Какой продукт образуется при окислении этанола перманганатом калия

Какой продукт образуется при окислении этанола перманганатом калия thumbnail

Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Гидроксисоединения делят на спирты и фенолы.

Строение, изомерия и гомологический ряд спиртов

Химические свойства спиртов

Способы получения спиртов

Какой продукт образуется при окислении этанола перманганатом калия

Спиртыэто гидроксисоединения, в которых группа ОН соединена с алифатическим углеводородным радикалом R-OH.

Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.

Общая формула предельных нециклических спиртов: CnH2n+2Om, где mn.

Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.

Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).

Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.

Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н+ соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.

С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.

Таким образом, для спиртов характерны следующие свойства:

  • слабые кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • отрыв воды (элиминирование) – дегидратация
  • окисление
  • образование сложных эфиров — этерификация


1. Кислотные свойства

Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

При взаимодействии спиртов с  растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому спирты не взаимодействуют с растворами щелочей.

Многоатомные спирты также не реагируют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Спирты взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Например, этанол взаимодействует с калием с образованием этилата калия и водорода.

Видеоопыт взаимодействия спиртов (метанола, этанола и бутанола) с натрием можно посмотреть здесь.

Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, этилат калия разлагается водой:

Кислотные свойства одноатомных спиртов уменьшаются в ряду:

CH3OH > первичные спирты > вторичные спирты > третичные спирты

Многоатомные спирты также реагируют с активными металлами:

Видеоопыт взаимодействия глицерина с натрием можно посмотреть здесь.

1.3. Взаимодействие с гидроксидом меди (II)

Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).

Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется  ярко-синий раствор гликолята меди:

Видеоопыт взаимодействия этиленгликоля с гидроксидом меди (II) можно посмотреть здесь.

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, этанол реагирует с бромоводородом.

Видеоопыт взаимодействия этилового спирта с бромоводородом можно посмотреть здесь.

Реакционная способность одноатомных спиртов в реакциях с галогеноводородами уменьшается в ряду:

третичные > вторичные > первичные > CH3OH.

Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.

Например, этиленгликоль реагирует с бромоводородом:

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии этанола с аммиаком образуется этиламин.

2.3. Этерификация (образование сложных эфиров)

Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.

Читайте также:  Фосфор в каких продуктах питания

Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат:

Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):

Какой продукт образуется при окислении этанола перманганатом калия

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.1. Внутримолекулярная дегидратация

При высокой температуре (больше 140оС) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.

Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:

В качестве катализатора этой реакции также используют оксид алюминия.

Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.

Например, в присутствии концентрированной серной кислоты при нагревании выше 140оС из бутанола-2 в основном образуется бутен-2:

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140оС) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации этанола при температуре до 140оС образуется диэтиловый эфир:

4. Окисление спиртов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя.

Первичный спирт → альдегид → карбоновая кислота

Метанол окисляется сначала в формальдегид, затем в углекислый газ:

Метанол → формальдегид → углекислый газ

Вторичные спирты окисляются в кетоны: вторичные спирты → кетоны

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

Легкость окисления спиртов уменьшается в ряду:

метанол < первичные спирты < вторичные спирты < третичные спирты

Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.

4.1. Окисление оксидом меди (II)

Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, этанол окисляется оксидом меди до уксусного альдегида

Видеоопыт окисления этанола оксидом меди (II) можно посмотреть здесь.

Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона

Третичные спирты окисляются только в жестких условиях.

4.2. Окисление кислородом в присутствии катализатора

Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.

Например, при окислении пропанола-1 образуется пропаналь

Видеоопыт каталитического окисления этанола кислородом можно посмотреть здесь.

Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона

Третичные спирты окисляются только в жестких условиях.

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.

При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.

Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.

Спирт/ ОкислительKMnO4, кислая средаKMnO4, H2O, t
Метанол СН3-ОНCO2K2CO3
Первичный спирт  R-СН2-ОНR-COOH/ R-CHOR-COOK/ R-CHO
Вторичный спирт  R1-СНОН-R2R1-СО-R2R1-СО-R2
Читайте также:  Какие продукты для лечения печени

Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ

Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота

Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон

4.4. Горение спиртов

Образуются углекислый газ и вода и выделяется большое количество теплоты.

CnH2n+1ОН + (3n+1)/2O2 → nCO2 + (n+1)H2O + Q

Например, уравнение сгорания метанола:

2CH3OH + 3O2 = 2CO2 + 4H2O

5. Дегидрирование спиртов 

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны. 

