Какой продукт получается при нитровании бензола

Какой продукт получается при нитровании бензола thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 18 мая 2020; проверки требуют 7 правок.

Нитробензол
Систематическое
наименование
Нитробензол
Традиционные названия Нитробензол; мирабановое масло, мирабановая эссенция
Хим. формула C6H5NO2
Состояние жидкость
Молярная масса 123,06 г/моль
Плотность 1,199 г/см³
Энергия ионизации 9,92 ± 0,01 эВ[1]
Температура
 • плавления 5,85 °C
 • кипения 210,9 °C
 • вспышки 88 °C
 • самовоспламенения 482 °C
Пределы взрываемости 1,8 ± 0,1 об.%[1]
Уд. теплоёмк. 1510 Дж/(кг·К)
Давление пара 0,3 ± 0,1 мм рт.ст.[1]
Растворимость
 • в воде 0,19 г/100 мл (20 °C)
Показатель преломления 1,5562
Дипольный момент 4,22 Д
Рег. номер CAS 98-95-3
PubChem 7416
Рег. номер EINECS 202-716-0
SMILES

C1=CC=C(C=C1)[N+](=O)[O-]

InChI

InChI=1S/C6H5NO2/c8-7(9)6-4-2-1-3-5-6/h1-5H

LQNUZADURLCDLV-UHFFFAOYSA-N

RTECS QJ0525000
ChEBI 27798
ChemSpider 7138
Предельная концентрация 1 мг/м3
ЛД50 120-140 мг/кг
Токсичность Класс опасности 2
Фразы риска (R) R23/24/25, R40, R48/23/24, R51/53, R62
Фразы безопасности (S) (S1/2), S28, S36/37, S45, S61
NFPA 704

2

3

1

Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Нитробензóл (нитробензéн, в просторечии – мирабáновое мáсло, мирабáновая эссéнция) — токсичное органическое вещество, имеющее миндальный запах. Формула C6H5NO2.

Физические и химические свойства[править | править код]

Внешний вид нитробензола — ярко-желтые кристаллы или маслянистая жидкость (бесцветная или зеленовато-жёлтая) с запахом горького миндаля, нерастворимая в воде (0,19 % по массе при 297 K, 0,8 % при 350 K). Проявляет слабые основные свойства. Растворяется в концентрированных кислотах (при разведении таких растворов водой осаждается)[2]. Неограниченно смешивается с диэтиловым эфиром, бензолом, некоторыми другими органическими растворителями. Перегоняется с водяным паром. Показатель преломления (для D-линии натрия (589 нм), при 297K) 1,5562. Дипольный момент газообразных молекул (в дебаях) 4,22 D. Удельная теплоёмкость 1,51 Дж/(г·К)[3].

Электрофильное замещение[править | править код]

В связи с сильным электроноакцепторным действием нитрогруппы реакции электрофильного замещения идут в мета-положение и скорость реакции ниже чем у бензола.

  • Нитрование. Образуется смесь изомеров: 93% м-динитробензола, 6,5 % о-динитробензола и 0,5 % п-динитробензола.
  • Сульфирование
  • Галогенирование

В присутствии катализаторов.
Например, порошка железа[4]:

Не вступает в реакцию Фриделя-Крафтса[5]

Нуклеофильное замещение[править | править код]

  • При обработке магнийорганическими соединениями в эфире углеводородный радикал как нуклеофил вступает в орто- и в пара-положения к нитрогруппе (которая при этом восстанавливается до нитрозогруппы)[2]

Восстановление[править | править код]

Наиболее важной реакцией ароматических нитросоединений является восстановление их до первичных аминов.

Эта реакция была открыта в 1842 году Н. Н. Зининым, который впервые восстановил нитробензол до анилина действием сульфида аммония. В настоящее время для восстановления нитрогруппы в аренах до аминогруппы в промышленных условиях применяется каталитическое гидрирование. В качестве катализатора используют медь на силикагеле в качестве носителя. Катализатор готовят нанесением карбоната меди из суспензии в растворе силиката натрия и последующим восстановлением водородом при нагревании. Выход анилина над этим катализатором составляет 98 %.

Иногда в промышленном гидрировании нитробензола до анилина в качестве катализатора используют никель в комбинации с оксидами ванадия и алюминия. Такой катализатор эффективен в интервале 250—300° и легко регенерируется при окислении воздухом. Выход анилина и других аминов составляет 97—98 %. Восстановление нитросоединений до аминов может сопровождаться гидрированием бензольного кольца. По этой причине для получения ароматических аминов избегают использовать в качестве катализаторов платину, палладий или никель Ренея.

В промышленности анилин получают каталитическим восстановлением нитробензола на медном или никелевом катализаторе, который вытеснил старинный способ восстановления нитробензола чугунными стружками в водном растворе хлорного железа и соляной кислоты. Промежуточные продукты — нитрозобензол и N-фенилгидроксиламин.

Другой вариант получения нитрозобензола[4]:

Восстановление нитрогруппы до аминогруппы сульфидом и гидросульфидом натрия в настоящее время имеет значение только для частичного восстановления одной из двух нитрогрупп, например, в м-динитробензоле или 2,4-динитроанилине.

При ступенчатом восстановлении полинитросоединений с помощью сульфида натрия этот неорганический реагент превращается в тетрасульфид натрия, что сопровождается образованием щелочи.

Высокая щелочность среды приводит к образованию азокси- и азо- и гидразосоединений в качестве побочных продуктов. Для того чтобы избежать этого в качестве восстановителя следует использовать гидросульфид натрия, где щелочь не образуется.

Азоксибензол может быть получен восстановлением нитробензола: спиртовым раствором едкого кали, амальгамой натрия, водородом в присутствии окиси свинца, метиловым спиртом и едким натром, метилатом натрия и метиловым спиртом, закисью свинца в щелочной суспензии, декстрозой в щелочной суспензии, β-фенилгидроксиламином[4].

Азобензол можно получить, например, восстановлением нитробензола при кипячении с цинковой пылью в водно-спиртовом растворе щёлочи[4].

Многие более восстановленные производные могут быть получены электрохимически, при правильном подборе электродов.

Известны методы восстановления нитросоединений до амидов (амальгамами натрия или цинка, сульфидами натрия и аммония)[6].

Получение[править | править код]

Основной способ получения нитробензола (как и других нитроаренов) — нитрование в условиях электрофильного замещения бензола (соответственно, аренов)[2]. Электрофильной частицей является ион нитрония NO2+[6][7].

Например, в промышленности нитробензол получают непрерывным нитрованием бензола смесью концентрированных H2SO4 и HNO3 с выходом 96—99 %.

В лабораторных условиях нитробензол получают нитрованием бензола смесью H2SO4 (1,84 г/см3) и HNO3 (1,4 г/см3) в соотношении 1:1 при 40—60 °C (45 мин). Выход целевого продукта достигает 80 %.

Принципиально возможна (но не применяется в силу низкого выхода) реакция нитрования бензола концентрированной азотной кислотой[6].

Читайте также:  Какие продукты необходимы для зубов

Несколько реже (как и для получения других нитроаренов) в лабораториях используют замещение, модификацию или элиминирование заместителей, уже имеющихся при бензольном кольце[2].

Например, возможно получать нитробензол окислением анилина перокситрифторуксусной кислотой (или другими окислителями; чем менее кислая среда — тем больше доля азоксибензола в продуктах)[7].

Применение[править | править код]

Исходное сырьё в производстве анилина, ароматических азотсодержащих соединений (бензидин, хинолин, азобензол), растворитель эфиров целлюлозы[5], компонент полировальных составов для металлов. Применяется как растворитель и мягкий окислитель. В основном используется как прекурсор для производства анилина.

Производные нитробензола используются в качестве взрывчатых веществ и как компоненты ракетных топлив. В парфюмерии — в качестве душистых или фиксирующих запах веществ, в том числе — искусственных мускусов. Сам нитробензол ранее выпускали под названием «горько-миндального» или «мирабанового» масла. Некоторые производные нитробензола используются в составе лаков и красок. Некоторые применяются в медицине[2][6].

Биологическая роль и токсичность[править | править код]

Нитробензол особо токсичен; относится ко второму классу опасности и в больших концентрациях может вызывать гемолиз.
Впитывается через кожу, оказывает сильное действие на ЦНС, нарушает обмен веществ, вызывает заболевания печени, окисляет гемоглобин в метгемоглобин.

ПДК в рабочей зоне – 1 мг/м³, ЛД50 – 120 мг/кг на крысах.

См. также[править | править код]

  • 4-Нитрохлорбензол
  • 2-Нитрохлорбензол
  • Метгемоглобинообразователи
  • 3-Нитрохлорбензол
  • Высокотоксичные вещества
  • Нитросоединения

Примечания[править | править код]

  1. 1 2 3 https://www.cdc.gov/niosh/npg/npgd0450.html
  2. 1 2 3 4 5 Шабаров Ю. С. «Органическая химия», М.:Химия, 2002, стр. 848. ISBN 5-7245-1218-1, стр. 715—725
  3. ↑ Волков А. И. Жарский И. М. «Большой химический справочник». Мн.:Современная школа, 2005, 608 с. ISBN 985-6751-04-7 стр. 257, 267
  4. 1 2 3 4 Гельман Х. (ред.) Казанский Б. А. (ред.) «Синтезы органических препаратов», М.: Гос. Изд-во иностранной литературы, 1949. Сб. 1, стр. 130—134. Сб. 2, стр. 12-15. Сб. 3, стр. 7-8, 354—356
  5. 1 2 Кнунянц И. Л. (глав.ред.) «Химическая энциклопедия» в пяти томах. М.:Советская энциклопедия, 1988. Т.3, стр. 267—268
  6. 1 2 3 4 Горленко В. А. и др. «Органическая химия», М.:Мастерство, 2003, стр. 624. ISBN 5-294-00176-4, стр. 397—403
  7. 1 2 Бартон Д, Оллис Д.(ред.) «Общая органическая химия» в 12 т., М.:Химия, 1982. Т.3, стр. 403—410

Литература[править | править код]

  • Кнунянц И. Л. и др. т.3 Мед-Пол // Химическая энциклопедия. — М.: Большая Российская Энциклопедия, 1992. — 639 с. — 50 000 экз. — ISBN 5-85270-039-8.

Ссылки[править | править код]

  • International Chemical Safety Card 0065 (англ.)
  • NIOSH Pocket Guide to Chemical Hazards (англ.)
  • IARC Monograph: «Nitrobenzene» (англ.)
  • US EPA factsheet (англ.)
  • Механизм восстановления нитробензола цинком в щелочной среде и железом в соляной кислоте (реакция Бешама) (англ.)

Источник

1. Реакции замещения в бензольном кольце

Первая группа реакций — реакции замещения. Мы говорили, что арены не имеют кратных связей в структуре молекулы, а содержат сопряженную систему из шести электронов, которая очень стабильна и придает дополнительную прочность бензольному кольцу. Поэтому в химических реакциях происходит в первую очередь замещение атомов водорода, а не разрушение бензольного кольца.

С реакциями замещения мы уже сталкивались при разговоре об алканах, но для них эти реакции шли по радикальному механизму, а для аренов характерен ионный механизм реакций замещения.

Первое химическое свойство — галогенирование. Замещение атома водорода на атом галогена — хлора или брома.

Реакция идет при нагревании и обязательно с участием катализатора. В случае с хлором это может быть хлорид алюминия или хлорид железа три. Катализатор поляризует молекулу галогена, в результате чего происходит гетеролитический разрыв связи и получаются ионы.

Какой продукт получается при нитровании бензола

Положительно заряженный ион хлора и вступает в реакцию с бензолом.

Если реакция происходит с бромом, то катализатором выступает бромид железа три или бромид алюминия.

Какой продукт получается при нитровании бензола

Важно отметить, что реакция происходит с молекулярным бромом, а не с бромной водой. С бромной водой бензол не реагирует.

У галогенирования гомологов бензола есть свои особенности. В молекуле толуола метильная группа облегчает замещение в кольце, реакционная способность повышается, и реакция идет в более мягких условиях, то есть уже при комнатной температуре.

Какой продукт получается при нитровании бензола

Важно отметить, что замещение всегда происходит в орто- и пара-положениях, поэтому получается смесь изомеров.

Второе свойство — нитрование бензола, введение нитрогруппы в бензольное кольцо.

Какой продукт получается при нитровании бензола

Образуется тяжелая желтоватая жидкость с запахом горького миндаля — нитробензол, поэтому реакция может быть качественной на бензол. Для нитрования используется нитрующая смесь концентрированной азотной и серной кислот. Реакция проводится при нагревании.

Напомню, что для нитрования алканов в реакции Коновалова использовалась разбавленная азотная кислота без добавления серной.

При нитровании толуола, также как и при галогенировании, образуется смесь орто- и пара- изомеров.

Какой продукт получается при нитровании бензола

Третье свойство — алкилирование бензола галогеналканами.

Какой продукт получается при нитровании бензола

Эта реакция позволяет ввести углеводородный радикал в бензольное кольцо и может считаться способом получения гомологов бензола. В качестве катализатора используется хлорид алюминия, способствующий распаду молекулы галогеналкана на ионы. Также необходимо нагревание.

Четвертое свойство — алкилирование бензола алкенами.

Какой продукт получается при нитровании бензола

Таким способом можно получить, например, кумол или же этилбензол. Катализатор — хлорид алюминия.

2. Реакции присоединения к бензолу

Вторая группа реакций — реакции присоединения. Мы говорили, что эти реакции не характерны, но они возможны при достаточно жестких условиях с разрушением пи-электронного облака и образованием шести сигма-связей.

Читайте также:  На какие продукты наложенные санкции

Пятое свойство в общем списке — гидрирование, присоединение водорода.

Какой продукт получается при нитровании бензола

Температура, давление, катализатор никель или платина. Таким же образом способен реагировать толуол.

Шестое свойство — хлорирование. Обратите внимание, что речь идет именно о взаимодействии с хлором, поскольку бром в эту реакцию не вступает.

Какой продукт получается при нитровании бензола

Реакция протекает при жестком ультрафиолетовом облучении. Образуется гексахлорциклогексан, другое название гексахлоран, твердое вещество.

Важно помнить, что для бензола не возможны реакции присоединения галогеноводородов (гидрогалогенирование) и присоединение воды (гидратация).

3. Замещение в боковой цепи гомологов бензола

Третья группа реакций касается только гомологов бензола — это замещение в боковой цепи.

Седьмое свойство в общем списке — галогенирование по альфа-атому углерода в боковой цепи.

Какой продукт получается при нитровании бензола

Реакция происходит при нагревании или облучении и всегда только по альфа-углероду. При продолжении галогенирования, второй атом галогена снова встанет в альфа-положение.

4. Окисление гомологов бензола

Четвертая группа реакций — окисление.

Бензольное кольцо слишком прочное, поэтому бензол не окисляется перманганатом калия — не обесцвечивает его раствор. Это очень важно помнить.

Зато гомологи бензола окисляются подкисленным раствором перманганата калия при нагревании. И это восьмое химическое свойство.

Какой продукт получается при нитровании бензола

Получается бензойная кислота. Наблюдается обесцвечивание раствора. При этом, какой бы длинной не была углеродная цепь заместителя, всегда происходит ее разрыв после первого атома углерода и альфа-атом окисляется до карбоксильной группы с образованием бензойной кислоты. Оставшаяся часть молекулы окисляется до соответствующий кислоты или, если это только один атом углерода, до углекислого газа.

Какой продукт получается при нитровании бензола

Если гомолог бензола имеет больше одного углеводородного заместителя у ароматического кольца, то окисление происходит по тем же правилам — окисляется углерод, находящийся в альфа-положении.

Какой продукт получается при нитровании бензола

В данном примере получается двухосновная ароматическая кислота, которая называется фталевая кислота.

Особым образом отмечу окисление кумола, изопропилбензола, кислородом воздуха в присутствии серной кислоты.

Какой продукт получается при нитровании бензола

Это так называемый кумольный способ получения фенола. Как правило, сталкиваться с этой реакцией приходится в вопросах, касающихся получения фенола. Это промышленный способ.

Девятое свойство — горение, полное окисление кислородом. Бензол и его гомологи сгорают до углекислого газа и воды.

Запишем уравнение горения бензола в общем виде.

Какой продукт получается при нитровании бензола

По закону сохранения массы атомов слева должно быть столько же, сколько атомов справа. Потому что ведь в химических реакциях атомы никуда не деваются, а просто изменяется порядок связей между ними. Так вот молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле арена, поскольку в состав молекулы входит один атом углерода. То есть n молекул CO2. Молекул воды будет в два раза меньше, чем атомов водорода, то есть (2n-6)/2, а значит n-3.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа, потому что в каждой молекуле два атома кислорода, плюс n-3 из воды, итого 3n-3. Слева атомов кислорода столько же — 3n-3, а значит молекул в два раза меньше, потому как в состав молекулы входят два атома. То есть (3n-3)/2 молекул кислорода.

Таким образом, мы составили уравнение сгорания гомологов бензола в общем виде.

Источник

Арены (ароматические углеводороды) – это непредельные (ненасыщенные) циклические углеводороды, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Общая формула: CnH2n–6при n ≥ 6.

Строение, номенклатура и изомерия ароматических углеводородов

Способы получения ароматических углеводородов

Химические свойства ароматических углеводородов

Арены – непредельные углеводороды, молекулы которых содержат три двойных связи и цикл. Но из-за эффекта сопряжения свойства аренов отличаются от свойств других непредельных углеводородов.

Для ароматических углеводородов характерны реакции:

  • присоединения,
  • замещения,
  • окисления (для гомологов бензола).

Из-за наличия сопряженной π-электронной системы молекулы ароматических углеводородов вступают в реакции присоединения очень тяжело, только в жестких условиях — на свету или при сильном нагревании, как правило, по радикальному механизму

Бензольное кольцо представляет из себя скопление π-электронов, которое притягивает электрофилы. Поэтому для ароматических углеводородов характерны реакции электрофильного замещения атома водорода у бензольного кольца.

Ароматическая система бензола устойчива к действию окислителей. Однако гомологи бензола окисляются под действием перманганата калия и других окислителей.

1. Реакции присоединения

Бензол присоединяет хлор на свету и водород при нагревании в присутствии катализатора.

1.1. Гидрирование

Бензол присоединяет водород при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt и др.). 

При гидрировании бензола образуется циклогексан:

Какой продукт получается при нитровании бензола

При гидрировании гомологов образуются производные циклоалканы. При нагревании толуола с водородом под давлением и в присутствии катализатора образуется метилциклогексан:

Какой продукт получается при нитровании бензола

1.2. Хлорирование аренов

Присоединение хлора к бензолу протекает по радикальному механизму при высокой температуре, под действием ультрафиолетового излучения.

При хлорировании бензола на свету образуется 1,2,3,4,5,6-гексахлорциклогексан (гексахлоран).

Какой продукт получается при нитровании бензола

Гексахлоран – пестицид, использовался для борьбы с вредными насекомыми. В настоящее время использование гексахлорана запрещено.

Гомологи бензола не присоединяют хлор. Если гомолог бензола реагирует с хлором или бромом на свету или при высокой температуре (300°C), то происходит замещение атомов  водорода в боковом алкильном заместителе, а не в ароматическом кольце.

Читайте также:  Что входит в белковую пищу какие продукты

Например, при хлорировании толуола на свету образуется бензилхлорид

Какой продукт получается при нитровании бензола

Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).

Например, этилбензол реагирует с хлором на свету

Какой продукт получается при нитровании бензола

2. Реакции замещения

Реакции замещения у ароматических углеводородов протекают по ионному механизму (электрофильное замещение). При этом атом водорода замещается на другую группу (галоген, нитро, алкил и др.).

2.1. Галогенирование

Бензол и его гомологи вступают в реакции замещения с галогенами (хлор, бром) в присутствии катализаторов (AlCl3, FeBr3).

При взаимодействии с хлором на катализаторе AlCl3 образуется хлорбензол:

Какой продукт получается при нитровании бензола

Ароматические углеводороды взаимодействуют с бромом при нагревании и в присутствии катализатора – FeBr3 . Также в качестве катализатора можно использовать металлическое железо.

Бром реагирует с железом с образованием бромида железа (III), который катализирует процесс бромирования бензола:

Какой продукт получается при нитровании бензола

Гомологи бензола содержат алкильные заместители, которые обладают электронодонорным эффектом: из-за того, что электроотрицательность водорода меньше, чем углерода, электронная плотность связи С-Н смещена к углероду.

На нём возникает избыток электронной плотности, который далее передается на бензольное кольцо.

Какой продукт получается при нитровании бензола

Поэтому гомологи бензола легче вступают в реакции замещения в бензольном кольце. При этом гомологи бензола вступают в реакции замещения преимущественно в орто— и пара-положения

Например, при взаимодействии толуола с хлором  образуется смесь продуктов, которая преимущественно состоит из орто-хлортолуола и пара-хлортолуола

Какой продукт получается при нитровании бензола

Какой продукт получается при нитровании бензола

Мета-хлортолуол образуется в незначительном количестве.

При взаимодействии гомологов бензола с галогенами на свету или при высокой температуре (300оС) происходит замещение водорода не в бензольном кольце, а в боковом углеводородном радикале.

Какой продукт получается при нитровании бензола

Если у гомолога бензола боковая цепь содержит несколько атомов углерода – замещение происходит у атома, ближайшему к бензольному кольцу («альфа-положение»).

Например, при хлорировании этилбензола:

Какой продукт получается при нитровании бензола

2.2. Нитрование

 Бензол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты (нитрующая смесь).

При этом образуется нитробензол:

Какой продукт получается при нитровании бензола

Серная кислота способствует образованию электрофила NO2+:

Какой продукт получается при нитровании бензола

Толуол реагирует с концентрированной азотной кислотой в присутствии концентрированной серной кислоты.

В продуктах реакции мы указываем либо о-нитротолуол:

Какой продукт получается при нитровании бензола

либо п-нитротолуол:

Какой продукт получается при нитровании бензола

Нитрование толуола может протекать и с замещением трех атомов водорода. При этом образуется 2,4,6-тринитротолуол (тротил, тол):

Какой продукт получается при нитровании бензола

2.3. Алкилирование ароматических углеводородов

  • Арены взаимодействуют с галогеналканами в присутствии катализаторов (AlCl3, FeBr3 и др.) с образованием гомологов бензола.

Например, бензол реагирует с хлорэтаном с образованием этилбензола

Какой продукт получается при нитровании бензола

  • Ароматические углеводороды взаимодействуют с алкенами в присутствии хлорида алюминия, бромида железа (III), фосфорной кислоты и др.

Например, бензол реагирует с этиленом с образованием этилбензола

Какой продукт получается при нитровании бензола

Например, бензол реагирует с пропиленом с образованием изопропилбензола (кумола)

Какой продукт получается при нитровании бензола

  • Алкилирование спиртами протекает в присутствии концентрированной серной кислоты.

Например, бензол реагирует с этанолом с образованием этилбензола и воды

Какой продукт получается при нитровании бензола

2.4. Сульфирование ароматических углеводородов

Бензол реагирует при нагревании с концентрированной серной кислотой или раствором SO3 в серной кислоте (олеум) с образованием бензолсульфокислоты:

Какой продукт получается при нитровании бензола

3. Окисление аренов

Бензол устойчив к действию даже сильных окислителей. Но гомологи бензола окисляются под действием сильных окислителей. Бензол и его гомологи горят.

3.1. Полное окисление – горение

При горении бензола и его гомологов образуются углекислый газ и вода. Реакция горения аренов сопровождается выделением большого количества теплоты.

2C6H6 + 15O2  → 12CO2 + 6H2O + Q

Уравнение сгорания аренов в общем виде:

 CnH2n–6 + (3n – 3)/2 O2 → nCO2 + (n – 3)H2O + Q

При горении ароматических углеводородов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Бензол и его гомологи горят на воздухе коптящим пламенем. Бензол и его гомологи образуют с воздухом и кислородом взрывоопасные смеси.

3.2. Окисление гомологов бензола

Гомологи бензола легко окисляются перманганатом и дихроматом калия в кислой или нейтральной среде при нагревании.

При этом происходит окисление всех связей у атома углерода, соседнего с бензольным кольцом, кроме связи этого атома углерода с бензольным кольцом.

Толуол окисляется перманганатом калия в серной кислоте с образованием бензойной кислоты:

Какой продукт получается при нитровании бензола

Если окисление толуола идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты – бензоат калия:

Какой продукт получается при нитровании бензола

Таким образом, толуол обесцвечивает подкисленный раствор перманганата калия при нагревании.

При окислении других гомологов бензола всегда остаётся только один атом С в виде карбоксильной группы (одной или нескольких, если заместителей несколько), а все остальные атомы углерода радикала окисляются до углекислого газа или карбоновой кислоты.

Например, при окислении этилбензола перманганатом калия в серной кислоте образуются бензойная кислота и углекислый газ

Какой продукт получается при нитровании бензола

Например, при окислении этилбензола перманганатом калия в нейтральной кислоте образуются соль бензойной кислоты и карбонат

Какой продукт получается при нитровании бензола

Более длинные радикалы окисляются до бензойной кислоты и карбоновой кислоты:

Какой продукт получается при нитровании бензола

При окислении пропилбензола образуются бензойная и уксусная кислоты:

Какой продукт получается при нитровании бензола

Изопропилбензол окисляется перманганатом калия в кислой среде до бензойной кислоты и углекислого газа:

Какой продукт получается при нитровании бензола