Какой продукт образуется при гидрировании циклобутана

Какой продукт образуется при гидрировании циклобутана thumbnail

Урок позволяет сформировать у учащихся представления о циклоалканах как о карбоциклических соединениях. Он познакомит их с общей формулой класса, номенклатурой и изомерией циклоалканов, их физическими и химическими свойствами, а также способами получения циклоалканов. Как известно, атомы углерода могут соединяться друг с другом с образованием цепей и циклов.

Первым, кто выдвинул идею о том, что атомы углерода образуют циклы, был А. Кекуле (1829−1896). Считают, что такая идея возникла у него после того, как он увидел в зоопарке обезьян, которые схватили друг друга за лапы и хвосты. Некоторые считают, что во сне ему приснилась извивающаяся змея, которая ухватила себя за хвост и замерла.

В молекуле циклоалканов атомы углерода связаны между собой одинарными ковалентными связями. Для циклоалканов характерна sp3-гибридизация атомных орбиталей. На свойства циклоалканов оказывает влияние устойчивость цикла, которая зависит от его размера. Например, углеродная цепь более устойчива, если валентный угол близок к тетраэдрическому. Поэтому трёх-и четырёхчленные циклы менее устойчивы, чем пяти-и шестичленные.

Общая формула циклоалканов отличается от общей формулы алканов, так как для того, чтобы образовался цикл, нужно отщепить у алкана 2 атома водорода. И общая формула циклоалканов будет CnH2n. Например, у гексана формула С6Н14, а у циклогексана С6Н12.

Циклоалканы относятся к карбоциклическим соединениям, то есть соединениям, молекулы которых содержат цикл из атомов углерода.

Таким образом, циклоалканы — органические соединения, молекулы которых содержат цикл из атомов углерода.

Молекулы циклоалканов могут содержать заместители, связанные с циклом: метилциклопропан, 1,3-диметилциклопентан, метилциклогексан.

Рассмотрим изомерию циклоалканов: например, циклоалканы могут различаться числом атомов углерода в цикле.

Как, например, метилциклопетан и циклогексан. Изомерные циклоалканы различаются и строением заместителей. Например, этилциклобутан и 1,2-диметилциклобутан. Циклоалканы различаются также положением заместителей в цикле. Например, 1,1-диметилциклобутан и 1,3-диметилциклобутан.

Составим всевозможные изомеры к циклоалкану состава С5Н10. Это цикл, который состоит из пяти томов углерода, — циклопентан, затем четыре атома углерода могут образовывать цикл, а один атом углерода входить в состав заместителя. Это метилциклобутан. Существуют также изомерные циклоалканы состава С5Н10, молекулы которых включают цикл из трех атомов углерода. В этом случае с циклом связаны либо две метильные группы, причем метильные группы могут находиться как у одного атома углерода, так и у соседних, либо одна этильная группа: 1,1-диметилциклопропан, 1,2-диметилциклопропан, этилциклопропан.

Кроме того, для циклоалканов характерна межклассовая изомерия с алкенами. Так, между собой будут изомерны циклобутан и бутен-1.

Для циклоалканов, содержащих два и более заместителя, возможна пространственная изомерия — конформационная изомерия. При этом происходит превращение одной формы в другую без разрыва связей, а происходит лишь разворот атомов относительно друг друга. То есть молекула как бы выворачивается. Эти структуры между собой являются конформерами. Конформерами циклогексана будут «кресло», «ванна» или «лодка», также «твист».

Рассмотрим номенклатуру циклоалканов. Основные принципы построения названий такие же, как и в случае алканов, только вместо наиболее длинной углеродной цепи (главной цепи) в качестве основы выбирают цикл. Атомы углерода в цикле нумеруют таким образом, чтобы заместители получили наименьшие номера. Принадлежность соединения к классу циклоалканов указывает приставка цикло- и суффикс — ан-.

По своим физическим свойствам циклоалканы похожи на алканы. При комнатной температуре циклопропан и циклобутан — газы, С5 — С10 — бесцветные жидкости со специфическим запахом, высшие циклоалканы являются твердыми веществами.