Например, при дегидрировании этанола образуется этаналь

Например, при дегидрировании этиленгликоля образуется диальдегид (глиоксаль)

Источник

Окисление спиртов и фенолов

Для окисления гидроксисоединений используются соединения марганца(IV), марганца(VII), хрома(VI), оксиды металлов (Cu, Zn, Ag) и др.
Легкость окисления одноатомных спиртов уменьшается в ряду:

CH3OHМетанол CH3OH – сильный яд. Его высокая токсичность обусловлена лёгкой окисляемостью с образованием ядовитых продуктов (попадание в организм 5-10 г метанола приводит к слепоте, а 25-30 г – к смерти).    >   первичные   ≥   вторичные    >>   третичные.

Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот. В реакции участвует ближайшая к гидроксильной группе связь С–Н, по которой происходит внедрение атома кислорода. От образовавшегося при этом неустойчивого алкандиола-1,1Алкандиолы-1,1 – двухатомные спирты с ОН-группами при одном и том же атоме углерода R–CH(OH)2 и R2C(OH)2. Неустой-чивые соединения. Подобно угольной кислоте (O=C(OH)2 → CO2 + H2O) они легко отщепляют воду и превращаются в альдегиды R–CH=O или кетоны R2C=O. отщепляется вода с разрывом связей О–Н и С–ОH.

Окисления  альдегида  в  карбоновую кислоту   можно избежать,   удаляя его из реакционной смеси   путем отгонки
(альдегид кипит при более низкой температуре, так как его молекулы не ассоциированы за счет водородных связей).

При окислении вторичных спиртов получают кетоны.

Промышленное значение имеет реакция окисления вторичного алициклического спирта циклогексанола до кетона циклогексанона:

Окисление вторичных спиртов

Это одна из стадий в многостадийном синтезе ε-капролактама, из которого получают поликапролактам (капрон).

Окисление первичных и вторичных спиртов происходит также в результате реакции дегидрирования (отщепления водорода) при пропускании паров спирта над нагретым катализатором (Cu, соединения Ag, Cr, или Zn). В этих условиях процесс идёт как внутримолекулярная окислительно-восстановительная реакция.

Данный метод позволяет превращать первичные спирты в альдегиды без их дальнейшего окисления до кислот.

Третичные спирты более устойчивы к действию окислителей. Если первичные и вторичные спирты окисляются в кислой, нейтральной и щелочной средах, то третичные спирты реагируют лишь в жестких условиях – кислая среда, повышенная температура. Это приводит к разрушению углеродного скелета молекулы и образованию смеси продуктов – карбоновых кислот и кетонов с меньшим числом углеродных атомов.

    Процесс идет через стадию дегидратации спирта с последующим деструктивным (жестким) окислением алкена. Например:
    Устойчивость третичных спиртов при окислении позволяет отличить их от первичных и вторичных спиртов по реакции с разбавленным щелочным раствором перманганата калия.

Многоатомные спирты при окислении образуют различные вещества, поскольку в реакцию могут вступать одна или несколько гидроксильных групп. Состав продуктов окисления зависит от взаимного положения ОН-групп в молекулах полигидроксильного соединения и природы окислителя.
Соединения с ОН-группами у соседних атомов углерода (1,2-диолы, 1,2,3-триолы и т.п.) окисляются наиболее легко. В зависимости от условий их окисление происходит с сохранением

C–C-связей

углеродного скелета (пример 1) или с их разрывом (пример 2) вплоть до полного разрушения С-скелета (пример 3).

Пример 1. Окисление этиленгликоля при действии CrO3 или HNO3

Какой продукт образуется при окислении этанола перманганатом калия

Пример 2. Окисление раствором перманганата калия в кислой среде при нагревании

Деструктивное окисление многоатомных спиртов с соседними ОН-группами

Кетон R2C=O образуется из фрагмента, содержащего третичную спиртовую группу, а карбоновая кислота R’COOH – из фрагмента с вторичной группой ОН.
При наличии фрагмента с первично-спиртовой группой –CH2OH образуется CO2:

Пример 3. Взаимодействие глицерина с кристаллическим перманганатом калия (видео)

Взаимодействие глицерина с кристаллическим перманганатом калия

Читайте также:  Какие продукты содержат лакто и бифидобактерии

Реакция глицерина HOCH2–CH(OH)–CH2OH с тонко измельчённым кристаллическим KMnO4 начинается самопроизвольно и идёт с высокой скоростью при выделении большого количества тепла. При этом глицерин окисляется полностью до углекислого газа и воды:

2С3Н8О3 + 7О2   →   6СО2 + 8Н2О + Q

Характерной реакцией многоатомных спиртов с соседними ОН-группами является окисление водным раствором иодной кислоты HIO4, которая не окисляет одноатомные спирты и многоатомные спирты других типов. Подробнее…

