На какие свойства указывает степень окисления

На какие свойства указывает степень окисления thumbnail

Темы кодификатора ЕГЭ: Электроотрицательность. Степень окисления и валентность химических элементов.

Когда атомы взаимодействуют и образуют химическую связь, электроны между ними в большинстве случаев распределяются неравномерно, поскольку свойства атомов различаются. Более электроотрицательный атом сильнее притягивает к себе электронную плотность. Атом, который притянул к себе электронную плотность, приобретает частичный отрицательный заряд δ—, его «партнер» — частичный положительный заряд  δ+. Если разность электроотрицательностей атомов, образующих связь, не превышает 1,7, мы называем связь ковалентной полярной. Если разность электроотрицательностей, образующих  химическую связь, превышает 1,7, то такую связь мы называем ионной.

Степень окисления – это вспомогательный условный заряд атома элемента в соединении, вычисленный из предположения, что все соединения состоят из ионов (все полярные связи – ионные).

Что значит «условный заряд»? Мы просто-напросто договариваемся, что немного упростим ситуацию: будем считать любые полярные связи полностью ионными, и будем считать, что электрон полностью уходит или приходит от одного атома к другому, даже если на самом деле это не так. А уходит условно электрон от менее электроотрицательного атома к более электроотрицательному.

Например, в связи H-Cl мы считаем, что водород условно «отдал» электрон, и его заряд стал +1, а хлор «принял» электрон, и его заряд стал -1. На самом деле таких полных зарядов на этих атомах нет.

Наверняка, у вас возник вопрос — зачем же придумывать то, чего нет? Это не коварный замысел химиков, все просто: такая модель очень удобна. Представления о степени окисления элементов полезны при составлении классификации химических веществ, описании их свойств, составлении формул соединений и номенклатуры. Особенно часто степени окисления используются при работе с  окислительно-восстановительными реакциями.

Степени окисления бывают высшиенизшие и промежуточные.

Высшая степень окисления равна номеру группы со знаком «плюс».

Низшая определяется, как номер группы минус 8.

И промежуточная степень окисления — это почти любое целое число в интервале от низшей степени окисления до высшей.

На какие свойства указывает степень окисления

Например, для азота характерны: высшая степень окисления +5, низшая 5 — 8 = -3, а промежуточные степени окисления от -3 до +5. Например, в гидразине N2H4 степень окисления азота промежуточная, -2.

Чаще всего степень окисления атомов в сложных веществах обозначается сначала знаком, потом цифрой, например +1, +2, -2 и т.д. Когда речь идет о заряде иона (предположим, что ион реально существует в соединении), то сначала указывают цифру, потом знак. Например: Ca2+, CO32-.

Для нахождения степеней окисления используют следующие правила:

  1. Степень окисления атомов в простых веществах равна нулю;
  2. В нейтральных молекулах алгебраическая сумма степеней окисления равна нулю, для ионов эта сумма равна заряду иона;
  3. Степень окисления щелочных металлов (элементы I группы главной подгруппы) в соединениях равна +1, степень окисления щелочноземельных металлов (элементы II группы главной подгруппы) в соединениях равна +2; степень окисления алюминия в соединениях равна +3;
  4. Степень окисления водорода в соединениях с металлами (солеобразные гидриды — NaH, CaH2 и др.) равна -1; в соединениях с неметаллами (летучие водородные соединения)  +1;
  5. Степень окисления кислорода равна -2. Исключение составляют пероксиды – соединения, содержащие группу –О-О-, где степень окисления кислорода равна -1, и некоторые другие соединения (супероксиды, озониды, фториды кислорода OF2 и др.);
  6. Степень окисления фтора во всех сложных веществах равна -1.

Выше перечислены ситуации, когда степень окисления мы считаем постоянной. У всех остальных химических элементов степень окисленияпеременная, и зависит от порядка и типа атомов в соединении.

Примеры:

Задание: определите степени окисления элементов в молекуле дихромата калия: K2Cr2O7.

