Какой треугольник называется равносторонним свойство углов равностороннего треугольника
Равносторонний треугольник, свойства, признаки и формулы.
Равносторонний треугольник – это треугольник, у которого все стороны равны между собой по длине, все углы также равны и составляют 60°.
Равносторонний треугольник (понятие, определение)
Свойства равностороннего треугольника
Признаки равностороннего треугольника
Формулы равностороннего треугольника
Остроугольный треугольник, прямоугольный треугольник, равнобедренный треугольник, равносторонний треугольник, тупоугольный треугольник
Равносторонний треугольник (понятие, определение):
Равносторонний треугольник – это треугольник, у которого все стороны равны между собой по длине, все углы также равны и составляют 60°.
Равносторонний треугольник называется также правильным или равноугольным треугольником.
По определению, каждый правильный (равносторонний) треугольник также является равнобедренным, но не каждый равнобедренный треугольник – правильным (равносторонним). Иными словами, правильный (равносторонний) треугольник является частным случаем равнобедренного треугольника.
Рис. 1. Равносторонний треугольник
АВ = ВС = АС – стороны треугольника, ∠ АВС = ∠ BАC = ∠ BСA = 60° – углы треугольника
Свойства равностороннего треугольника:
1. В равностороннем треугольнике все стороны равны между собой.
2. В равностороннем треугольнике углы равны и составляют 60°.
3. В равностороннем треугольнике каждая медиана, проведенная к каждой стороне, является биссектрисой и высотой, и они равны между собой.
В равностороннем треугольнике биссектриса, проведенная к каждой стороне, является медианой и высотой, и они равны между собой.
В равностороннем треугольнике высота, проведенная к каждой стороне, является биссектрисой и медианой, и они равны между собой.
Рис. 2. Равносторонний треугольник
АK = BF = CD
4. В равностороннем треугольнике высоты, биссектрисы, медианы и серединные перпендикуляры пересекаются в одной точке, которая называется центром равностороннего треугольника. Она же является центром вписанной и описанной окружностей.
Рис. 3. Равносторонний треугольник
R – радиус описанной окружности, r – радиус вписанной окружности
5. В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной.
6. Точка пересечения высот, биссектрис и медиан правильного треугольника делит каждую из них в отношении 2:1, если считать от вершин.
Рис. 4. Равносторонний треугольник
AO : OK = BO : OА = CO : OD = 2 : 1
Признаки равностороннего треугольника:
– если в треугольнике три угла равны, то он равносторонний;
– если в треугольнике три стороны равны, то он равносторонний.
Формулы равностороннего треугольника:
Пусть a – длина стороны равностороннего треугольника, h – высота (l – биссектриса, m – медиана) равностороннего треугольника, проведенная к каждой стороне, α – угол равностороннего треугольника, α = 60°, R – радиус описанной окружности, r – радиус вписанной окружности (см. Рис. 6).
Рис. 6. Равносторонний треугольник
Формула радиуса вписанной окружности (r):
.
Формула радиуса описанной окружности (R):
,
.
Формулы периметра (Р) равностороннего треугольника:
.
Формулы площади (S) равностороннего треугольника:
.
Формулы высоты (h), медианы (m) и биссектрисы (l) треугольника:
.
Прямоугольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Примечание: © Фото https://www.pexels.com, https://pixabay.com
карта сайта
Коэффициент востребованности
9 697
Источник
И вот мы снова изучаем треугольники. Это всё больше похоже на заговор…
Не волнуйся: после прочтения этой статьи тайн не останется, ведь ты будешь знать всё о равностороннем треугольнике!
А еще сможешь решить любую задачу на ЕГЭ!
Поехали!
Определение равностороннего треугольника
Равносторонний треугольник — треугольник, у которого все стороны равны.
Какие же особенные свойства присущи равностороннему треугольнику?
Свойства равностороннего треугольника
Свойство 1. В равностороннем треугольнике все углы равны между собой и равны ({{60}^{o }})
Естественно, не правда ли? Три одинаковых угла, в сумме ({{180}^{o }}), значит, каждый по ({{60}^{o }})
Свойство 2. В равностороннем треугольнике точки пересечения высот, биссектрис, медиан и серединных перпендикуляров совпадают – оказываются одной и той же точкой. И эта точка называется центром треугольника (равностороннего!).
Почему так? А посмотрим-ка на равносторонний треугольник:
Он является равнобедренным, какую бы его сторону ни принять за основание – так сказать, со всех сторон равнобедренный.
Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром! В равностороннем треугольнике оказалось не (12) особенных линий, как во всяком обычном треугольнике, а всего три!
Итак, ещё раз:
Центр равностороннего треугольника является центром вписанной и описанной окружности, а также точкой пересечения высот и медиан.
Свойство 3. В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной.
Уже должно быть очевидно, отчего так.
Посмотри на рисунок: точка(O) – центр треугольника. Значит, (OB) – радиус описанной окружности (обозначили его (R)), а (OK) – радиус вписанной окружности (обозначим (r)).
Но ведь точка (O) – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении (2:1), считая от вершины.
Поэтому (OB=2cdot OK), то есть (R=2cdot r).
Свойство 4. В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны.
Давай удостоверимся в этом.
Высота равностороннего треугольника
Этот контент доступен после регистрации
Вы также получите доступ к 15 статьям YouClever без ограничений, видеоурокам и другим бесплатным материалам по тарифу “Репетитор”.
(h=frac{asqrt{3}}{2})
Почему?
Рассмотрим (Delta ABK) – он прямоугольный.
(angle A={{60}^{o}}Rightarrow h=acdot sin {{60}^{o}}=frac{asqrt{3}}{2})
Радиус описанной окружности равностороннего треугольника
(R=frac{asqrt{3}}{3})
А это почему?
Мы уже выяснили, что точка (O) – не только центр описанной окружности, но и точка пересечения медиан. Значит, (R=BO=2OK=frac{2}{2}BK=frac{2}{3}h)
Величину (h) мы уже находили. Теперь подставляем:
(R=frac{2}{3}h=frac{2}{3}cdot frac{asqrt{3}}{2}=frac{asqrt{3}}{3})
Радиус вписанной окружности равностороннего треугольника
Чтобы получить полный доступ к этой и другим статьям учебника YouClever, Вам необходимо оплатить курс.
На курсе Вы научитесь решать любые задачи так, чтобы получить
90+ баллов на ЕГЭ
(r=frac{asqrt{3}}{6})
Это уже теперь должно быть совсем ясно:
(R=2cdot rRightarrow r=frac{1}{3}h=frac{1}{3}cdot frac{asqrt{3}}{2}=frac{asqrt{3}}{6})
Ну вот, все основные сведения обсудили. Конечно, можно задавать сотни вопросов про всякие длины всяких отрезков в равностороннем треугольнике.
Но главное, что следует иметь в виду, решая задачки о равностороннем треугольнике, – это то, что все его углы известны – равны ({{60}^{o }}) и все высоты являются и биссектрисами, и медианами, и серединными перпендикулярами.
КОРОТКО О ГЛАВНОМ
Равносторонний треугольник — треугольник, у которого все стороны равны.
(AB=BC=AC=a)
- В равностороннем треугольнике все углы равны между собой и равны ({{60}^{o }}).
- В равностороннем треугольнике каждая медиана совпадает с биссектрисой и высотой, которые проведены из той же вершины;
- Точки пересечения высот, биссектрис, медиан и серединных перпендикуляров равностороннего треугольника совпадают.
- Центры вписанной и описанной окружностей равностороннего треугольника совпадают: точка (O);
- В равностороннем треугольнике радиус описанной окружности в два раза больше, чем радиус вписанной: (R=2cdot r).
В равностороннем треугольнике длины всех элементов «хорошо» выражаются через длину стороны (a):
- Высота=медиана=биссектриса: (h=frac{asqrt{3}}{2});
- Радиус описанной окружности: (R=frac{asqrt{3}}{3});
- Радиус вписанной окружности: (r=frac{asqrt{3}}{6});
- Площадь: (S=frac{{{a}^{2}}sqrt{3}}{4});
- Периметр: (P=3a);
P.S. Последний бесценный совет ????
Ну вот, тема закончена. Если ты читаешь эти строки, значит, ты очень крут.
Почему?
Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, ты попал в эти 5%!
Теперь самое главное.
Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.
Проблема в том, что этого может не хватить…
Для чего?
Для успешной сдачи ОГЭ или ЕГЭ, для поступления в 10 класс или в институт на бюджет и, самое главное, для жизни.
Я не буду тебя ни в чем убеждать, просто скажу одну вещь…
Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.
Но и это не главное.
Главное то, что они более счастливы (есть такие исследования). Возможно, потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…
Но думай сам…
Что нужно, чтобы быть наверняка лучше других на ОГЭ или ЕГЭ и быть в конечном итоге… более счастливым?
Набить руку, решая задачи.
На экзамене у тебя не будут спрашивать теорию.
Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка.
Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!
Можешь воспользоваться нашим сборником задач с подробным разбором, и мы их всячески рекомендуем, потому что они разбиты по темам, по типам и даже собраны в целую программу подготовки.
Если решишь набить руку с помощью наших задач, зайди на сайт 100gia и приобрети одну из программ.
А еще можешь зарегистрироваться и получить доступ к огромному количеству бесплатных материалов, видеоуроков, тестов.
После регистрации ты сможешь:
- проверить свою готовность к каждому типу задач на ЕГЭ (пройдя тест);
- подтянуть слабые места с помощью видеоуроков, вебинаров;
- понять тему с помощью статей учебника YouClever;
- набить руку, решая задачи и получая проверку и решения;
- сдать пробный ЕГЭ и получить сразу оценку и разбор ошибок.
Бонус: информатика и физика.
И в заключение…
Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.
“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.
Найди задачи и решай!
Поговорим о тебе?
Равносторонний треугольник, как ты заметил, находится в очень удобной позиции!
С одной стороны, для него выполняются все свойства равнобедренного треугольника. С другой стороны, он очень интересен как правильная фигура (а интересна она связью с окружностями!).
Но сейчас не об этом… Расскажи нам, как тебе статья? Понравилась?
Напиши в комментариях!
А еще пиши, если есть вопросы. Мы обязательно тебе ответим.
Удачи!
Источник