Циклоалканы практически нерастворимы в воде.

Химические свойства циклоалканов с различным числом атомов углерода в цикле существенно различаются. Например, для циклопропана и циклобутана характерны реакции присоединения. Циклопентан и циклогексан, наоборот, по химическим свойствам близки к алканам: так же, как и алканы, они не реагируют с кислотами и щелочами, но для них характерны реакции замещения с галогенами.

Циклоалканы горят с образованием углекислого газа и воды. Так, при горении циклогексана образуется углекислый газ и вода.

Трёх и четырёхчленные циклы менее устойчивы, поэтому для них характерны реакции присоединения.

Реакции галогенирования. В реакции циклобутана с хлором идёт реакция присоединения, в результате образуется 1,4-дихлобутан, а в реакции циклогексана с хлором идёт реакция замещения, в результате реакции образуется хлорциклогексан.

Пяти- и шестичленные циклы вступают и в реакцию нитрирования. Так, в реакции циклогексана с азотной кислотой образуется нитроциклогексан.

При повышенной температуре циклоалканы вступают в реакции присоединения. Так, при гидрировании циклопропана образуется пропан.

Циклоалканы вступают в реакции дегидрирования. При пропускании паров циклогексана над нагретым никелевым, платиновым или палладиевым катализатором образуется бензол.

В конце 19 века химики установили, что в состав нефти входят циклоалканы. Изучением их строения и свойств занимался русский химик

В. В. Марковников. Именно он назвал эти соединения нафтенами (от греч. naphtha — нефть). Особенно велико содержание нафтенов в бакинской нефти, откуда их можно выделить фракционной перегонкой.

Циклоалканы можно получить при гидрировании бензола и его гомологов. Так, при гидрировании метилбензола образуется метилциклогексан.

Циклоалканы можно получить и при дегалогенировании дигалогенпроизводных. Так, при действии цинка или магния на 1,3-дибромпропан образуется циклопропан.

Циклоалканы встречаются в природе. Они входят в состав нефти. Циклоалканы являются компонентами бензина. Из циклогексана получают капролактам — исходное вещество для синтеза капрона. Циклопропан применяется в медицине как обезболивающее средство.

Скачать видеоурок вы можете на странице:
https://videouroki.net/blog/vidieourok-po-khimii-tsikloalkany.html

Источник

    Циклобутан реагирует с водородом в присутствии катализатора с образованием н-бутана, однако для этого требуется более высокая температура (200 °С), чем для гидрирования циклопропана (80 °С). Циклобутан не вступает в реакцию с остальными реагентами, под действием которых раскрывается циклопропановое кольцо. Таким образом, циклобутан вступает в реакции присоединения труднее, чем циклопропан, а последний — труднее, чем пропилен. Однако примечательнее всего сам факт, что циклоалканы вообще вступают в реакции присоединения. [c.269]

    Физические и химические свойства. Ц. весьма сходны со свойствами соответствующих алканов. Это бесцветные газы (циклопропан) или жидкости, а высшие гомологи —твердые вещества. Трех- и четырехчленные кольца относительно менее устойчивы, чем Ц. с большим числом углеродных атомов, поэтому для них характерны реакции, сопровождающиеся раскрытием цикла. Для Ц. с большим размером цикла характерны те же реакции, что и для алканов (радикальное замещение). Циклопропан легко гидрируется и при 120 °С присоединяет два атома водорода с разрывом кольца и образованием пропана. Циклобутан также способен к такому гидрированию, но при 180 °С. Циклопентановые производные гидрируются в еще более жестких условиях при 300 °С и использовании активных катализаторов. Циклогексан не гидрируется. Циклопропан способен с разрывом кольца присоединять два атома брома, переходя в 1,3-дибромпропан.Ц. с большим числом атомов углерода взаимодействуют с галогенами без разрыва кольца, т. е. способны лишь к замещению атомов водорода галогенами, протекающему так же, как и у алканов с незамкнутой цепью. Концентрационные пределы воспламенения в смеси с воздухом 1,3—8,5 % (по объему). [c.76]

