На какие свойства влияет степень увлажнения материала

На какие свойства влияет степень увлажнения материала thumbnail

Среди физических процессов наибольшее значение в практике имеют воздействия водной и паровой среды, тепловые воздействия, распространение звуковых волн, электротока, ядерных излучений и т. п. Отношение материала к статическому или циклическому воздействию воды или пара характеризуется гидрофизическими свойствами (гигроскопичность, капиллярное всасывание, во-допоглощение, водостойкость, водопроницаемость, паропроницаемость, влажностные деформации, морозостойкость).

Гигроскопичность — способность материала поглощать и конденсировать водяные пары из воздуха. Гигроскопичность вызывается сорбцией, представляющей собой физико-химический процесс поглощения водяных паров из воздуха как в результате их адсорбции на внутренней поверхности материала, так и капиллярной конденсации.

Капиллярная конденсация возможна только в капиллярах с малым радиусом (менее 10~7 м), так как разность давлений насыщенного водяного пара над вогнутой поверхностью мениска и плоской поверхностью в капиллярах с большим радиусом несущественна. Гигроскопичность зависит как от свойств материала — величины и характера пористости, так и от условий внешней среды—температуры и относительной влажности, а для сыпучих материалов также от их растворимости в воде и дисперсности и снижением температуры воздуха. Этот процесс носит обратимый характер. Гигроскопичность характеризуется величиной отношения массы поглощенной материалом влаги, при относительной влажности воздуха 100% и температуре 20 °С, к массе сухого материала, выраженной в процентах.

Капиллярное всасывание (подъем) воды пористым материалом происходит по капиллярным порам, когда часть конструкции соприкасается с водой. Например, грунтовые воды могут подниматься по капиллярам и увлажнять нижнюю часть стены здания. Капиллярными называют поры с такими условными радиусами, при которых их капиллярный потенциал (потенциальная энергия поля капиллярных сил, отнесенных к единице массы жидкости) значительно больше потенциала поля тяжести.Капиллярное всасывание характеризуется высотой поднятия уровня воды в капиллярах материала, количеством поглощенной воды и интенсивностью всасывания.Более точно, учитывая неправильную форму пор в материале и их изменяющееся поперечное сечение, высоту всасывания воды определяют экспериментально по методу «меченых атомов» либо по измерению электропроводности материала. Уменьшение интенсивности капиллярного всасывания указывает на улучшение структуры материала и повышение его долговечности.

Водопоглощение — способность материала впитывать и удерживать в своих порах воду. Оно подразделяется на Водопоглощение по массе и объему.

Водопоглощение по массе Wм, %, равно отношению массы поглощенной образцом воды к массе сухого образца.

Водопоглощение по объему W0, %, равно отношению массы поглощенной образцом воды к объему образца.

Их определяют по следующим формулам:

где mв — масса образца, насыщенного водой, г; mс — масса образца, высушенного до постоянной массы, г; V — объем образца, см3.

Между водопоглощением по массе и объему существует следующая зависимость:

где ρс — средняя плотность материала, кг/м³

Водопоглощение всегда меньше пористости, так как поры не полностью заполняются водой.

Материалы во влажном состоянии изменяют свои свойства. Увеличивается средняя плотность, уменьшается прочность, повышается теплопроводность.

Коэффициент насыщения пор водой- отношение водопоглащения по объему к общей пористости:

Кн=Wo/П

Коэффициент насыщения позволяет оценить структуру материала. Он может изменяться от 0 до1. Уменьшение Кн свидетельствует о сокращении открытой пористости, что проявляется, например, в повышении морозостойкости.

При насыщении материала водой существенно изменяются его свойства: увеличивается плотность и теплопроводность, происходят некоторые структурные изменения в материале, вызывающие появление в нем внутренних напряжений, что, как правило, приводит к снижению прочности материала.

Влажностные деформации — изменение размеров и объема материала при изменении его влажности. Уменьшение размеров и объема материала при его высыхании называют усадкой (усушкой), а увеличение размеров и объема при увлажнении вплоть до полного насыщения материала водой — набуханием (разбуханием). Усадка возникает и увеличивается в результате уменьшения толщины слоев воды, окружающих частицы материала, и действием внутренних капиллярных сил, стремящихся сблизить частицы материала. Набухание связано с тем, что полярные молекулы воды, проникая между частицами или волокнами, слагающими материал, как бы расклинивают их, при этом утолщаются гид-ратные оболочки вокруг частиц исчезают внутренние мениски, а с ними и капиллярные силы. Материалы высокопористого и волокнистого строения, способные поглощать много воды, характеризуются большой усадкой (древесина поперек волокон 30… 100 мм/м; ячеистый бетон 1…3 мм/м; кирпич керамический 0,03…0,1 мм/м; тяжелый бетон 0,3…0,7 мм/м; гранит 0,02…0,06 мм/м).

. Водостойкость — способность материала сохранять свою прочность при насыщении водой: Она оценивается коэффициентом размягчения КРАЗМ, который равен отношению предела прочности материала при сжатии в насыщенном водой состоянии RВ МПа, к пределу прочности сухого материала Rсух, МПа:

Для разных материалов КРАЗМ = 0…1. Так, глина при увлажнении не имеет прочности, ее КРАЗМ = 0. Металлы, стекло полностью сохраняют прочность в воде, для них КРАЗМ = 1 . Строительные материалы с коэффициентом размягчения меньше 0,8 не применяют во влажной среде.

Воздухостойкость — способность материала выдерживать циклические воздействия увлажнения и высушивания без заметных деформаций и потери механической прочности.

Многократное гигроскопическое увлажнение и высушивание вызывает в материале знакопеременные напряжения и со временем приводит к потере им несущей способности.

Влагоотдача — свойство, характеризующее скорость высыхания материала, при наличии соответствующих условий в окружающей среде (понижение влажности, нагрев, движение воздуха). Влагоотдача обычно характеризуется количеством воды, которое материал теряет в сутки при относительной влажности воздуха 60 % и температуре 20 °С. В естественных условиях вследствие влагоотдачи, через некоторое время после строительства, устанавливается равновесие между влажностью строительных конструкций и окружающей средой. Такое состояние равновесия называют воздушно-сухим (воздушно-влажным) состоянием.

Водопроницаемость — способность материала пропускать воду под давлением. Характеристикой водопроницаемости служит количество воды, прошедшее в течение 1 с через 1 м2 поверхности материала при заданном давлении воды. Для определения водопроницаемости используют различные устройства, позволяющие создавать нужное одностороннее давление воды на поверхность материала. Методика определения зависит от назначения и разновидности материала. Водопроницаем мость зависит от плотности и строения материала. Чем больше в материале пор и чем эти поры крупнее, тем больше его водопроницаемость.

При выборе стройматериалов для специальных целей (кровельные материалы, бетоны для гидротехнических сооружений, трубы и др.) чаще оценивают не водопроницаемость, а водонепроницаемость, характеризуемую периодом времени, по истечении которого появляются признаки просачивания воды под определенным давлением через образец испытуемого материала (кровельные материалы), или предельной величиной давления воды (Па), при котором вода не проходит через образец (например, бетон).

Паропроницаемость и газопроницаемость — способность материала пропускать через свою толщу водяной пар или газы (воздух). Паропроницаемость характеризуется коэффициентом паропроницаемости, численно равным количеству водяного пара, проникающего через слой материала толщиной 1 м, площадью 1 м2 в течение 1 с, и разностью парциальных давлений пара в 133,3 Па. Аналогичным коэффициентом оценивается и газопроницаемость (воздухопроницаемость). Эти характеристики определяются для комплексной оценки физических свойств строительного материала или при его специальном назначении. Материалы для стен жилых зданий должны обладать определенной проницаемостью (стена должна «дышать»), т. е. через наружные стены происходит естественная вентиляция. Наоборот, стены и покрытия влажных помещений необходимо защищать с внутренней стороны от проникновения в них водяного пара, особенно зимой, когда содержание пара внутри помещения значительно больше, чем снаружи, и пар, проникая в холодную зону ограждения, конденсируется, резко повышает влажность в этих местах. В ряде случаев необходима практически полная газонепроницаемость (емкости для хранения газов и др.).

Морозостойкость — свойство материала, насыщенного водой, выдерживать многократное попеременное замораживание и оттаивание без значительных признаков разрушения и снижения прочности. От морозостойкости в основном зависит долговечность материалов, применяемых в наружных зонах конструкций различных зданий и сооружений. Разрушение материала при таких циклических воздействиях связано с появлением в нем напряжений, вызванных как односторонним давлением растущих кристаллов льда в порах материала, так и всесторонним гидростатическим давлением воды, вызванным увеличением объема при образовании льда примерно на 9% ‘(плотность воды равна 1, а льда — 0,917). При этом давление на стенки пор может достигать при некоторых условиях сотен МПа. Очевидно, что при полном заполнении всех пор и капилляров пористого материала водой разрушение может наступить даже при однократном замораживании. Однако у многих пористых материалов вода не может заполнить весь объем доступных пор, поэтому образующийся при замерзании воды лед имеет свободное пространство для расширения. При насыщении пористого материала в воде в основном заполняются водой макрокапилляры, микрокапилляры при этом заполняются водой частично и служат резервными порами, куда отжимается вода в процессе замораживания.

При работе пористого материала в атмосферных условиях (наземные конструкции) водой заполняются в основном микрокапилляры за счет сорбции водяных паров из окружающего воздуха; крупные же поры и макрокапилляры являются резервными.. Следовательно, морозостойкость пористых материалов определяется величиной и характером пористости и условиями эксплуатации изготовленных из них конструкций. Она тем выше, чем меньше водопоглощение и больше прочность материала при растяжении. Учитывая неоднородность строения материала и неравномерность распределения в нем воды, удовлетворительную морозостойкость можно ожидать у пористых материалов, имеющих объемное водопоглощение не более 80 % объема пор (&н<0,8). Разрушение материала наступает только после многократного попеременного замораживания и оттаивания.

Морозостойкость характеризуется числом циклов попеременного замораживания при —15, —17 °С и оттаивания в воде при температуре около 20 °С. Выбор температуры замораживания не выше —15, —17 СС вызван тем, что при более высокой температуре вода, находящаяся в мелких порах и капиллярах, не может вся замерзнуть. Число циклов (марка), которые должен выдерживать материал, зависит от условий его будущей службы в сооружении, климатических условий и указывается в СНиПах и ГОСТах на материалы.

Материал считают выдержавшим испытание, если после заданного количества циклов замораживания и оттаивания потеря массы образцов в результате выкрашивания и расслаивания не превышает 5%, а прочность снижается не более чем на 15 % (для некоторых материалов на 25 %).

Для определения морозостойкости иногда используют ускоренный метод, например с помощью сернокислого натрия. Кристаллизация этой соли из насыщенных паров при ее высыхании в порах образцов воспроизводит механическое действие замерзающей воды, но в более сильной степени, так как образующиеся кристаллы крупнее (значительное увеличение объема). Один цикл таких испытаний приравнивается 5…10 и даже 20 циклам прямых испытаний замораживанием. С некоторым приближением о морозостойкости можно косвенно судить по величине коэффициента размягчения. Большое понижение прочности вследствие размягчения материала (больше 10 %) указывает, что в материале есть глинистые или другие размокающие частицы, что отрицательно сказывается и на морозостойкости материала.

Источник

Увлажнение
приводит к изменению многих свойств
материала: повышается масса строительной
конструкции, возрастает теплопроводность;
под влиянием расклинивающего действия
воды уменьшается прочность материала.
Для многих строительных материалов
влажность нормирована. Например,
влажность стеновых материалов – 5-7%,
воздушно-сухой древесины – 12-18%.

Гигроскопичностью
называется свойство капиллярно-пористого
материала поглощать водяной пар из
воздуха.

Степень
гигроскопичности зависит от количества
и величины пор в материале, его структуры,
температуры и относительной влажности
воздуха. Материалы с одинаковой
пористостью, но с более мелкими порами
обладают более высокой гигроскопичностью,
чем крупнопористые. Это отрицательно
сказывается на физико-механических
характеристиках материалов.

Например,
цемент при хранении поглощает из воздуха
водяные пары, теряет активность; древесина
при влажном воздухе разбухает, коробится,
образует трещины усушки, изменяются
форма и размеры деревянных изделий.

Водостойкость
– свойство материала сохранять в той
или иной мере свои прочностные свойства
при увлажнении. Числовой характеристикой
водостойкости служит отношение предела
прочности при сжатии материала в
насыщенном водой состоянии RH
к
пределу прочности при сжатии в сухом
состоянии RC.
Это отношение принято называть
коэффициентом размягчения.

Этот
коэффициент изменяется от 0 (полностью
размягчающиеся материалы) до величины,
близкой к 1. К водостойким относятся
строительные материалы, коэффициент
размягчения которых больше 0,8. Такие
материалы можно применять в сырых местах
без специальных мер по защите их от
увлажнения.

Водонепроницаемость
– свойство материалов не пропускать
через свою толщу воду под давлением.

Данное
свойство зависит от пористости, размера
и характера пор и оценивается по-разному
с учетом специфики условий эксплуатации
конкретного материала: для рулонных и
мастичных кровельных и гидроизоляционных
материалов – временем, по окончании
которого вода при определенном давлении
начинает просачиваться через образец,
для гидроизоляционных строительных
растворов и бетонов – односторонним
гидростатическим давлением, при котором
вода в стандартных условиях не проходит
через образец цилиндрической формы.

Водонепроницаемыми
являются плотные материалы (металлы,
битум, полимеры) и материалы с мелкими
замкнутыми порами (пенопласты).

На
стабильность структуры и свойств
материала заметное влияние оказывают
попеременное увлажнение и просыхание.
В жестких условиях находится тот
материал, который увлажняется при резких
температурных перепадах. Вода, поглощенная
материалом, особенно порами в поверхностном
слое, замерзает при переходе через
нулевую температуру с расширением на
9%. Чередующаяся кристаллизация льда в
порах с последующим оттаиванием приводит
к дополнительным внутренним напряжениям.
Могут возникнуть микро- и макротрещины
со снижением прочности, с возможным
разрушением структуры.

Соседние файлы в предмете Строительные материалы

  • #
  • #
  • #
  • #
  • #
  • #

Источник

Увлажнение приводит к изменению многих свойств материала: повышается масса строительной конструкции, возрастает теплопроводность; под влиянием расклинивающего действия воды уменьшается прочность материала. Для многих строительных материалов влажность нормирована. Например, влажность стеновых материалов – 5-7%, воздушно-сухой древесины – 12-18%.

Гигроскопичностью называется свойство капиллярно-пористого материала поглощать водяной пар из воздуха.

Степень гигроскопичности зависит от количества и величины пор в материале, его структуры, температуры и относительной влажности воздуха. Материалы с одинаковой пористостью, но с более мелкими порами обладают более высокой гигроскопичностью, чем крупнопористые. Это отрицательно сказывается на физико-механических характеристиках материалов.

Например, цемент при хранении поглощает из воздуха водяные пары, теряет активность; древесина при влажном воздухе разбухает, коробится, образует трещины усушки, изменяются форма и размеры деревянных изделий.

Водостойкость – свойство материала сохранять в той или иной мере свои прочностные свойства при увлажнении. Числовой характеристикой водостойкости служит отношение предела прочности при сжатии материала в насыщенном водой состоянии RH к пределу прочности при сжатии в сухом состоянии RC. Это отношение принято называть коэффициентом размягчения.

Этот коэффициент изменяется от 0 (полностью размягчающиеся материалы) до величины, близкой к 1. К водостойким относятся строительные материалы, коэффициент размягчения которых больше 0,8. Такие материалы можно применять в сырых местах без специальных мер по защите их от увлажнения.

Водонепроницаемость – свойство материалов не пропускать через свою толщу воду под давлением.

Данное свойство зависит от пористости, размера и характера пор и оценивается по-разному с учетом специфики условий эксплуатации конкретного материала: для рулонных и мастичных кровельных и гидроизоляционных материалов – временем, по окончании которого вода при определенном давлении начинает просачиваться через образец, для гидроизоляционных строительных растворов и бетонов – односторонним гидростатическим давлением, при котором вода в стандартных условиях не проходит через образец цилиндрической формы.

Водонепроницаемыми являются плотные материалы (металлы, битум, полимеры) и материалы с мелкими замкнутыми порами (пенопласты).

На стабильность структуры и свойств материала заметное влияние оказывают попеременное увлажнение и просыхание. В жестких условиях находится тот материал, который увлажняется при резких температурных перепадах. Вода, поглощенная материалом, особенно порами в поверхностном слое, замерзает при переходе через нулевую температуру с расширением на 9%. Чередующаяся кристаллизация льда в порах с последующим оттаиванием приводит к дополнительным внутренним напряжениям. Могут возникнуть микро- и макротрещины со снижением прочности, с возможным разрушением структуры.

5. Морозостойкость и водонепроницаемость, способы их определения.

На стабильность структуры и свойств материала заметное влияние оказывают попеременное увлажнение и просыхание. В жестких условиях находится тот материал, который увлажняется при резких температурных перепадах. Вода, поглощенная материалом, особенно порами в поверхностном слое, замерзает при переходе через нулевую температуру с расширением на 9%. Чередующаяся кристаллизация льда в порах с последующим оттаиванием приводит к дополнительным внутренним напряжениям. Могут возникнуть микро- и макротрещины со снижением прочности, с возможным разрушением структуры.

Свойство материала, насыщенного водой, выдерживать многократные попеременные (циклические) замораживание и оттаивание без значительных технических повреждений и ухудшения свойств называется морозостойкостью.

Материал считают выдержавшим испытание, если после заданного количества циклов замораживания и оттаивания потеря массы образцов не превышает 5%, а прочность снижается не более чем на 20%.

Обычно образцы, насыщенные водой замораживают в специальных морозильных камерах при температуре 180C, а оттаивание в воде при комнатной температуре. Могут применяться и ускоренные методы испытания на морозостойкость с помощью сернокислого натрия.

Марка по морозостойкости (F 10, F 15 …… F 500) характеризуется числом циклов замораживания и оттаивания, которое выдержал материал, при допустимом снижении прочности или уменьшении массы образцов.

Водонепроницаемость строительного раствора важна для наружных штукатурок зданий, стяжек на балконах, подстилающего слоя под керамическую плитку пола в ванной комнате, для специальных гидроизоляционных штукатурок и т. д. Поскольку затвердевший раствор содержит поры, следовательно, абсолютно водонепроницаемых растворов нет.
Принято считать водонепроницаемым раствор, пропускающий малое количество воды, которое полностью испаряется с его поверхности, не оставляя мокрых пятен. Чем раствор менее порист, чем он плотнее, тем он меньше пропускает воду. Для повышения водонепроницаемости при приготовлении в раствор вводят добавки— уплотняющие (жидкое стекло) и гидрофобизирующие (полимерные смолы, битум, церезит).



Источник