Решение:  степень окисления калия равна +1, степень окисления хрома обозначим, как х,  степень окисления кислорода -2. Сумма всех степеней окисления всех атомов в молекуле равна 0. Получаем уравнение: +1*2+2*х-2*7=0. Решаем его, получаем степень окисления хрома +6.

В бинарных соединениях более электроотрицательный элемент характеризуется отрицательной степенью окисления, менее электроотрицательный – положительной.

Обратите внимание, что понятие степени окисления – очень условно! Степень окисления не показывает реальный заряд атома и не имеет реального физического смысла. Это упрощенная модель, которая эффективно работает, когда нам необходимо, например, уравнять коэффициенты в уравнении химической реакции, или для алгоритмизации классификации веществ.

Степень окисления – это не валентность! Степень окисления и валентность во многих случаях не совпадают. Например, валентность водорода в простом веществе Н2 равна I, а степень окисления, согласно правилу 1, равна 0.

Это базовые правила, которые помогут Вам определить степень окисления атомов в соединениях в большинстве случаев.

В некоторых ситуациях вы можете столкнуться с трудностями при определении степени окисления атома. Рассмотрим некоторые из этих ситуаций, и разберем способы их разрешения:

  1. В двойных (солеобразных) оксидах степень у атома, как правило, две степени окисления. Например, в железной окалине Fe3O4 у железа две степени окисления: +2 и +3. Какую из них указывать? Обе. Для упрощения можно представить это соединение, как соль: Fe(FeO2)2. При этом кислотный остаток образует атом со степенью окисления +3. Либо двойной оксид можно представить так: FeO*Fe2O3.
  2. В пероксосоединениях степень окисления атомов кислорода, соединенных ковалентными неполярными связями, как правило, изменяется. Например, в пероксиде водорода Н2О2, и пероксидах щелочных металлов степень окисления кислорода -1, т.к. одна из связей – ковалентная неполярная (Н-О-О-Н). Другой пример – пероксомоносерная кислота (кислота Каро)  H2SO5 (см. рис.) содержит в составе два атома кислорода со степенью окисления -1, остальные атомы со степенью окисления -2, поэтому более понятной будет такая запись: H2SO3(O2).  Известны также пероксосоединения хрома – например, пероксид хрома (VI) CrO(O2)2 или CrO5, и многие другие.
  3. Еще один пример соединений с неоднозначной степенью окисления – супероксиды (NaO2) и солеобразные озониды KO3. В этом случае уместнее говорить о молекулярном ионе O2 с зарядом -1 и и O3 с зарядом -1. Строение таких частиц описывается некоторыми моделями, которые в российской учебной программе проходят на первых курсах химических ВУЗов: МО ЛКАО, метод наложения валентных схем и др.
  4. В органических соединениях понятие степени окисления не очень удобно использовать, т.к. между атомами углерода существует большое число ковалентных неполярных связей. Тем не менее, если нарисовать структурную формулу молекулы, то степень окисления каждого атома также можно определить по типу и количеству атомов, с которыми данный атом непосредственно связан. Например, у первичных атомов углерода в углеводородах степень окисления равна -3, у вторичных -2, у третичных атомов -1, у четвертичных  — 0.

Потренируемся определять степень окисления атомов в органических соединениях. Для этого необходимо нарисовать полную структурную формулу атома, и выделить атом углерода с его ближайшим окружением — атомами, с которыми он непосредственно соединен.

Полезные советы:

  • Для упрощения расчетов можно использовать таблицу растворимости – там указаны заряды наиболее распространенных ионов. На большинстве российских экзаменов по химии (ЕГЭ, ГИА, ДВИ) использование таблицы растворимости разрешено. Это готовая шпаргалка, которая во многих случаях позволяет значительно сэкономить время.
  • При расчете степени окисления элементов в сложных веществах сначала указываем степени окисления элементов, которые мы точно знаем (элементы с постоянной степенью окисления), а степень окисления элементов с переменной степенью окисления обозначаем, как х. Сумма всех зарядов всех частиц равна нулю в молекуле или равна заряду иона в ионе. Из этих данных легко составить и решить уравнение.