Читайте также:  В каких продуктах в15

    Ряд циклобутана. — Первое соединение этого ряда, диэтило- вый эфир циклобутандикарбоново [-1,1 кислоты I, было получено Перкино м мл. путем малонового синтеза (1887). В результате омыления и пиролиза замещенной малоновой кислоты И была получена циклобутанкарбоновая кислота III, но дал1)Нейшие попытки Перкина превратить ее в циклоалкан, лежащий в основе всего ряда, оказались безуспешными, так как при пиролизе кальциевой соли этой кислоты получался только этилен. Синтез циклобутана был впервые осуществлен с низкими выходами Вильштеттером (1907 следующим многостадийным путем. Синтезированная Перкином монокарбоновая кислота III была превращена через хлорангидрид п амид IV в амин V, из которого исчерпывающим метилированием был получен иодметилат VI, переведенный затем в четвертичное основание VII в результате гофманов-ского расщепления VII был получен циклобутен VIII, при осторожном гидрировании которого образовался циклобутан IX и бутадиен. [c.31]

    Циклобутан устойчив к действию большинства перечисленных реагентов, но подвергается каталитич. гидрированию, хотя и труднее, чем циклопропан  [c.83]

    Циклобутан, кольцо которого образовано с меньшим напряжением, способен к подобному гидрированию [c.63]

    Циклобутан при каталитическом гидрировании иревран1ается в -бутан однако для этого требуются более высокие температуры, около [c.214]

    Химические свойства. Циклобутан и его замещенные во многом подобны алканам. Наиболее характерны для них реакции замещения. Тем не менее известны также реакции раскрытия циклобута-нового цикла, например при каталитическом гидрировании  [c.165]

    Циклобутан значительно менее реакционноспособен, чем циклопропан. Он не только нечувствителен по отношению к перманганату и озону, но также устойчив к действию брома и иодистого водорода при комнатной температуре. Правда, его кольцо размыкается при гидрировании, однако это происходит при более высокой температуре, чем в случае циклопропана  [c.30]

    Циклогексан и его производные можно получить также при полном гидрировании ароматических углеводородов, почему циклопарафины называют также гидроароматическими углеводородами (стр. 326). Циклопропан и циклобутан — газы, следующие углеводороды — жидкости, а высшие — циклопарафины — твердые тела. [c.263]

    К этому же времени относятся первые сведения о димеризации акрилонитрила под действием катализаторов. Так, при нагревании акрилонитрила до 280 °С в бензольном растворе в присутствии гидрохинона в автоклаве образуется смесь цис- и траис-1,2-дициано-циклобутанов (с выходом около 5%), при гидрировании которых получается адиподинитрил. Интерес к гидродимеризации акрилонитрила значительно возрос после того, как было показано, что при восстановлении акрилонитрила амальгамой калия выход адиподинитрила достигает 60%, а также с момента осуществления димеризации акрилонитрила электрохимическим методом . [c.72]

    Циклобутан значительно менее реакционноспособен, чем циклопропан, и походит скорее на высшие циклоалканы. Циклобутан не реагирует с размыканием цикла с галоидами и с галоидоводородами. Его цикл размыкается при каталитическом гидрировании, но только при 120°, с образованием м-бутана (в этой реакции циклопентановое кольцо размыкается лишь при температуре выше 300° Н. Д. Зелинский). [c.244]

    Циклопропан и циклобутан можно превратить в парафины путем гидрирования для этого их смесь с водородом пропускают над нагретым порошкообразным никелем (Вильштеттер). Гидрирование циклопропана начинается уже при 80° и быстро протекает при 120° для восстановительного расщепления циклобутанового кольца и образования из него бутана требуется более высокая температура, 180°, а поли-метиленовые кольца циклопентана, циклогексана и циклооктана еще более устойчивы (иапример, по Зелинскому, циклоиентан гидрируется с расщеплением пятичленного кольца лишь при 300—310 ), Если при этом учесть, что этилен гидрируется в присутствии N1 уже при 40°. то, исходя из этих различий, не трудно вывести зависимость между устойчивостью таких кольцевых систем и легкостью их расщепления  [c.775]