Взаимодействие иодной кислоты и многоатомных спиртов с соседними ОН-группами

Реакция протекает через стадию образования циклического сложного эфира иодной кислоты (иодата), который расщепляется далее по связи С–С с выделением иодноватой кислоты:

В отличие от деструктивного окисления перманганатом калия, продуктами реакции с иодной кислотой являются альдегиды и (или) кетоны.
В случае трёх соседних C–ОН-групп средняя группа окисляется до муравьиной кислоты НСООН:

Данная реакция, называемая гликольным расщеплением, используется для установления числа и положения ОН-групп в полигидроксильных соединениях (главным образом, в углеводах) путём определения количества израсходованного окислителя и анализа продуктов окисления.
Кроме иодной кислоты для гликольного расщепления применяют также тетраацетат свинца (CH3COO)4Pb в органическом растворителе.

Фенолы окисляются легче спиртов. Эти реакции протекают многоступенчато с образованием довольно сложной смеси продуктов. Многие из фенолов, являясь бесцветными веществами, при стоянии на воздухе приобретают окраску за счёт примеси продуктов окисления.

Действие на фенол сильных окислителей (CrО3, хромовая смесь) приводит к образованию пара-бензохинона (наряду с другими продуктами окисления). Реакция идёт с отщеплением наиболее подвижного атома водорода в пара-положении бензольного кольца.

Значительно легче окисляются многоатомные фенолы.
Поэтому они являются более сильными восстановителями, чем одноатомные фенолы. Например, двухатомный фенол гидрохинон применяется как антиоксидант и ингибитор радикальной полимеризации, а также как проявитель в классической фотографии:

Какой продукт образуется при окислении этанола перманганатом калия

Наиболее сильными восстановителями являются трёхатомные фенолы, легко окисляющиеся даже кислородом воздуха. На этом основано применение в газовом анализе щелочного раствора пирогаллола, количественно поглощающего кислород.

Предельное окисление гидроксисоединений до CO2 и Н2О происходит при их горении, например:

2CH3OH + 3O2 2CO2 + 4H2O

Полное окисление метанола идет схеме:

При сгорании спиртов выделяется большое количество тепла.

C2H5OH + 3O2 2CO2 + 3H2O + 1370 кДж

Благодаря высокой экзотермичности реакции горения этанола, он считается перспективным и экологически чистым заменителем бензинового топлива в двигателях внутреннего сгорания. В лабораторной практике этанол применяется как горючее для “спиртовок”.

    Видеоопыт “Взаимодействие глицерина с кристаллическим перманганатом калия”.

Источник

  • Главная
  • Вопросы & Ответы
  • Вопрос 9413447

Суррикат Мими

более месяца назад

Просмотров : 5   
Ответов : 1   

Лучший ответ:

СН3СОН- этаналь ( альдегид)

более месяца назад

Ваш ответ:

Комментарий должен быть минимум 20 символов

Чтобы получить баллы за ответ войди на сайт

Какой продукт образуется при окислении этанола перманганатом калия

Лучшее из галереи за : неделю   месяц   все время

Какой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калияКакой продукт образуется при окислении этанола перманганатом калия

    Какой продукт образуется при окислении этанола перманганатом калия

    Другие вопросы:

    Васян Коваль

    Із пункту А і пункту Б, відстань між якими 250 км,одночасно виїхали да автомобілі назустріч один одному.Автомобіль, що виїхав із пункту А, рухається зі швидкістю 60 км/год, а той, що виїхав із пункту Б,- зі швидкістю 40 км/год.Визначте місце зустрічі автомобілів і час їхнього руху до зустрічі.Розв*я…

    более месяца назад

    Смотреть ответ  

    Просмотров : 2   
    Ответов : 1   

    Зачетный Опарыш

    фосфор проявляет валентность 5 в оксиде формула которого

    более месяца назад

    Смотреть ответ  

    Просмотров : 2   
    Ответов : 1   

    Главный Попко

    Придумай какую-нибудь классную фамилию к имени Аня. Например : Ли

    более месяца назад

    Смотреть ответ  

    Просмотров : 2   
    Ответов : 1   

    Зачетный Опарыш

    ****** название одного из древнейших природных красителей

    более месяца назад

    Смотреть ответ  

    Просмотров : 3   
    Ответов : 1   

    Пармезан Черница

    корыкта не магана былдыреды

    более месяца назад

    Смотреть ответ  

    Просмотров : 2   
    Ответов :    

    Источник