Источник

Атомы в молекуле связаны посредством химической связи. Она может быть ковалентной неполярной или полярной или ионной. Как мы знаем, способность атома образовывать некое число химических связей называется валентностью. Но в неорганической химии часто используется ещё одна характеристика атома в молекуле – степень окисления.

Степень окисления – это условная величина. Она показывает, каким был бы заряд атома, если бы все связи, которые он образует, были ионными.

Ранее мы обсуждали химическую связь и выяснили, что при образовании ионной связи электроны, собственно и образующие связь, смещаются к одному из атомов. Атом, который приобретает электроны, получает отрицательный заряд, атом, отдавший электроны, получает положительный заряд.

Фото: pixabay.com

Степень окисления численно равна валентности, но с одной важной оговоркой.

Валентность всегда положительна, а степень окисления может быть и положительной, и отрицательной.

Это легко понять, если вспомнить, что валентность – это число образованных связей. Оно не может быть отрицательным, иначе связей и не было бы. А вот степень окисления показывает, сколько электронов атом получил или отдал. Электроны имеют отрицательный заряд, так что принятие или отдача электронов означает, что и атом получает некий заряд.

Также запомните, что в отличие от валентности, обозначаемой римскими цифрами, степень окисления обозначается цифрами арабскими со знаком + или -.

Ещё одно важное замечание. Молекулы никогда не имеют заряда, или, иначе говоря, заряд любой молекулы равен 0. Это означает, что число отрицательных зарядов и число зарядов положительных в молекуле всегда одинаково! Не забывайте проверять правильность написания формулы, перемножая степени окисления и индексы у атомов, произведения этих величин должны быть равными. Ну а теперь, чтобы лучше усвоить эти теоретические выкладки, перейдём к примерам.

Пример 1.

Рассмотрим молекулу оксида серы (VI) SO3. Здесь более электроотрицательный элемент – кислород, то есть электроны сместятся к нему, а значит, он приобретёт заряд отрицательный. Сера же будет электроны отдавать, поэтому получит заряд положительный. Осталось разобраться с величинами.

Как говорилось выше, степень окисления совпадает с валентностью, но имеет знак. Напомню, что кислород имеет валентность II. Его степень окисления равна -2. Отрицательный заряд здесь возник потому, что кислород принимает электроны. Сера же электроны отдаёт, получая при этом заряд +. Здесь степень окисления серы +6 (см. выше: валентность серы в этом соединении VI). Теперь посмотрите на формулу:

В молекуле число положительных зарядов всегда равно числу отрицательных, только в этом случае молекула будет иметь заряд 0. В оксиде серы (VI) имеется 1 атом серы с зарядом +6 и три атома кислорода, каждый из которых имеет заряд -2. Таким образом, число положительных зарядов 6 (вклад атома серы +6) и число отрицательных зарядов тоже 6 (вклад трёх атомов кислорода 3*(-2)=-6).

Произведения степени окисления и индекса каждого атома обязательно совпадают по модулю!

Пример 2.

Рассмотрим оксид алюминия Al2O3. Электроотрицательный кислород будет принимать электроны и приобретать отрицательный заряд, алюминий же будет электроны отдавать, получая заряд положительный. Разберёмся со значениями степеней окисления:

Проверим себя. Для алюминия произведение степени окисления и индекса 3*2=6. Для кислорода произведение степени окисления и индекса -2*3=-6. Таким образом, число отрицательных зарядов равно числу положительных, и молекула нейтральна.

Пример 3.

Рассмотрим оксид фосфора (V) Р2О5. Рассуждая, как и в предыдущих случаях, получим, что степень окисления фосфора здесь +5:

Произведения степеней окисления и индекса для обоих атомов по модулю 10, число отрицательных и положительных зарядов равно, молекула нейтральна.

Степенью окисления удобно оперировать и в случае более сложных соединений, например, НNO3 или KMnO4. Но это мы обсудим позже.

Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.

Источник

Степень окисления и валентность – понятия в чём-то близкие и взаимозаменяемые в ряде ситуаций. Но если валентность всегда положительна (поскольку по определение – способность атомов образовывать то или иное число химических связей. А число связей, очевидно, отрицательным быть не может), то степень окисления может иметь как положительные, так и отрицательные значения. А всё потому, что степень окисления – показывает, каким бы был заряд атома, если бы все электроны, образующие химическую связь сместились к нему (или полностью от него оторвались, сместившись к другому атому).

Фото: pixabay.com

В бинарных соединениях степень окисления найти просто. Нужно помнить два момента:

1. Молекула всегда нейтральна, у неё нет заряда (или же он равен 0), поэтому число отрицательных зарядов равно числу зарядов положительных.

2. Произведения степени окисления атома и индекса, стоящего у атома в молекуле, у обоих составляющих молекулу атомов равны по модулю.

Также стоит запомнить, что

у многих элементов степени окисления почти всегда постоянны. Так, кислород имеет степень окисления -2, водород (очень часто, но не всегда!) и щелочные металлы +1, металлы второй группы +2 и т.д.

Но есть и элементы, которые могут иметь разную степень кисления, например, у серы она может быть -2, +4 или +6.

Для примера определим степени окисления меди в двух оксидах: Cu2O и CuO.

Известно, что у кислорода степень окисления -2. Напомню, что степень окисления указывается справа вверху от элемента. Таким образом, запишем для первого оксида:

Для кислорода произведение степени окисления и индекса -2*1=-2 или по модулю 2. Для меди произведение степени окисления и индекса тоже должно равняться 2. С учётом того, что у меди стоит индекс 2 получаем степень окисления 1. Очевидно, что это +1: поскольку в молекуле уже есть отрицательно заряженная составляющая, другая составляющая должна быть заряжена положительно. Таким образом, в оксиде меди Cu2O степень окисления меди +1.

С оксидом CuО дело обстоит ещё проще. Когда в молекуле атомы соединены 1 к 1, то степени окисления у них равны по модулю. Поскольку у кислорода степень окисления -2, то у меди здесь степень окисления +2.

Теперь разберём примеры посложнее и рассмотрим молекулы, состоящие из атомов трёх видов.

Пример 1.

Определите степень окисления серы в серной кислоте.

Серная кислота имеет формулу H2SO4. Чтобы понять, какая степень окисления у серы в этом соединении, нужно помнить, что заряд молекулы всегда равен 0, то есть число отрицательных зарядов всегда равно числу положительных. Теперь посмотрим на формулу и вспомним, что кислород имеет степень окисления -2, водород +1, то есть:

Что отсюда видно? Что пока у нас имеется два положительных заряда, это вклад водорода (+2 мы получаем, умножив степень окисления водорода на индекс: +1*2=+2) и восемь отрицательных, это вклад кислорода (-8 мы получаем, умножив степень окисления кислорода на индекс: -2*4=-8). Но нам нужно, чтобы число положительных зарядов было равно числу отрицательных, только при этом условии заряд молекулы будет 0. Следовательно, недостаёт 6 положительных зарядов. Это и есть степень окисления серы в серной кислоте: +6. То есть можно записать так:

Пример 2.

Найдём степень окисления азота в азотистой кислоте HNO2.

Рассуждать будет аналогично, исходя из известных степеней окисления (-2 у кислорода и +1 и водорода):

Перемножив степени окисления с индексами, получим, что у нас 1 положительный заряд (от водорода: +1*1=+1) и четыре отрицательных (от кислорода: -2*2=-4). Для общего нулевого заряда молекулы недостаёт трёх положительных зарядов, которые и даст азот. То есть в азотистой кислоте степень окисления азота +3:

Для тренировки попробуйте самостоятельно определить степень окисления хрома в бихромате калия K2CrO4.

Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.