    Свойства циклопропанов, отличные от свойств алкенов, показывают, что триметиленовый цикл, обладая известной ненасыщенностью, все же существенно устойчивее этиленовой связи Так, по легкости гидрирования на малоактивном катализаторе циклопропан гораздо ближе к циклобутану, чем к оле-финам, но все же весьма существенно отличается от устойчивого в этих условиях циклопентана [c.26]

    Разрыв С — С-связи с присоединением водорода (гидрогенолиз) в присутствии гидрирующего катализатора — явление, сравнительно редкое в органическом катализе. Такой разрыв наблюдается либо в случае пониженной прочности связи под влиянием накопления по соседству электроотрицательных групп, например, у соединений, имеющих склонность к образованию свободных радикалов триарилметильного типа, либо в полиметиленовых кольцах с малым числом атомов углерода (циклопропан, циклобутан и их производные), для которых принимается наличие значительного байеровского напряжения, связанного с искажением валентных углов, свойственных правильному тетраэдру. Обыкновенные нормальные С — С-связи, например С — С-связи парафиновых углеводородов, оказываются достаточно прочными и в условиях, обычно применяемых при каталитическом гидрировании органических соединений, не расщепляются с присоединением водорода. Сказанное справедливо в полной мере только для тех случаев, когда в качестве катализаторов применяются благородные металлы, в частности платина. Однако в тех случаях, когда катализатором является никель, возможен гидрогенолиз С —С-связей даже в таких простых молекулах, как этан и пропан. Такого рода реакции описаны в старых работах Сабатье , в более поздних работах Тейлора с сотрудниками и недавних исследованиях, Гензеля . В последних описываются деметилирование 2, 2, 3-триметилпен-тана и 2,2-диметилбутана в присутствии никелевого катализатора и водорода и превращение их соответственно в триптан и неопентан. [c.223]

Читайте также:  Каким продуктом очистить легкие

    Сравнительное гидрирование циклоалканов показало, что его скорость падает в ряду циклопропан, циклобутан, циклопентан. [c.384]

    Трудность разрыва С—С-связей возрастает в порядке 2—3(4—5), 3—4, 1—2 (1—5). Сравнительное гидрирование циклоалканов показало, что его скорость падает в ряду циклопропан, циклобутан, циклопентан. Циклогексан устойчив к гидрированию. [c.373]

    Циклобутиламин, необходимый для этой реакции, был получен из амида циклобутанкарбоновой кислоты при номощи реакции раснада амидов. Каталитическим гидрированием циклобутен был затем впервые превращен в циклобутан. Циклогептан был получен аналогичным образом из циклогептиламина, который в свою очередь был синтезирован восстановлением оксима ц)аклогептанона. [c.556]

    По каталитическому гидрированию углеводородов ряда циклобутана имеется лишь небольшое число работ. Вольштеттер [1] в 1907 г. наблюдал, что циклобутан при пропускании его вместо с водородом через мелкораздробленный никель при 180° С превраш,ается в к-бутан. Розанов [2] в 1929 г. сообщил, что метилциклобутан в присутствии свежевосстановлен-ного никеля и водорода при 210° С превращается в изопентан. Раик [3] в 1941 г. гидрировал метил-, этил- и пропилциклобутан в присутствии платинированного угля и нашел, что разрыв С—С-связей четырехчленного кольца начинается при 260° С и полностью протекает при 300° С при этом, по мнению автора, также разрывается связь, отстоящая через один углеродный атом от углерода, связанного с заместителем. Приведенные в этих работах данные о температурных условиях каталитического гидрогенолиза четырехчленного углеводородного кольца довольно противоречивы. Кроме того, пятичлепное кольцо циклопентана в условиях каталитического гидрирования в присутствии платинированного угля (при малых объемных скоростях) начинает расщепляться улле при 225 С [4], несмотря на то, что оно, казалось бы, долншо быть гораздо прочнее четырехчленного цикла, как обладающее значительно меньшим байеровским напряжением. Поэтому мы решили еще раз подвергнуть каталитическому гидрогенолизу некоторые гомологи циклобутана в условиях, сравнимых с теми, в которых подробно изучалось гидрирование циклопентановых углеводородов. [c.63]

    Хиральные алканы — циклоалканы и фурановые соединения. Наряду с DIOP в гидрировании производных дегидроаминокислот применяют лиганды — хиральные циклоалканы циклобутан, циклопентан и циклогексан, а также фурановые соединения [88] [c.155]

Начала органической химии Книга первая (1969) — [

c.539

]

Начала органической химии Кн 1 Издание 2 (1975) — [

c.506

]

Источник

Циклоалканы – это предельные (насыщенные) углеводороды, которые содержат замкнутый углеродный цикл.

Общая формула циклоалканов CnH2n, где n≥3.

Строение, номенклатура и изомерия циклоалканов

Химические свойства циклоалканов

Получение циклоалканов

Атомы углерода в молекулах циклоалканов находятся в состоянии sp3-гибридизации и образует четыре σ-связи С–С и С–Н. В зависимости от размеров цикла меняются валентные углы.

В малых циклах (циклопропан и циклобутан) валентные углы между связями С–С сильно отличаются от валентных углов между связями С–С в алканах (109о35′). Поэтому в малых циклах возникает напряжение, которое приводит к высокой реакционной способности таких циклоалканов.

Самый простой циклоалкан — циклопропан, представляет, по сути, плоский треугольник.

σ-Связи в циклопропане называют «банановыми». Они не лежат вдоль оси, соединяющей ядра атомов, а отклоняются от неё, уменьшая напряжение в молекуле циклопропана.

 По свойствам «банановые» связи напоминают π-связи. Они легко разрываются.

Какой продукт образуется при гидрировании циклобутана

Поэтому циклопропан очень легко вступает в реакции присоединения с разрывом углеродного цикла.

Остальные циклоалканы имеют неплоское строение. Молекула циклобутана имеет перегиб по линии, соединяющей первый и третий атомы углерода в кольце:

Какой продукт образуется при гидрировании циклобутана

Циклобутан также вступает в реакции присоединения, но угловое напряжение в циклобутане меньше, чем в циклопропане, поэтому реакции присоединения к циклобутану протекают сложнее.

Большие циклы имеют более сложное, неплоское строение, вследствие чего угловое напряжение в молекулах больших циклоалканов почти отсутствует.

Циклоалканы с большим циклом не вступают в реакции присоединения. Для них характерны реакции замещения.

Строение циклопентана также неплоское, молекула представляет собой так называемый «конверт».

Какой продукт образуется при гидрировании циклобутана

Молекула циклогексана не является плоским многоугольником и принимает различные конформации, имеющие названия «кресло» и «ванна»:

Какой продукт образуется при гидрировании циклобутана

«кресло»                                                     «ванна»

Структурная изомерия

Для  циклоалканов характерна структурная изомерия, связанная с разным числом углеродных атомов в кольце, разным числом углеродных атомов в заместителях и с положением заместителей в цикле.

  • Изомеры с разным числом атомов углерода в цикле отличаются размерами углеродного цикла.
Например.

Изомеры с разным числом углеродных атомов в цикле – это этилциклопропан и метилциклобутан с общей формулой С5Н10

  • Изомеры с разным числом атомов углерода в заместителях отличаются строением заместителей у одинакового углеродного цикла.
Например.

Структурные изомеры с различным числом углеродных атомов в заместителях – 1-метил-2-пропилциклопентан  и 1,2-диэтилциклопентан

  • Изомеры с разным положением одинаковых заместителей в углеродном цикле.
  • Межклассовая изомерия: циклоалканы изомерны алкенам.
Например.

Формуле С3Н6 соответствуют циклопропан и пропен.

Геометрическая (цис-транс-) изомерия

У циклоалканов с двумя заместителями, расположенными у соседних атомов углерода в цикле цис-транс-изомерия обусловлена различным взаимным расположением в пространстве заместителей относительно плоскости цикла.

Читайте также:  Какие белковые продукты входят питание

В цис-изомерах заместители находятся по одну сторону от плоскости цикла, в транс-изомерах – заместители расположены по разные стороны.

Например.

В молекуле 1,2-диметилциклопропана две группы СН3 могут находиться по одну сторону от плоскости цикла (цис-изомер) или по разные стороны (транс-изомер):

Для 1,1-диметилциклопропана цис-транс-изомерия не характерна.

В названиях циклоалканов используется префикс -ЦИКЛО.

Название циклоалканов строится по следующим правилам:

1.  Цикл принимают за главную углеродную цепь. При этом считают, что углеводородные радикалы, которые не входят в главной цепь,  являются в ней заместителями.

2. Нумеруют атомы углерода в цикле так, чтобы атомы углерода, которые соединены с заместителями, получили минимальные возможные номера. Причем нумерацию следует начинать с более близкого к старшей группе конца цепи.

3. Называют все радикалы, указывая впереди цифры, которые обозначают их расположение в главной цепи.

Для одинаковых заместителей эти цифры указывают через запятую, при этом количество одинаковых заместителей обозначается приставками ди- (два), три- (три), тетра- (четыре), пента- (пять) и т.д.

Например, 1,1-диметилциклопропан или 1,1,3-триметилциклопентан.

4. Названия заместителей со всеми приставками и цифрами располагают в алфавитном порядке.

Например: 1,1-диметил-3-этилциклопентан.

5. Называют углеродный цикл.

Циклоалканы с малым циклом (циклопропан, циклобутан и их замещенные гомологи) из-за большой напряженности в кольце  могут вступать в реакции присоединения.

1. Реакции присоединения к циклоалканам

 Чем меньше цикл и чем больше угловое напряжение в цикле, тем легче протекают реакции присоединения. Способность вступать в реакции присоединения уменьшается в ряду: циклопропан > циклобутан > циклопентан.

1.1. Гидрирование циклоалканов

С водородом могут реагировать малые циклы, а также (в жестких условиях) циклопентан. При этом происходит разрыв кольца и образование алкана.

Циклопропан и циклобутан довольно легко присоединяют водород при нагревании в присутствии катализатора:

Какой продукт образуется при гидрировании циклобутана

Какой продукт образуется при гидрировании циклобутана

Циклопентан присоединяет водород в жестких условиях:

Какой продукт образуется при гидрировании циклобутана

Бромирование протекает более медленно и избирательно.

Циклогексан и циклоалканы с большим число атомов углерода в цикле с водородом не реагируют.

1.2. Галогенирование циклоалканов

Циклопропан и циклобутан реагируют с галогенами, при этом тоже происходит присоединение галогенов к молекуле, сопровождающееся разрывом кольца.

Например. Циклопропан присоединяет бром с образованием 1,3-дибромпропана:

Какой продукт образуется при гидрировании циклобутана

1.3. Гидрогалогенирование

Циклопропан и его гомологи с алкильными заместителями у трехчленного цикла вступают с галогеноводородами в реакции присоединения с разрывом цикла.

Например, циклопропан присоединяет йодоводород.

Какой продукт образуется при гидрировании циклобутана

 Присоединение галогеноводородов к гомологам циклопропана с заместителями у трехатомного цикла (метилциклопропан и др.) происходит по правилу Марковникова.

Например, при присоединении бромоводорода к метилциклопропану преимущественно образуется 2-бромбутан

Какой продукт образуется при гидрировании циклобутана

2. Реакции замещения

В больших циклах (циклопентане, циклогексане) благодаря неплоскому строению молекул не возникает  угловое напряжение.

