде при постоянной температуре установится динамическое (подвижное)
равновесие между жидкостью и паром, т. е. число молекул, покидающих поверхность
жидкости за некоторый промежуток времени, будет равно в среднем числу молекул
пара, возвратившихся за то же время в жидкость. Пар, находящийся в динамическом
равновесии со своей жидкостью, называют насыщенным паром. Это определение
подчеркивает, что в данном объеме при данной температуре не может находиться
большее количество пара.
Более подробно здесь
Давление насыщенного пара.
Что будет
происходить с насыщенным паром, если уменьшить занимаемый им объем? Например,
если сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем,
поддерживая температуру содержимого цилиндра постоянной. При сжатии пара
равновесие начнет нарушаться. Плотность пара в первый момент немного увеличится,
и из газа в жидкость начнет переходить большее число молекул, чем из жидкости в
газ. Ведь число молекул, покидающих жидкость в единицу времени, зависит только
от температуры, и сжатие пара это число не меняет. Процесс продолжается до тех
пор, пока вновь не установится динамическое равновесие и плотность пара, а
значит, и концентрация его молекул не примут прежних своих значений.
Следовательно, концентрация молекул насыщенного пара при постоянной температуре
не зависит от его объема. Так как давление пропорционально концентрации молекул
(p=nkT), то из этого определения следует, что давление насыщенного пара не
зависит от занимаемого им объема. Давление pн.п. пара, при котором
жидкость находится в равновесии со своим паром, называют давлением насыщенного
пара.
Зависимость давления насыщенного
пара от температуры.
Состояние
насыщенного пара, как показывает опыт, приближенно описывается уравнением
состояния идеального газа, а его давление определяется формулой Р = nкТ С
ростом температуры давление растет. Так как давление насыщенного пара не
зависит от объема, то, следовательно, оно зависит только от температуры. Однако
зависимость рн.п. от Т, найденная экспериментально, не является
прямо пропорциональной, как у идеального газа при постоянном объеме. С увеличением
температуры давление реального насыщенного пара растет быстрее, чем давление
идеального газа (рис. участок кривой 12). Почему это происходит? При нагревании
жидкости в закрытом сосуде часть жидкости превращается в пар. В результате
согласно формуле Р = nкТ давление насыщенного пара растет не только вследствие
повышения температуры жидкости, но и вследствие увеличения концентрации молекул
(плотности) пара. В основном увеличение давления при повышении температуры
определяется именно увеличением концентрации. (Главное различие в поведении
идеального газа и насыщенного пара состоит в том, что при изменении температуры
пара в закрытом сосуде (или при изменении объема при постоянной температуре)
меняется масса пара. Жидкость частично превращается в пар, или, напротив, пар
частично конденсируется. С идеальным газом ничего подобного не происходит.). Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть
насыщенным и его давление при постоянном объеме будет возрастать прямо
пропорционально абсолютной температуре (см. рис., участок кривой 23).
Кипение.
Кипение –
это интенсивный переход вещества из жидкого состояния в газообразное,
происходящее по всему объему жидкости (а не только с ее поверхности).
(Конденсация – обратный процесс.) По мере увеличения температуры жидкости
интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При
кипении по всему объему жидкости образуются быстро растущие пузырьки пара,
которые всплывают на поверхность. Температура кипения жидкости остается
постоянной. Это происходит потому, что вся подводимая к жидкости энергия
расходуется на превращение ее в пар. При каких условиях начинается кипение?
В
жидкости всегда присутствуют растворенные газы, выделяющиеся на дне и стенках
сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами
парообразования. Пары жидкости, находящиеся внутри пузырьков, являются
насыщенными. С увеличением температуры давление насыщенных паров возрастает и
пузырьки увеличиваются в размерах. Под действием выталкивающей силы они
всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то
в этих слоях происходит конденсация пара в пузырьках. Давление стремительно
падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что
стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких
микровзрывов создает характерный шум. Когда жидкость достаточно прогреется,
пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит.
Понаблюдайте внимательно за чайником на плите. Вы обнаружите, что перед
закипанием он почти перестает шуметь. Зависимость давления насыщенного пара от
температуры объясняет, почему температура кипения жидкости зависит от давления
на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара
внутри него немного превосходит давление в жидкости, которое складывается из
давления воздуха на поверхность жидкости (внешнее давление) и гидростатического
давления столба жидкости . Кипение начинается при температуре, при которой давление
насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше
внешнее давление, тем выше температура кипения. И наоборот, уменьшая внешнее
давление, мы тем самым понижаем температуру кипения. Откачивая насосом воздух и
пары воды из колбы, можно заставить воду кипеть при комнатной температуре. У
каждой жидкости своя температура кипения (которая остается постоянной, пока вся
жидкость не выкипит), которая зависит от давления ее насыщенного пара. Чем выше
давление насыщенного пара, тем ниже температура кипения жидкости.
Заполни опорный конспект Контрольные вопросы
Влажность воздуха и ее измерение.
В окружающем
нас воздухе практически всегда находится некоторое количество водяных паров.
Влажность воздуха зависит от количества водяного пара, содержащегося в нем.
Сырой воздух содержит больший процент молекул воды, чем сухой. Большое значение
имеет относительная влажность воздуха, сообщения о которой каждый день звучат в
сводках метеопрогноза.
Относительная влажность — это отношение плотности
водяного пара, содержащегося в воздухе, к плотности насыщенного пара при данной
температуре, выраженное в процентах (показывает, насколько водяной пар в
воздухе близок к насыщению).
Точка росы
Сухость или
влажность воздуха зависит от того, насколько близок его водяной пар к
насыщению. Если влажный воздух охлаждать, то находящийся в нем пар можно
довести до насыщения, и далее он будет конденсироваться. Признаком того, что
пар насытился является появление первых капель сконденсировавшейся жидкости –
росы. Температура, при которой пар, находящийся в воздухе, становится
насыщенным, называется точкой росы. Точка росы также характеризует влажность
воздуха. Примеры: выпадение росы под утро, запотевание холодного стекла, если
на него подышать, образование капли воды на холодной водопроводной трубе,
сырость в подвалах домов. Для измерения влажности воздуха используют
измерительные приборы – гигрометры. Существуют несколько видов гигрометров, но
основные: волосной и психрометрический.
Так как непосредственно измерить
давление водяных паров в воздухе сложно, относительную влажность воздуха
измеряют косвенным путем. Известно, что от относительной влажности воздуха
зависит скорость испарения. Чем меньше влажность воздуха, тем легче влаге
испаряться. В психрометре есть два термометра. Один – обычный, его называют
сухим. Он измеряет температуру окружающего воздуха. Колба другого термометра
обмотана тканевым фитилем и опущена в емкость с водой. Второй термометр
показывает не температуру воздуха, а температуру влажного фитиля, отсюда и
название увлажненный термометр. Чем меньше влажность воздуха, тем интенсивнее
испаряется влага из фитиля, тем большее количество теплоты в единицу времени
отводится от увлажненного термометра, тем меньше его показания, следовательно,
тем больше разность показаний сухого и увлажненного термометров. Определив
разность показаний сухого и увлажненного термометров, по специальной таблице,
расположенной на психрометре, находят значение относительной влажности.
Источник: https://5fan.ru/wievjob.php?id=1361
Источник