Митохондрии в каких клетках содержится
Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.
Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.
Особенности строения
Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.
Внешняя мембрана. Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин — белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.
Межмембранное пространство. Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.
Внутренняя мембрана. Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.
Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.
Расположение в клетке и деление
Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.
В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.
Деление. Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.
Функции в клетке
- Основная функция митохондрий – образование молекул АТФ.
- Депонирование ионов Кальция.
- Участие в обмене воды.
- Синтез предшественников стероидных гормонов.
Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.
Таблица: строение и функции митохондрий (кратко) | ||
---|---|---|
Структурные элементы | Строение | Функции |
Наружная мембрана | Гладкая оболочка, построена из липидов и белков | Отграничивает внутреннее содержимое от цитоплазмы |
Межмембранное пространство | Находятся ионы водорода, белки, микромолекулы | Создает протонный градиент |
Внутренняя мембрана | Образует выпячивания – кристы, содержит белковые транспортные системы | Перенос макромолекул, поддержание протонного градиента |
Матрикс | Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом | Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А. |
Рибосомы | Объединённые две субъединицы | Синтез белка |
Сходство митохондрий и хлоропластов
Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.
Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.
И митохондрии и хлоропласты могут делиться с помощью перетяжки.
Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.
Опишем кратко сходства и различия:
- Являются двомембранными органеллами;
- внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
- обладают собственным геномом;
- способны синтезировать белки и энергию.
Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.
Источник
Именно такая аналогия приходит, когда познакомишься с этим органоидом. Он явно на особом положении в клетке. Почему? Будем разбираться.
Итак, чем митохондрии отличаются от прочих органоидов?
1. Граница
Граница-мембрана есть у многих органоидов клетки, но у митохондрий она ещё и двойная, состоящая изнаружнойивнутренней мембран. Усиленный белково-фосфолипидный слой вокруг этой структуры уже сам по себе кое на что намекает. Намекает как минимум на повышенное “стремление” к независимости и обособленности. Внутренняя мембрана митохондрии имеет особые впячиваяния – кристы, по которым этот органоид легко опознаётся, в том числе и школьниками на государственных итоговых экзаменах по биологии 😉
Микрофотография митохондрии, на которой хорошо видны впячивания внутренней мембраны – кристы. Источник фото: Свенсон К., Уэбстер П. Клетка. – М.: Мир, 1980.
2. Собственные органы власти
Как известно, главной молекулой клетки, которая руководит всеми процессами, является ДНК, расположенная в ядре. Как она приобрела могущество и власть? Да точно так же, как приобретают власть в принципе – с помощью информации. “Кто владеет информацией, тот владеет миром” (не мной сказано). Так вот, именно в ДНК записана информация о каждом белке клетки и даже всего организма. А белки – это: а) основа для построения любой биоконструкции, от органоида до Биосферы; б) активные вещества (ферменты и гормоны), регулирующие функционирование этих биологических конструкций. Таким образом, кто владеет информацией о белках клетки, тот владеет клеткой. Клеткой, да не всей…
Митохондрии дела нет до указаний ядерной ДНК. Она их попросту игнорирует. Может себе это позволить, потому как имеет собственную молекулу ДНК – митохондриальную ДНК, содержащую информацию обо всех белках, создающих данный органоид
Внутреннее строение митохондрии
3. Собственная логистика и инфраструктура
Усиленная граница есть, руководящий центр есть. Разве этого не достаточно для независимости? Судите сами – всё это есть и у клеточного ядра, но почему-то оно не может похвастаться автономностью и без органоидов цитоплазмы обречено на гибель, так как самостоятельно не получает энергию, не растёт и не размножается. А митохондрия вполне самодостаточна – в ней в полной мере протекают и пластический, и энергетический обмен, она способна к автономному росту и даже делению (именно так в клетке появляются новые митохондрии).
Как ей это удаётся? Да просто митохондрия имеет всё, что необходимо для существования даже и отдельной клетки, а не то, что её части. У неё есть свои собственные митохондриальные рибосомы, в которых производится собственный митохондриальный белок, а белок – это основа пластического обмена, ведь он – главный строительный материал. Вторая сторона обмена веществ – энергетический обмен – так же без проблем осуществляется в митохондрии. Ещё бы! Ведь она же и отвечает за него в клетке. Извлечение энергии из органических веществ и её запас в виде АТФ – функция митохондрии, и , как видим, сапожник без сапог не остаётся, не забывает и себя обеспечивать той же энергией!
Митохондрии абсолютно независимо от остальной клетки появляются на свет (путём деления материнской митохондрии), строят себя и растут, получают и пользуются энергией. Одним словом – живут и дают жизнь новым митохондриям. Очень похоже на государство в государстве, на организм в организме. И не просто похоже, это именно так и есть. Ведь по мнению учёных митохондрии когда-то действительно были самостоятельными одноклеточными организмами. Судя по форме ДНК (кольцевая) и наличию крист-впячиваний внутренней мембраны, они были прокариотами, то есть доядерными организмами, по сути – бактериями. На схеме ниже – строение бактерии и митохондрии. Сравните сами и, что называется, попробуйте найти отличия:
Чем не обыкновенная бактерия? Да, бактерия, только вот совсем не обыкновенная, а способная благодаря ей одной известному ноу-хау производить энергии в 19 раз больше (!), чем все прочие пионеры жизни, бултыхающиеся рядом в первичном бульоне. Но эта энергичная умница не избежала-таки участи быть поглощённой-съеденной более крупным существом – одноклеточным эукариотом (ядерным организмом). Бактерию-митохондрию ожидала печально-банальная участь быть расщеплённой на отдельные молекулы ферментами лизосомы(пищеварительной вакуоли) эукариота. Но эукариот оказался сообразителен эволюционно продвинут, а может быть не обошлось и без штучек самой митохондрии, которая продолжала что есть мочи синтезировать АТФ, да ещё и поделилась этим источником энергии с эукариотом. Так или иначе, но хозяин оценил преимущества от приобретения в штат своих органоидов высоко энергоэффективной структуры в обмен на однократный пропуск очередного приёма пищи, а митохондрия получила “крышу” и относительную гарантию спокойствия и стабильности. Удалось ей так же, как видим, сохранить и часть своей независимости. В общем, не прогадала!
Если вас заинтересовал этот органоид клетки, то заглядывайте на мой канал. В планах рассказ о том, от кого мы получаем свою митохондриальную ДНК, чем митохондриальная ДНК интересна генетикам, антропологам, эволюционистам, систематикам и кто такая митохондриальная Ева.
Использованные в тексте биологические термины:
Мембрана – оболочка на границе органоида или клетки
Кристы – впячивания мембраны
Митохондриальная ДНК – ДНК, содержащаяся в митохондрии, содержащая отличный от ядерной ДНК набор генов
Рибосома – органоид клетки, функция которого – синтез белков
Пластический обмен – одна из сторон обмена веществ, цель которой построение биологических систем
Энергетический обмен – одна из сторон обмена веществ, цель которой получение энергии
Прокариоты = доядерные – самые первые на Земле организмы, у которых не было ядра, их ДНК свободно плавала в цитоплазме
Эукариоты = ядерные – организмы, эволюционно образовавшиеся из прокариотов, имеющие оформленное ядро, защищающее ДНК
Лизосома – органоид клетки, функции которого пищеварение или уничтожение клеточного мусора
Источник
Еще в далеком XIX веке с интересом изучая посредством первых не совершенных еще тогда микроскопов, строение живой клетки, биологи заметили в ней некие продолговатые зигзагоподобные объекты, которые получили название «митохондрии». Сам термин «митохондрия» составлен из двух греческих слов: «митос» – нитка и «хондрос» – зернышко, крупинка.
Что такое митохондрии и их роль
Митохондрии представляют собой двумембранный органоид эукариотической клетки, основное задание которого – окисление органических соединений, синтез молекул АТФ, с последующим применением энергии, образованной после их распада. То есть по сути митохондрии это энергетическая база клеток, говоря образным языком, именно митохондрии являются своего рода станциями, которые вырабатывают необходимую для клеток энергию.
Количество митохондрий в клетках может меняться от нескольких штук, до тысяч единиц. И больше их естественно именно в тех клетках, где интенсивно идут процессы синтеза молекул АТФ.
Сами митохондрии также имеют разную форму и размеры, среди них встречаются округлые, вытянутые, спиральные и чашевидные представители. Чаще всего их форма округлая и вытянутая, с диаметром от одного микрометра и до 10 микрометров длинны.
Примерно так выглядит митохондрия.
Также митохондрии могут, как перемещаться по клетке (делают они это благодаря току цитоплазмы), так и неподвижно оставаться на месте. Перемещаются они всегда в те места, где наиболее требуется выработка энергии.
Происхождение митохондрии
Еще в начале прошлого ХХ века была сформирована так званая гипотеза симбиогенеза, согласно которой митохондрии произошли от аэробных бактерий, внедренных в другую прокариотическую клетку. Бактерии эти стали снабжать клетку молекулами АТФ взамен получая необходимые им питательные вещества. И в процессе эволюции они постепенно потеряли свою автономность, передав часть своей генетической информации в ядро клетки, превратившись в клеточную органеллу.
Строение митохондрии
Митохондрии состоят из:
- двух мембран, одна из них внутренняя, другая внешняя,
- межмембранного пространства,
- матрикса – внутреннего содержимого митохондрии,
- криста – это часть мембраны, которая выросла в матриксе,
- белок синтезирующей системы: ДНК, рибосом, РНК,
- других белков и их комплексов, среди которых большое число всевозможных ферментов,
- других молекул
Так выглядит строение митохондрии.
Внешняя и внутренняя мембраны митохондрии имеют разные функции, и по этой причине различается их состав. Внешняя мембрана своим строением схожа с мембраной плазменной, которая окружает саму клетку и выполняет в основном защитную барьерную роль. Тем не менее, мелкие молекулы могут проникать через нее, а вот проникновение молекул покрупнее уже избирательно.
На внутренней мембране митохондрии, в том числе на ее выростах – кристах, располагаются ферменты, образуя мультиферментативные системы. По химическому составу тут преобладают белки. Количество крист зависит от интенсивности синтезирующих процессов, к примеру, в митохондриях клеток мышц их очень много.
У митохондрий, как впрочем, и у хлоропластов, имеется своя белоксинтезирующая система – ДНК, РНК и рибосомы. Генетический аппарат имеет вид кольцевой молекулы – нуклеотида, точь в точь как у бактерий. Часть необходимых белков митохондрии синтезируют сами, а часть получают извне, из цитоплазмы, поскольку эти белки кодируются ядерными генами.
Функции митохондрии
Как мы уже написали выше, основная функция митохондрий – снабжение клетки энергией, которая путем многочисленных ферментативных реакций извлекается из органических соединений. Некоторые подобные реакции идут с участием кислорода, а после других выделяется углекислый газ. И реакции эти происходят, как внутри самой митохондрии, то есть в ее матриксе, так и на кристах.
Если сказать иначе, то роль митохондрии в клетке заключается в активном участии в «клеточном дыхании», к которому относится множество химических реакций окисления органических веществ, переносов протонов водорода с последующим выделением энергии и т. д.
Ферменты митохондрий
Ферменты транслоказы внутренней мембраны митохондрий осуществляют транспортировку АДФ в АТФ. На головках, что состоят из ферментов АТФазы идет синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи. В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот
Митохондрии, видео
И в завершение интересное образовательное видео о митохондриях.
Автор: Павел Чайка, главный редактор журнала Познавайка
При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.
Эта статья доступна на английском языке – Mitochondria: Structure, Function and Role in the Cell.
Источник
Теория и методика подтягиваний, Кожуркин А. Н.
Предыдущие главы: Строение и химический состав скелетных мышц
Строение мышечных волокон и механизм мышечных сокращений
Мышцы, производящие подъём/опускание туловища
Развитие динамической силовой выносливости мышц, участвующих в подтягивании
7.2.1.1 Митохондрии
Митохондрии, одни из важнейших структурных компонентов мышечного волокна, располагаются цепочками вдоль миофибрилл (рисунок 7.3), тесно соприкасаясь с мембранами ретикулума. В митохондриях протекает аэробное окисление углеводов, жиров и аминокислот, а за счёт энергии, выделяющейся при окислении, происходит ресинтез АТФ.
Митохондрии ограничены двумя мембранами (рисунок 7.4). Наружняя митохондриальная мембрана имеет ровные контуры, не образует выпячиваний или складок.
Наружную мембрану от внутренней отделяет межмембранное пространство. Внутренняя мембрана ограничивает внутреннее содержимое митохондрии, ее матрикс.
Характерной чертой внутренней мембраны митохондрий является их способность образовывать многочисленные выпячивания внутрь митохондрий. Такие выпячивания чаще всего имеют вид плоских гребней, или крист, существенно увеличивая поверхность внутренней мембраны.
Мембраны митохондрий построены из белка и содержащих фосфорную кислоту жироподобных веществ – фосфолипидов. На внутренней мембране в определённом порядке расположены биологические катализаторы – ферменты, при помощи которых происходят окислительные процессы, а также компоненты дыхательной цепи – главной системы превращения энергии в митохондриях.
На внешней мембране митохондрий в определённом порядке расположены ферменты, не имеющие отношения к дыхательной цепи. Немало ферментов в растворённом виде содержится и в матриксе. Кроме того, матрикс митохондрий содержит рибосомы и митохондриальную ДНК.
Рисунок 7.4 Схема строения митохондрии
Великое множество миофибрилл, содержащихся в мышечных волокнах, требуют большого количества АТФ, которое должно быть доставлено к каждому саркомеру миофибрилл.
На продольных ультратонких срезах скелетных мышц в электронном микроскопе видны многочисленные округлые мелкие сечения митохондрий, располагающихся в соседстве с саркомерами.
Если же исследовать поперечные срезы мышечных волокон на уровне Z-дисков (см. п.7.2.1.2), то видно, что мышечные митохондрии представляют собой не мелкие шарики или палочки, а как бы паукообразные структуры, отростки которых могут ветвиться и простираться на большие расстояния, иногда через весь поперечник мышечного волокна.
При этом разветвления митохондрий окружают каждую миофибриллу в мышечном волокне, снабжая их АТФ, необходимой для мышечного сокращения. Следовательно, в плоскости z-диска митохондрии представлены типичным митохондриальным ретикулумом – единой митохондриальной системой.
Такой пласт или этаж митохондриального ретикулума повторяется дважды на каждый саркомер, а все мышечное волокно имеет тысячи поперечно расположенных поэтажных пластов митохондриального ретикулума.
Было обнаружено, что между этажами вдоль миофибрилл располагаются нитчатые митохондрии, соединяющие эти митохондриальные пласты. Тем самым создается трехмерная картина митохондриального ретикулума, проходящего через весь объем мышечного волокна.
Предполагается, что с помощью специальных межмитохондриальных соединений или контактов может происходить функциональное объединение отдельных митохондрий и митохондриальных ретикуломов в единую энергетическую систему, позволяющую всем миофибриллам в мышечном волокне сокращаться синхронно по всей длине, поскольку механизм взаимодействия митохондрий посредством межмитохондриальных контактов может обеспечить синхронное поступление АТФ во все участки сокращающегося мышечного волокна.
Механизм кооперации и синхронизации работы митохондрий позволяет вести синтез АТФ в любой точке поверхности внутренней мембраны таких разветвлённых митохондрии, обеспечивая энергией для сокращения те участки мышечного волокна, где в этом возникает необходимость.
Но связывание отдельных митохондрий в единую цепь с помощью межмитохондриальных контактов наряду с очевидными преимуществами имеет и существенный недостаток. Дело в том, что при функциональном объединении митохондрий в единую митохондриальную систему любое существенное повреждение (пробой) её внутренней мембраны приводит к потере способности к ресинтезу АТФ сразу у всей объединённой группы митохондрий.
При проведении серии развивающих тренировок по подтягиванию направленных на развитие статической выносливости мышц-сгибателей кисти нередко используется метод выполнения нагрузки «до отказа».
Если тренировки разделены недостаточным для восстановления интервалом отдыха, после проведения 4-5 развивающих тренировок подряд, в ходе которых может наблюдаться существенный прирост времени виса (т.е. увеличение аэробных возможностей мышц), неожиданно наступает срыв адаптации и возврат времени виса к первоначальному уровню.
Например, если спортсмен форсирует тренировочный процесс и выполняет через день по 4-6 подходов до отказа, подняв за 2 недели вис с подтягиванием в темпе 1 раз в 8 секунд с 2 до 4 минут (такое возможно у квалифицированных спортсменов, например, после длительного вынужденного перерыва в тренировках), то внезапно – без видимых причин – время виса может упасть до прежних двух минут и даже меньше.
Долгое время было непонятно, почему так происходит. В качестве одной из возможных причин называлась перегрузка нервной системы тренировками до отказа. Но срыв адаптации обычно происходил на фоне эмоционального подъёма от быстрого прогресса тренировочных результатов и связанного с этим желания тренироваться всё больше и больше и имел мало общего с нервным срывом.
Возможно, что резкое падение результатов происходит из-за пробоя внутренней мембраны митохондриальной системы мышечного волокна, вследствие, например, чрезмерного закисления мышц на предшествующей срыву адаптации тренировке. В этом случае повреждение небольшого по площади участка любой из митохондрий, входящих в митохондриальную сеть, должно приводить к отключению механизма аэробного окисления сразу во всей сети.
Тренировки с облегчением в 5-7% от веса тела позволяют резко (в 1,5 – 2 раза) увеличить объём тренировочной работы за счёт увеличения количества подтягиваний в подходе с соответствующим увеличением времени выполнения подхода.
При этом энергопродукция смещается в сторону аэробного окисления, всё в большей степени активизируя работу митохондриальной системы. Серия развивающих тренировок с облегчением без должного интервала отдыха между ними также может привести к скачкообразному падению результатов, что также может быть объяснено повреждением внутренних мембран митохондрий продуктами метаболизма.
Можно ли каким-либо образом почувствовать приближение момента срыва адаптации и, снизив нагрузку, предотвратить это нежелательное явление?
Биологическое окисление, протекающее в митохондриях, состоит в окислении органических субстратов, например глюкозы, до углекислого газа и воды с выделением около 680 ккал (в расчёте на 1 моль, т.е. 180 г глюкозы), которая в дальнейшем идёт на создание макроэнергетической связи в молекуле АТФ (фосфорилирование АДФ).
Окисление и фосфорилирование – это два, в принципе, независимых процесса, которые для эффективного ресинтеза АТФ должны быть сопряжены. Сопряжение окисления и фосфорилирования происходит на внутренних мембранах митохондрий. Поэтому, когда мембраны повреждены, происходит разобщение этих процессов.
Реакции окисления глюкозы продолжают идти, а ресинтез АТФ замедляется или прекращается. И сейчас даже неважно, что является причиной повреждения мембран – избыток молочной кислоты, недостаток кислорода или повышенное его потребление, свободнорадикальное окисление или это происходит по каким-то иным причинам.
Важно, что при повреждении мембран митохондрий в результате чрезмерного воздействия тренировочных нагрузок нарушается процесс ресинтеза АТФ, а энергия, выделяющаяся в процессе биологического окисления, теперь может превращаться только в тепло, приводя к локальному нагреву мышечной ткани.
Но одним из отдалённых признаком перетренированности является внезапная испарина, выступающая не только на лбу, но и на рабочих мышцах спортсмена в начале выполнения даже не очень напряжённой нагрузки.
Возможно, таким образом организм реагирует на начинающийся процесс разобщения окисления и фосфорилирования, связанный с повреждением мембран митохондрий. Поэтому, если после серии развивающих нагрузок на очередной тренировке вы начинаете по непонятным причинам сильно потеть, стоит задуматься: а не перебрали ли вы с нагрузкой?
В любом случае безопасным (но в то же время обеспечивающим прогресс) считается вариант, когда тяжёлые развивающие тренировки проводятся не чаще одного раза в 5 – 7 дней.
Экспериментальные данные говорят в пользу того, что увеличение числа митохондрий происходит путём роста и деления предшествующих митохондрий. Более того, митохондрии обладают собственным генетическим аппаратом, т.е. обладают полной системой авторепродукции, хотя и находящейся под генетическим контролем со стороны клеточного ядра .
Все митохондрии в теле человека наследуются от матери, а не от отца, поэтому способность к длительному выполнению упражнений передаётся по материнской линии.
По форме и размеру митохондрии напоминают бактерий; они содержат собственную ДНК и размножаются делением. Эти и другие факты привели к возникновению гипотезы о том, что много миллионов лет назад бактерии проникли в более высокоразвитые клетки и прочно обосновались в них, потеряв былую самостоятельность и со временем превратившись в клеточные органеллы, которые теперь называют митохондриями
Рукопашный бой в Москве на Кунцевской.
Содержание книги
Источник