Поэтому большие циклы гораздо более устойчивы, чем малые, и реакции присоединения с разрывом связей С-С для них не характерны. В химических реакциях они ведут себя подобно алканам, вступая в реакции замещения без разрыва кольца.

2.1. Галогенирование

Галогенирование циклопентана, циклогексана и циклоалканов с большим количеством атомов углерода в цикле протекает по механизму радикального замещения.

Например, при хлорировании циклопентана на свету или при нагревании образуется хлорциклопентан

Какой продукт образуется при гидрировании циклобутана

При хлорировании метилциклопентана замещение преимущественно протекает у третичного атома углерода:

Какой продукт образуется при гидрировании циклобутана

2.2. Нитрование циклоалканов

При взаимодействии циклоалканов с разбавленной азотной кислотой при нагревании образуются нитроциклоалканы.

Например, нитрование циклопентана.

Какой продукт образуется при гидрировании циклобутана

2.3. Дегидрирование

При нагревании циклоалканов в присутствии катализаторов протекает дегидрирование – отщепление водорода.

Циклогексан и его производные дегидрируются при нагревании и под действием катализатора до бензола и его производных.

Например, бензол образуется при дегидрировании циклогексана.

Какой продукт образуется при гидрировании циклобутана

Например, при отщеплении водорода от метилциклогексана образуется толуол.

Какой продукт образуется при гидрировании циклобутана

3. Окисление циклоалканов

3.1. Горение

Как и все углеводороды, алканы горят до углекислого газа и воды. Уравнение сгорания циклоалканов в общем виде:

CnH2n + 3n/2O2 → nCO2 + nH2O + Q

Например, горение циклопентана.

2C5H10 + 15O2 → 10CO2 + 10H2O + Q

3.2. Окисление

При окислении циклогексана азотной кислотой или в присутствии катализатора образуется адипиновая (гександиовая) кислота:

Какой продукт образуется при гидрировании циклобутана

1. Дегидрирование алканов

Алканы с длинным углеродным скелетом, содержащие  5 и более атомов углерода в главной цепи, при нагревании в присутствии металлических катализаторов образуют циклические соединения.

При этом протекает дегидроциклизация – процесс  отщепления водорода с образованием замкнутого цикла.

Пентан и его гомологи, содержащие пять атомов углерода в главной цепи, при нагревании над платиновым катализатором образуют циклопентан и его гомологи:

Какой продукт образуется при гидрировании циклобутана

Алканы с углеродной цепью, содержащей 6 и более атомов углерода в главной цепи, при дегидрировании образуют устойчивые шестиатомные циклы, т. е. циклогексан и его гомологи, которые далее превращаются в ароматические углеводороды.

Гексан при нагревании в присутствии оксида хрома (III) в зависимости от условий может образовать циклогексан и потом бензол:

Какой продукт образуется при гидрировании циклобутана

Какой продукт образуется при гидрировании циклобутана

Гептан при дегидрировании в присутствии катализатора образует метилциклогексан и далее толуол:

Какой продукт образуется при гидрировании циклобутана

Дегидроциклизация алканов — важный промышленный способ получения циклоалканов.

2. Гидрирование бензола и его гомологов

При гидрировании бензола при нагревании и в присутствии катализатора образуется циклогексан:

Какой продукт образуется при гидрировании циклобутана

При гидрировании толуола образуется метилциклогексан:

Какой продукт образуется при гидрировании циклобутана

Этим способом можно получить только циклогексан и его гомологи с шестичленным кольцом.

3. Дегалогенирование дигалогеналканов

При действии активных металлов на дигалогеналканы, в которых между атомами галогенов находится три и более атомов углерода.

Например, 1,4-дибромбутан реагирует с цинком с образованием циклобутана

Какой продукт образуется при гидрировании циклобутана

Таким образом можно синтезировать циклоалканы заданного строения, в том числе циклоалканы с малыми циклами (С3 и С4).

Источник