Источник

Валентность

Валентность (лат. valere – иметь значение) – мера “соединительной способности” химического элемента, равная числу индивидуальных
химических связей, которые может образовать один атом.

Определяют валентность по числу связей, которые один атом образует с другими. Для примера рассмотрим две молекулы

Валентность

Для определения валентности нужно хорошо представлять графические формулы веществ. В этой статье вы увидите множество формул. Сообщаю
вам также о химических элементах с постоянной валентностью, знать которые весьма полезно.

Постоянная валентность

В электронной теории считается, что валентность связи определяется числом неспаренных (валентных) электронов в основном или возбужденном
состоянии. Мы касались с вами темы валентных электронов и возбужденного состояния атома. На примере фосфора объединим эти две темы для
полного понимания.

Валентность и состояние атома

Подавляющее большинство химических элементов обладает непостоянным значением валентности. Переменная валентность характерна для меди,
железа, фосфора, хрома, серы.

Ниже вы увидите элементы с переменной валентностью и их соединения. Заметьте, определить их непостоянную валентность нам помогают другие
элементы – с постоянной валентностью.

Валентность и состояние атома

Запомните, что у некоторых простых веществ валентность принимает значения: III – у азота, II – кислорода. Подведем итог полученным знаниям,
написав графические формулы азота, кислорода, углекислого и угарного газов, карбоната натрия, фосфата лития, сульфата железа (II) и ацетата калия.

Графические формулы и валентность

Как вы заметили, валентности обозначаются римскими цифрами: I, II, III и т.д. На представленных формулах валентности веществ равны:

  • N – III
  • O – II
  • H, Na, K, Li – I
  • S – VI
  • C – II (в угарном газе CO), IV (в углекислом газе CO2 и карбонате натрия Na2CO3
  • Fe – II
Степень окисления

Степенью окисления (СО) называют условный показатель, который характеризует заряд атома в соединении и его поведение в ОВР (окислительно-восстановительной
реакции). В простых веществах СО всегда равна нулю, в сложных – ее определяют исходя из постоянных степеней окисления у некоторых элементов.

Численно степень окисления равна условному заряду, который можно приписать атому, руководствуясь предположением, что все электроны,
образующие связи, перешли к более электроотрицательному элементу.

Определяя степень окисления, одним элементам мы приписываем условный заряд “+”, а другим “-“. Это связано с электроотрицательностью –
способностью атома притягивать к себе электроны. Знак “+” означает недостаток электронов, а “-” – их избыток. Повторюсь, СО – условное
понятие.

Степень окисления

Сумма всех степеней окисления в молекуле равна нулю – это важно помнить для самопроверки.

Зная изменения электроотрицательности в периодах и группах периодической таблицы Д.И. Менделеева, можно сделать вывод о том какой элемент
принимает “+”, а какой минус. Помогают в этом вопросе и элементы с постоянной степенью окисления.

Кто более электроотрицательный, тот сильнее притягивает к себе электроны и “уходит в минус”. Кто отдает свои электроны и испытывает их недостаток –
получает знак “+”.

Элементы с постоянной степенью окисления

Самостоятельно определите степени окисления атомов в следующих веществах: RbOH, NaCl, BaO, NaClO3, SO2Cl2,
KMnO4, Li2SO3, O2, NaH2PO4. Ниже вы найдете решение этой задачи.

Сравнивайте значение электроотрицательности по таблице Менделеева, и, конечно, пользуйтесь интуицией 🙂 Однако по мере изучения химии, точное знание
степеней окисления должно заменить даже самую развитую интуицию 😉

Степени окисления в веществах

Особо хочу выделить тему ионов. Ион – атом, или группа атомов, которые за счет потери или приобретения одного или нескольких
электронов приобрел(и) положительный или отрицательный заряд.

Определяя СО атомов в ионе, не следует стремиться привести общий заряд иона к “0”, как в молекуле. Ионы даны в таблице растворимости, они имеют
разные заряды – к такому заряду и нужно в сумме привести ион. Объясню на примере.

Определение степени оксиления

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник