Коллоидные свойства это какие

Коллоидные свойства это какие thumbnail

Когда речь идет об агрегатном состоянии веществ, то принято выделять четыре основных типа:

  • плазма;
  • твердое;
  • жидкость;
  • газ.

Однако большинство биологических сред, жидкостей, природных явлений представляет собой некую смесь из нескольких вариантов. Значительная часть всех растворов обладает особыми свойствами. Они отличаются и внешними признаками, и внутренним строением. Называют их так: коллоидные системы. Это совокупная смесь веществ разной природы, находящихся в разных агрегатных состояниях. Чтобы лучше разобраться в данном вопросе, следует рассмотреть все свойства и характеристики подобных растворов, что мы и сделаем в ходе данной статьи.

коллоидные системы

Коллоидно-дисперсная система: характеристика

Если говорить простым обыденным языком, то данная система – это нечто среднее между истинным раствором, который является 100% гомогенной средой и грубодисперсными взвесями, в которых четко прослеживается граница раздела фаз.

Вообще коллоидные системы являются частью дисперсных систем, одной из их разновидностей. Поэтому неудивительно, что свойства их во многом схожи. Чтобы лучше представить себе, что же такое описываемое состояние вещества, приведем несколько примеров из жизни.

  1. Гели и гелеподобные тела. Например, те, что применяются для укладки прически. Также сюда можно отнести гелеобразные и студнеобразные крема, в том числе и кондитерские. Раствор агар-агара, набухший крахмал, раствор куриного белка – все это коллоидные системы. Химия, которая занимается изучением подобных структур, именуется физколлоидной или физической.
  2. Золи. Другими словами, это деструктурированные гели. Именно они и стоят на границе между грубодисперсными системами и истинными растворами. Примеры данного состояния: туман, дым или пыль в воздухе.

Также можно привести еще несколько общеизвестных соединений, которые считают коллоидами:

  • пыль;
  • аэрозоль;
  • эмульсия;
  • суспензия;
  • туман и прочие.

Для каждого приведенного примера можно привести свои специфические свойства. Однако существуют и те, что являются для них общими.

Классификация коллоидных систем

Так как разнообразие рассматриваемых соединений велико, то естественно, что имеется их классификация. В основу положены признаки строения – структурированность, размеры дисперсной фазы по отношению к среде и прочие. Если все коллоидные системы разделить на типы по характеру входящих в их состав частиц, то можно выделить основные из них:

  • жидкость в газе – туман, например;
  • твердые частицы в газовой среде – дым, пыль;
  • жидкость в жидкости – различные эмульсии;
  • твердые частицы в жидкости – суспензии;
  • жидкость в твердом – эмульсии;
  • твердые частицы в твердой среде – твердые золи.

Также существует еще один признак, который ложится в основу разделения рассматриваемых систем. Это взаимодействие частиц фазы и среды друг с другом. Классификация коллоидных систем в этом случае принимает следующий вид.

  1. Лиофильные. Включают в себя те системы, в которых происходит взаимодействие и даже растворение частиц фазы в среде.
  2. Лиофобные. Не происходит ни взаимодействия между средой и фазой, ни их взаимного растворения.

Если речь идет о такой среде, как вода, то можно эти же группы назвать, соответственно, гидрофильными и гидрофобными.

Еще один вариант подразделения рассматриваемых систем следующий:

  1. Свободнодисперсные. Это такие, в которых частицы находятся в постоянном движении, взаимодействуют друг с другом и не формируют определенной структуры, то есть находятся в неком хаосе. Примеры: мелкодисперсные суспензии, эмульсии, лиозоли, аэрозоли.
  2. Связнодисперсные – это коллоидные системы, в которых внутренняя структура четко упорядочена и представляет собой некий молекулярный каркас из среды, заполненный внутри фазой. Примерами могут служить гели, пасты, порошки, густые эмульсии и суспензии.

Возможен самопроизвольный переход золя в гель, этот процесс имеет название гелеобразования. Однако нередко наблюдается и обратный процесс.

классификация коллоидных систем

Лиофобные системы: золи

Это такая коллоидная система, фазы которой достаточно четко отделены друг от друга границей раздела. Однако увидеть это сложно, ведь размеры частиц дисперсных – не более 100 нм. Именно поэтому золи – промежуточное состояние между истинными растворами и грубодисперсными составами.

У данных систем есть своя классификация. Их разделяют в зависимости от вида дисперсионной среды. Можно выделить несколько основных вариантов:

  • гидрозоли – среда водная;
  • алкозоли – спирт;
  • этерозоли – эфирная;
  • органозоли – более общее обозначение органической природы среды.

Именно для лиозолей (среда – жидкая) характерно такое понятие, как мицелла. Им обозначают фазные частицы в совокупности с внешней сферой – частицами (ионами) окружающей среды. Для любой зольной системы можно записать свое химическое выражение, отражающее ее состав в виде мицеллы.

Пример: красный золь золота с составом NaAuO2 + HCOH + Na2CO3 → Au + HCOONa + H2O имеет мицеллу следующего вида: {[Au]m· n AuO2–· (n-x) Na+}x– · xNa+.

Свойства золей можно описать несколькими пунктами:

  1. Существует граница раздела фаз, у которой сильное поверхностное натяжение.
  2. Частица фазы и среды находятся в постоянном броуновском движении.
  3. Частицы способны к агрегации – слипанию и осаждению. Это объясняется их постоянным взаимодействием.

Если же говорить об использовании золей в промышленности, то оно достаточно широко. Если вспомнить, что все аэрозоли, суспензии и эмульсии относятся именно к ним, то становится ясно, что без подобных коллоидных систем не обходятся:

  • химическая промышленность;
  • фармацевтика;
  • военное дело;
  • пищевая отрасль и прочие.

При определенных условиях золи могут начать структурироваться. То есть выстраивать внутренний каркас из дисперсных частиц, ячейки в которых будут заполнены молекулами среды. Еще одно название происходящего – коагуляция или слипание. В этом случае говорят о гелеобразовании, так как продуктом станет гель.

Читайте также:  Какое свойство воздуха позволяет видеть вокруг нас все окружающее

оптические свойства коллоидных систем

Лиофильные системы

Данные структуры образуются благодаря тесному взаимодействию частиц среды и фазы. Это приводит к тому, что они растворяются друг в друге, набухают и образуются студенистые гелеобразные по консистенции соединения. Внутри же они представляют собой трехмерную пространственную сетку, в которой все поры заполняются частицами жидкой или твердой среды. Благодаря такому строению все лиофильные гели обладают следующими свойствами:

  • упругость;
  • способность сохранять постоянную форму;
  • прочность;
  • пластичность;
  • нетекучесть.

Такие молекулярные коллоидные системы встречаются очень часто. Ведь по своей природе это как высокомолекулярные, так и низкомолекулярные вещества, подвергшиеся воздействию для изменения свойств. Приведем несколько всем известных вариантов:

  • косметические гели для бритья, для волос;
  • лекарственные препараты – от болей, ушибов, ран и прочего;
  • бытовая химия;
  • адсорбенты в химической промышленности.

Особое свойство данных веществ – способность самопроизвольно необратимо разрушаться при высушивании. Наверняка многие замечали, что есть обычный гель для волос оставить открытым, то через два-три дня от него останется лишь маленькая сухая масса, непригодная к использованию.

Это происходит из-за разрушения пространственной структуры и испарения влаги. Иногда влагу специально убирают из состава гелей, чтобы получить нужный продукт. Но делается это химическим путем, без разрушения общей структуры. Так получают силикагели, алюмогели.

коллоидные системы химия

Особенные и общие свойства коллоидов

Свойства коллоидных систем (или коллоидов) следующие:

  1. Отличительный внешний вид, особенно если речь идет о гелях, эмульсиях и суспензиях, аэрозолях.
  2. Особое отношение к проходящему сквозь вещество свету: большинство из них не препятствует этому, а часть (прозрачные) вообще рассеивают направленный пучок.
  3. Постоянное движение частиц не позволяет в коллоидных системах образовываться осадку.
  4. Так как среда и фаза могут быть очень разными по отношению друг к другу, то выделить общие физические параметры сложно. Они должны относиться к каждому конкретному веществу.

Если говорить об особых свойствах рассматриваемых состояний веществ, то следует указать на броуновское движение структурных элементов и на эффект Тиндаля, то есть на рассеивание света.

Эффект Тиндаля

Данное явление входит в особые оптические свойства коллоидных систем. Суть его заключается в следующем: пучок света, проходящий через раствор (или аэрозоль) системы, рассеивается. Однако делает это не совсем обычно. Так как способность отражать или поглощать пучки света у всех частиц разная, показатель преломления варьируется, то получается, что можно наблюдать конусообразное пятно на темном фоне.

Этот эффект используется для определения качества, количества и размеров частиц, составляющих данную систему. Впервые методика была разработана и введена в использование Джоном Тиндалем, за что и получила такое название.

Очень простой и доступный опыт в домашних условиях позволит убедиться в наличии данного эффекта. Нужно приготовить раствор куриного белка в воде. Получится типичная лиофильная коллоидная система. Затем пропустить через него лазерный луч и обеспечить позади сосуда темный фон. Таким образом, конус Тиндаля будет виден очень отчетливо, а свет внутри раствора рассеется.

молекулярные коллоидные системы

Броуновское движение частиц

Это еще одно особое свойство рассматриваемых систем. Заключается в постоянном движении частиц фазы в среде раствора как газообразной, так и жидкой. Молекулы, атомы, ионы находятся в беспрерывном хаотическом круговороте. Это позволяет коллоиду существовать в неизменном виде. Кроме того, благодаря их одинаковым зарядам слипания между ними не происходит. Это позволяет системе быть достаточно устойчивой.

Это явление характерно лишь для тех частиц, размер которых не превышает 3 мкм. Иначе наступает седиментация раствора.

Способы образования коллоидов

Методы получения коллоидных систем достаточно разнообразны, поскольку и сами системы неодинаковы. Можно выделить несколько наиболее часто применяемых приемов.

  1. Конденсация.
  2. Диспергирование.
  3. Пептизация.

Все эти методы коллоидных систем имеют широкое промышленное значение при работе с ними, при их получении и изучении свойств. Рассмотрим более подробно каждый из них.

Конденсация – это метод, в основе которого лежит способность молекул и ионов ассоциироваться друг с другом, слипаться, образуя более крупные частицы. Таким образом, формируется новая система, чаще всего обладающая свойствами коллоида. Сделать это можно двумя путями:

  • заменой растворителя (то есть среды);
  • химической конденсацией, то есть рядом последовательных взаимодействий, приводящих к укрупнению частиц.

И в том, и в другом случае получаются настоящие коллоиды, в которых твердые частицы удерживаются броуновским движением во взвешенном состоянии.

Диспергирование, напротив, заключается в измельчении фазового компонента смеси до того состояния, когда раствор станет коллоидом. Делают это несколькими способами:

  • механическим дроблением;
  • электродуговым распылением;
  • измельчением ультразвуком и прочее.

Пептизация – химическое расщепление слипшихся коагулированных частиц на более мелкие структуры. Таким способом получают растворы в промышленности. При этом обязательное участие принимают специфические агенты – пептизаторы.

методы получения коллоидных систем

Условия устойчивого состояния

Устойчивость коллоидных систем требует определенных условий. Ведь мы уже говорили, что с течением времени они могут разрушаться, иногда необратимо. Особенно это касается лиофобных систем – золей. Поэтому существуют методы, позволяющие сохранить и повысить устойчивость коллоидов:

  1. Добавление специальных антикоагулянтов – стабилизаторов.
  2. Введение постоянных и временных электролитов для изменения значения электродного потенциала участников системы.
Читайте также:  Какие бывают свойства ощущений

Остальные способы являются узкоспецифичными для каждого конкретного коллоида, когда учитываются все свойства раствора.

устойчивость коллоидных систем

Распространение и значение коллоидных систем

Встретиться с коллоидами можно как в химической лаборатории, так и в природе. Известно, что практически все внутренние биологические вещества живого организма представляют собой именно такие дисперсные системы. Например:

  • цитоплазма;
  • строма;
  • костный мозг и прочие.

Среди строительных материалов очень много именно коллоидных систем, которые обладают хорошими техническими характеристиками. Это бетон, металлические сплавы, глиносодержащие соединения, пены, аэрозоли и так далее.

Фармацевтика вообще невозможна без коллоидов. Все пасты, мази, гели, суспензии и эмульсии – это лекарственные средства, представляющие собой рассматриваемые нами системы. Поэтому переоценить значение и распространение коллоидов сложно, они одни из самых распространенных и широко используемых видов агрегатного состояния вещества.

Источник

Типы коллоидов, их источники и применение

I. Типы коллоидов:

а) Декстраны. В настоящее время широко применяют два раствора дек-страна: 6 % раствор со средней молекулярной массой 70 000 (декстран-70) и 10 % раствор со средней массой 40 000 (декстран-40, декстран с низкой молекулярной массой).

Величины молекулярной массы средние. Растворы декстрана содержат молекулы декстрана различных размеров. Коллоидное осмотическое давление 268 мм рт.ст. Патентованные названия — Rheomacrodex (декстран-40) и Macrodex (декстран-70). По сравнению с другими плазмозаменителями декстран отличается более низкой молекулярной массой и длительным действием.

б) Гидроксиэтиловый крахмал. Выпускаемые промышленностью растворы гидрокси-этил-крахмала (ГЭК, Гетастарч) представляют собой гетерогенный раствор молекул ГЭК со средней молекулярной массой 69 000, близкой к молекулярной массе альбумина. Размеры молекул варьируют от 1000 до 100 000. Гетастарч выпускается в США в виде 6 % раствора в 9 % хлориде натрия.

В Великобритании выпускается Пентостарч (средняя молекулярная масса 250 000) в виде 10 % раствора.

в) Альбумин. Альбумин для внутривенных вливаний выпускается в виде 5 % (50 мг/мл) и 25 % (250 мг/мл) растворов

г) Желатин. Желатин выпускается в Великобритании в виде 4 % раствора с электролитами. Две наиболее часто применяемые модификации желатиновых растворов — Haemaccel, в котором желатин перекрестно связан с мочевиной, и Gelofusin, в котором желатин перекрестно связан сукцинированием.

Первый содержит в 10 раз больше кальция и калия, чем второй. Повышенное содержание кальция может привести к свертыванию в обогревающих змеевиках при инфузии Haemaccel вместе с кровью.

II. Применение коллоидов. Плазмозаменители применяют для замещения плазмы, в качестве антитромбоцитного средства и для улучшения микроциркуляции крови. Изучалась также возможность использования декстранов в качестве эффективного средства при лечении миокардиальной и церебральной ишемии и заболеваний периферических кровеносных сосудов, а также для поддержания функционирования сосудистого трансплантата.

Перорально принимаемый декстран-сульфат (UADD1), декстран с низкой молекулярной массой (7000—8000), может проявлять антиретровирусную активность против вирусов иммунодефицита человека типа I.

Свойства плазмозамещающих растворов

III. Источник коллоидов:

а) Декстраны. Декстраны продуцируются специально полученным штаммом бактерии Leuconostoc mesenteroides. Этот штамм продуцирует очень крупные молекулы с молекулярной массой в несколько миллионов.

б) Гидроксиэтиловый крахмал. Крахмал — растительный полисахарид, сохраняющий энергию. Он функционально и структурно аналогичен гликогену, полисахариду животных, в котором аккумулируется энергия. Крахмал состоит из глюкозных полимеров двух типов: амилазы, линейной молекулы, и амилопектина, разветвленной молекулы, которая по своей структуре напоминает гликоген.

Амилопектин подвергается быстрому ферментативному гидролизу — при гидролизе амилазы период полужизни составляет всего около 20 мин. В 60-х годах молекула амилопектина была модифицирована таким образом, что ее устойчивость в плазме увеличилась. Это было осуществлено посредством введения гидроксиэтильных групп и получения гидроксиэтил-крахмала, однако его применение при тяжелых формах анемии оказалось неэффективным.

в) Желатин. Желатин готовят посредством гидролиза бычьего коллагена с последующим химическим модифицированием.

г) Перфторуглероды. Перфторуглероды представляют собой 8- и 10-углеродфторированные углеводороды. Установлена высокая растворимость кислорода в жидких перфторуглеродах. Полагают, что перфторуглероды можно использовать в качестве “искусственной крови”.

д) Гемоглобин, свободный от стромы. Растворы человеческого гемоглобина как субстраты крови, переносящие кислород, были предметом исследований в течение примерно 70 лет. Изучалось их токсическое действие на почки, обусловленное стромальными компонентами эритроцитов в ранее готовившихся препаратах гемоглобина, а не самим гемоглобином. Это привело к получению растворов гемоглобина, свободных от стромы, с удаленными фрагментами мембран эритроцитов.

е) Альбумин. В качестве плазмозамещающих растворов используют растворы человеческого альбумина. Их готовят из смешанной крови, плазмы, сыворотки или плаценты, которые получают от здоровых людей-доноров.

Терапевтическая доза:

• Декстран-40 (10 % раствор): первоначальные внутривенные дозы составляют 500—1000 мл (50—100 г), вводятся быстро в течение 30—60 мин или, в некоторых случаях, в течение 4—6 ч. Последующие дозы равны 500 мл, вводятся через день. Грудным детям можно вводить 5 мл на 1 кг массы тела и детям постарше — 10 мл/кг.

• Декстран-70 (6 % раствор): первоначальные дозы составляют 500—1000 мл (30—60 г). 32 % раствор декстрана-70 закапывают в полость матки (в дозах 50—100 мл) в качестве промывающей и расширяющей жидкости при проведении воздушной гистероскопии.

• Гегастарч (6 % раствор): 500-1000 мл (30-60 г).

• Желатин (4 % раствор): дозы до 2000 мл (80 г) для взрослых или 30 мл на 1 кг массы тела для детей.

Читайте также:  Какие полезные свойства болгарского перца

Свойства кристаллоидов и коллоидов

– Также рекомендуем “Отравление коллоидами и их побочные эффекты”

Оглавление темы “Отравление препаратами”:

  1. Классификация плазмозаменителей – альбумина, коллоидных и кристаллоидных растворов
  2. Типы коллоидов, их источники и применение
  3. Отравление коллоидами и их побочные эффекты
  4. Отравление альбумином и его побочные эффекты
  5. Отравление тиклопидином и его побочные эффекты
  6. Классификация антиаритмических средств Vaughan Williams
  7. Желудочковая тахикардия (пируэтное мерцание, трепетание) при отравлении
  8. Регуляция сердечно-сосудистой деятельности (функции)
  9. Влияние антиаритимических лекарств на беременность и плод
  10. Отравление аденозином (Adenocard) и его побочные эффекты

Источник

Коллоидные свойства это какие

Силикатный гидроколлоид.

Коллоидные системы (коллоиды, др.-греч. κόλλα — клей и εἶδος — вид) — дисперсные системы, промежуточные между истинными растворами и грубодисперсными системами — взвесями и эмульсиями.

Размеры коллоидных частиц варьируются в пределах от 10-7 до 10-5 см. В свободнодисперсных коллоидных системах (дымы, золи) частицы не выпадают в осадок.

Основные свойства

  • Коллоидные частицы не препятствуют прохождению света.
  • В прозрачных коллоидах наблюдается рассеивание светового луча (эффект Тиндаля).
  • Дисперсные частицы не выпадают в осадок за счёт броуновского движения.

Основные виды

  • дым — взвесь твёрдых частиц в газе.
  • туман — взвесь жидких частиц в газе.
  • суспензия — взвесь твёрдых частиц в жидкости.
  • эмульсия — раствор жидкости в жидкости.
  • пена — раствор газа в жидкости или твёрдом теле.
  • гель — раствор жидкости в твёрдом теле.
  • сплав — раствор твёрдого тела в твёрдом теле.

Коллоидные системы, применяемые в химическом анализе

Из коллоидных систем наибольшее значение для химического анализа имеют гидрозоли — двухфазные микрогетерогенные дисперсные системы, характеризующиеся предельно высокой дисперсностью, в которых дисперсионной средой является вода — наиболее часто применяемый в аналитической практике растворитель. Встречаются также органозоли, в которых дисперсионной средой являются неводные (органические) растворители. В результате молекулярного сцепления частиц дисперсной фазы из золей при их коагуляции образуются гели. При этом не происходит разделения фаз; другими словами, переход золей в гель не является фазовым превращением.

При образовании геля вся дисперсионная среда (например, вода в гидрозоле) прочно связывается поверхностью частиц дисперсной фазы и в ячейках пространственной структуры геля. Гели способны обратимо восстанавливать свою пространственную структуру во времени, но после высушивания наступает разрушение их структуры и они теряют эту способность.

Коллоидные свойства галогенидов серебра

В процессе титрования галогенид-ионов растворами солей серебра получаются галогениды серебра, весьма склонные к образованию коллоидных растворов. В присутствии избытка На1–ионов, то есть до точки эквивалентности при титровании галогенидов ионами серебра или после точки эквивалентности при титровании ионов серебра галогенидами, вследствие адсорбции Hal–ионов взвешенные частицы AgHal приобретают отрицательный заряд:

mAgHal + nНаl- –> =[AgHal]m • nНаl-

В присутствии избытка Ag+-ионов (то есть до точки эквивалентности при титровании ионов серебра галогенидами или после точки эквивалентности при титровании галогенидов ионами серебра) взвешенные частицы приобретают положительный заряд:

mAgHal + nAg+ –> [AgHal]m • nAg+

Таким образом, заряд взвешенной частицы [AgHal]m•nHal- или [AgHal]m•nAg+ определяется зарядом ионов, адсорбированных на поверхности ядра мицеллы [AgHal]m, и зависит от наличия в системе избытка Hal- или Ag+, обусловливающих отрицательный или положительный заряд взвешенной частицы золя. Помимо адсорбционного слоя, находящегося на поверхности ядра мицеллы и обусловливающего определенный электрический заряд, в состав мицеллы входит также часть ионов противоположного знака, образующих второй (внешний) слой ионов.

Например, в процессе титрования иодида калия раствором нитрата серебра

Ag+ + NO + К++I- –> AgI + K+ + NO

образуются мицеллы следующего строения:

а) мицеллы, образуемые Ag при избытке нитрата серебра: {[AgI]m• nAg+ • (n-x)NO }x+ • xNO

б) мицеллы, образуемые AgI при избытке иодида калия {[AgI]m • nI- • (n-x)K+}x- • xK+

Коллоидные частицы, несущие одноимённые электрические заряды, отталкиваются друг от друга. Силы взаимного отталкивания мешают частичкам сблизиться настолько, чтобы произошло взаимное притяжение. В то же время заряженные частички обладают высокой адсорбционной способностью, они притягивают к себе частицы, несущие обратные по знаку электрические заряды, и образуют с ними малорастворимые соединения. В первую очередь на поверхности заряженных коллоидных частиц адсорбируются те ионы, которые дают наименее растворимые осадки с ионами, входящими в состав этих частиц. Кроме того, адсорбируются те ионы, концентрация которых наибольшая. Например, при осаждении AgI могут соосаждаться вместе с ним Вr-, CI-, SCN- и другие ионы. При титровании галогенидов, не содержащих посторонних примесей, осадком адсорбируются имеющиеся в растворе На1–ионы, сообщая частичкам AgHal отрицательные заряды. И в том, и в другом случаях результаты титрования искажаются. Поэтому требуется строго соблюдать условия осаждения, рекомендуемые в методиках определения тех или иных веществ.

Анализ коллоидных систем

Существует несколько методов анализа коллоидных систем, среди них есть химические и физико-химические методы: анализ с помощью адсорбционных индикаторов; методы на основе измерения рассеяния проходящего света (нефелометрия и турбидиметрия); методы на основе измерения скорости седиментации.

См. также

  • Агрегация

Ссылки

Wikimedia Foundation.
2010.

Источник