На каком свойстве хладагента основан принцип работы кондиционера

Принцип работы любого кондиционера основывается на физических свойствах жидкостей, которые поглощают тепло при испарении и выделять его при конденсации.

В качестве жидкости в кондиционере применяется хладагент (фреон), который изменяет свое агрегатное состояние в зависимости от температуры и давления в замкнутой системе.

Принцип работы сплит-ситемы

В первую очередь ознакомимся с основными элементами сплит-системы. Современные кондиционеры состоят из двух блоков: наружного и внутреннего.

Наружный блок

Как следует из названия, данный блок монтируется снаружи.

Наружный блок сплит-системы состоит из следующих основных узлов:

  • Вентилятор, обеспечивает воздушный поток для обдува конденсатора.
  • Конденсатор – представляет из себя радиатор, в котором происходит процесс охлаждения и конденсации фреона, воздушный поток проходящий через конденсатор забирает избыточное тепло и уходит в окружающую среду.
  • Компрессор, осуществляет сжатие хладагента и поддержание его движения по холодильному контуру.
  • Плата управления, как правило, устанавливается в инверторных сплит-системах. В моделях постоянной производительности (ON/OFF) всю электронику стараются размещать во внутреннем блоке.
  • Четырехходовой клапан входит в состав кондиционеров с функцией обогрева. При включении кондиционера на обогрев, этот клапан изменяет направление движения фреона, при этом внутренний и наружный блоки как бы меняются местами: внутренний блок работает на обогрев, а наружный на охлаждение.
  • Штуцерные соединения для подключения трассы (медных трубок), соединяющих между собой наружный и внутренний блоки.
  • Фильтр фреоновой системы устанавливается перед входом компрессора и способствует защите его от частиц грязи.
  • Защитная крышка, закрывающая штуцерные соединения и электрические разъемы.

Внутренний блок

Данный блок устанавливается непосредственно в помещении.

Внутренний блок состоит из следующих основных узлов:

  • Передняя панель – это пластиковая решетка, через которую внутрь блока поступает воздух. Данная панель легко снимается для планового обслуживания кондиционера.
  • Фильтр грубой очистки, представляющий пластиковую сетку. Он предназначен для фильтрации воздуха от крупной пыли, шерсти животных пуха и т.п. Для нормальной работы кондиционера фильтр необходимо чистить 2 раза в месяц.
  • Система фильтров состоит из различных фильтров тонкой очистки воздуха, среди которых обычно бывают: катехиновый, электростатический, антибактериальные и т.п.
  • Вентилятор, предназначен для циркуляции очищенного воздуха в помещении.
  • Испаритель – представляет из себя радиатор (теплообменник), в котором происходит нагрев холодного хладагента и его испарение. Проходящий через радиатор воздух, отдает тепло, и в охлажденным подается в помещение.
  • Жалюзи, предназначены для регулировки направления воздушного потока. Эти жалюзи имеют электропривод,  их положение может регулироваться с пульта дистанционного управления. Кроме этого, жалюзи могут автоматически совершать колебательные движения для равномерного распределения воздушного потока по помещению.
  • Индикаторная панель состоит из индикаторов, показывающих, в каком режиме работы кондиционера и сигнализирующие об ошибках.
  • Плата управления, на которой размещен блок электроники с центральным микропроцессором.
  • Штуцерные соединения, расположены в нижней задней части внутреннего блока. К ним подключаются медные трубки (трасса), соединяющие между собой наружный и внутренний блоки.

Чтобы охладить воздух в комнате, необходимо отвести тепло, полученное в результате охлаждения. Тепло – это энергия. А энергия, как известно, не может исчезнуть бесследно. Именно поэтому кондиционер состоит из двух блоков: внутреннего и наружного. Существуют также одноблочные системы охлаждения, которые отводят тепло по выведенному наружу воздухопроводу.

Принцип работы бытовой сплит-системы

Как работает кондиционер

Принцип работы кондиционера построен на переносе тепла из помещения на улицу. Кондиционеры Fujitsu могут работать как в режиме охлаждения, так и в режиме обогрева.

Для переноса тепловой энергии кондиционер потребляет электроэнергию. Но следует отметить, что кондиционер переносит приблизительно в три раза больше энергии, чем потребляет. Электроэнергия необходима для работы компрессора, который создавая перепады давления, доставляет хладагент то испарятся до конденсатора.

Режим охлаждения

При включении кондиционера хладагент в газообразном виде под низким давлением подается в компрессор, где происходит сжатие, при этом хладагент нагревается до +70–90 o C, после чего подается в конденсатор. В воздушном теплообменнике наружного блока происходит конденсация хладагента — переход из газообразного состояния в жидкое. Этот процесс сопровождается охлаждением хладагента и выделением тепла, которое при помощи обдува вентилятора, отводится в окружающую среду. Проходя через каппилярную трубку, хладагент дросселируется. В теплообменнике испарителя весь процесс происходит уже в обратном порядке, хладагент из жидкого состояния переходит  в газообразное. При этом выделяется холод и поглощается тепло из помещения, где установлен внутренний блок.

Режим обогрева

При работе кондиционера необходим отвод тепла от конденсатора. В бытовых кондиционерах постоянной производительности это тепло отводится за пределы помещения. Современные модели инверторных кондиционеров позволяют использовать это тепло для режима обогрева помещений.

Источник

Основные понятия, связанные с работой холодильной машины

Охлаждение в кондиционерах производится за счет поглощения тепла при кипении жидкости. Когда мы говорим о кипящей жидкости, мы, естественно, думаем, что она горячая. Однако это не совсем верно.

Во-первых, температура кипения жидкости зависит от давления окружающей среды. Чем выше давление, тем выше температура кипения, и наоборот: чем ниже давление, тем ниже температура кипения. При нормальном атмосферном давлении, равном 760 мм рт.ст. (1 атм), вода кипит при плюс 100°С, но если давление пониженное, как например в горах на высоте 7000-8000 м, вода начнет кипеть уже при температуре плюс 40-60°С.

Во-вторых, при одинаковых условиях разные жидкости имеют различные температуры кипения.

Например, хладагент R-410А, широко используемый в холодильной технике, при нормальном атмосферном давлении имеет температуру кипения – 51°С.

Если жидкий хладагент находится в открытом сосуде, то есть при атмосферном давлении и температуре окружающей среды, то он немедленно вскипает, поглощая при этом большое количество тепла из окружающей среды или любого материала, с которым находится в контакте. В холодильной машине хладагент кипит не в открытом сосуде, а в специальном теплообменнике, называемом испарителем. При этом кипящий в трубках испарителя хладагент активно поглощает тепло от воздушного потока, омывающего наружную, как правило, оребренную поверхность трубок.

Рассмотрим процесс конденсации паров жидкости на примере хладагента R-410А. Температура конденсации паров хладагента, так же, как и температура кипения, зависит от давления и температуры окружающей среды. Чем выше давление и температура, тем выше температура конденсации. Так, например, конденсация паров хладагента R-410А при давлении 23,5 bar начинается уже при температуре плюс 40°С. Процесс конденсации паров хладагента, как и любой другой жидкости, сопровождается выделением большого количества тепла в окружающую среду или, применительно к холодильной машине, передачей этого тепла потоку воздуха или жидкости в специальном теплообменнике, называемом конденсатором.

Естественно, чтобы процесс кипения хладагента в испарителе и охлаждения воздуха, а также процесс конденсации и отвод тепла в конденсаторе были непрерывными, необходимо постоянно “подливать” в испаритель жидкий хладагент, а в конденсатор постоянно подавать пары хладагента. Такой непрерывный процесс (цикл) осуществляется в холодильной машине.

Наиболее обширный класс холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются компрессор, испаритель, конденсатор и регулятор потока (капиллярная трубка, ТРВ, ЭРВ), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента (фреона) осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагнетания) высокое давление порядка 23,5 bar.

Теперь, когда рассмотрены основные понятия, связанные с работой холодильной машины, перейдем к более подробному рассмотрению схемы компрессионного цикла охлаждения, конструктивному исполнению и функциональному назначению отдельных узлов и элементов.

Схема компрессионного цикла охлаждения

Рис. 1. Схема компрессионного цикла охлаждения

Кондиционер – это та же холодильная машина, предназначенная для тепловой обработки воздушного потока. Кроме того, кондиционер обладает существенно большими возможностями, более сложной конструкцией и многочисленными дополнительными опциями. Обработка воздуха предполагает придание ему определенных кондиций, таких как температура и влажность, а также направление движения и подвижность (скорость движения). Остановимся на принципе работы и физических процессах, происходящих в холодильной машине (кондиционере). Охлаждение в кондиционере обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация – при высоком давлении и высокой температуре. Принципиальная схема компрессионного цикла охлаждения показана на рис. 1.

Начнем рассмотрение работы цикла с выхода испарителя (участок 1-1). Здесь хладагент находится в парообразном состоянии с низким давлением и температурой.

Парообразный хладагент всасывается компрессором, который повышает его давление до 23,5 bar и температуру до плюс 70-90°С (участок 2-2).

Далее в конденсаторе горячий парообразный хладагент охлаждается и конденсируется, то есть переходит в жидкую фазу. Конденсатор может быть либо с воздушным, либо с водяным охлаждением в зависимости от типа холодильной системы.

На выходе из конденсатора (точка 3) хладагент находится в жидком состоянии при высоком давлении. Размеры конденсатора выбираются таким образом, чтобы газ (хладагент) полностью сконденсировался внутри конденсатора. Поэтому температура жидкости на выходе из конденсатора оказывается несколько ниже температуры конденсации. Переохлаждение в конденсаторах с воздушным охлаждением обычно составляет примерно плюс 4-7°С.

При этом температура конденсации примерно на 10-20°С выше температуры атмосферного воздуха.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается (примерно в три раза), часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости (точка 4).

Парожидкостной хладагент кипит в испарителе, отбирая тепло от окружающего воздуха, и вновь переходит в парообразное состояние.

Размеры испарителя выбираются таким образом, чтобы жидкость полностью испарилась внутри испарителя. Поэтому температура пара на выходе из испарителя оказывается выше температуры кипения, происходит так называемый перегрев хладагента в испарителе. В этом случае даже самые маленькие капельки хладагента испаряются и в компрессор не попадает жидкость. Следует отметить, что в случае попадания жидкого хладагента в компрессор, так называемого “гидравлического удара”, возможны повреждения и поломки клапанов и других деталей компрессора.

Перегретый пар выходит из испарителя (точка 1), и цикл возобновляется.

Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот.

Все компрессионные циклы холодильных машин включают два определенных уровня давления. Граница между ними проходит через нагнетательный клапан на выходе компрессора с одной стороны и выход из регулятора потока (из капиллярной трубки, ТРВ, ЭРВ) с другой стороны.

Нагнетательный клапан компрессора и выходное отверстие регулятора потока являются разделительными точками между сторонами высокого и низкого давлений в холодильной машине.

На стороне высокого давления находятся все элементы, работающие при давлении конденсации.

На стороне низкого давления находятся все элементы, работающие при давлении испарения.

Несмотря на то, что существует много типов компрессионных холодильных машин, принципиальная схема цикла в них практически одинакова.

Теоретический и реальный цикл охлаждения.

Риc. 2. Диаграмма давления и теплосодержания

Цикл охлаждения можно представить графически в виде диаграммы зависимости абсолютного давления и теплосодержания (энтальпии). На диаграмме (рис. 2) представлена характерная кривая отображающая процесс насыщения хладагента.

Левая часть кривой соответствует состоянию насыщенной жидкости, правая часть – состоянию насыщенного пара. Две кривые соединяются в центре в так называемой “критической точке”, где хладагент может находиться как в жидком, так и в парообразном состоянии. Зоны слева и справа от кривой соответствуют переохлажденной жидкости и перегретому пару. Внутри кривой линии помещается зона, соответствующая состоянию смеси жидкости и пара.

Рис. 3. Изображение теоретического цикла сжатия на диаграмме «Давление и теплосодержание»

Рассмотрим схему теоретического (идеального) цикла охлаждения с тем, чтобы лучше понять действующие факторы (рис. 3).

Рассмотрим наиболее характерные процессы, происходящие в компрессионном цикле охлаждения.

Сжатие пара в компрессоре.

Холодный парообразный насыщенный хладагент поступает в компрессор (точка С`). В процессе сжатия повышаются его давление и температура (точка D). Теплосодержание также повышается на величину, определяемую отрезком НС`-HD, то есть проекцией линии C`-D на горизонтальную ось.

Конденсация.

В конце цикла сжатия (точка D) горячий пар поступает в конденсатор, где начинается его конденсация и переход из состояния горячего пара в состояние горячей жидкости. Этот переход в новое состояние происходит при неизменных давлении и температуре. Следует отметить, что, хотя температура смеси остается практически неизменной, теплосодержание уменьшается за счет отвода тепла от конденсатора и превращения пара в жидкость, поэтому он отображается на диаграмме в виде прямой, параллельной горизонтальной оси.

Процесс в конденсаторе происходит в три стадии: снятие перегрева (D-E), собственно конденсация (Е-А) и переохлаждение жидкости (А-А`).

Рассмотрим кратко каждый этап.

Снятие перегрева (D-E).

Это первая фаза, происходящая в конденсаторе, и в течение ее температура охлаждаемого пара снижается до температуры насыщения или конденсации. На этом этапе происходит лишь отъем излишнего тепла и не происходит изменение агрегатного состояния хладагента.

На этом участке снимается примерно 10-20% общего теплосъема в конденсаторе.

Конденсация (Е-А).

Температура конденсации охлаждаемого пара и образующейся жидкости сохраняется постоянной на протяжении всей этой фазы. Происходит изменение агрегатного состояния хладагента с переходом насыщенного пара в состояние насыщенной жидкости. На этом участке снимается 60-80% теплосъема.

Переохлаждение жидкости (А-А`).

На этой фазе хладагент, находящийся в жидком состоянии, подвергается дальнейшему охлаждению, в результате чего его температура понижается. Получается переохлажденная жидкость (по отношению к состоянию насыщенной жидкости) без изменения агрегатного состояния.

Переохлаждение хладагента дает значительные энергетические преимущества: при нормальном функционировании понижение температуры хладагента на один градус соответствует повышению мощности холодильной машины примерно на 1% при том же уровне энергопотребления.

Количество тепла, выделяемого в конденсаторе.

Участок D-A` соответствует изменению теплосодержания хладагента в конденсаторе и характеризует количество тепла, выделяемого в конденсаторе.

Регулятор потока (А`-B).

Переохлажденная жидкость с параметрами в точке А` поступает на регулятор потока (капиллярную трубку или терморегулирующий расширительный клапан), где происходит резкое снижение давления. Если давление за регулятором потока становится достаточно низким, то кипение хладагента может происходить непосредственно за регулятором, достигая параметров точки В.

Испарение жидкости в испарителе (В-C).

Смесь жидкости и пара (точка В) поступает в испаритель, где она поглощает тепло от окружающей среды (потока воздуха) и переходит полностью в парообразное состояние (точка С). Процесс идет при постоянной температуре, но с увеличением теплосодержания.

Как уже говорилось выше, парообразный хладагент несколько перегревается на выходе испарителя. Главная задача фазы перегрева (С-С`) – обеспечение полного испарения остающихся капель жидкости, чтобы в компрессор поступал только парообразный хладагент. Для этого требуется повышение площади теплообменной поверхности испарителя на 2-3% на каждые 0,5°С перегрева. Поскольку обычно перегрев соответствуют 5-8°С, то увеличение площади поверхности испарителя может составлять около 20%, что безусловно оправдано, так как увеличивает эффективность охлаждения.

Количество тепла, поглощаемого испарителем.

Участок HB-НС` соответствует изменению теплосодержания хладагента в испарителе и характеризует количество тепла, поглощаемого испарителем.

Реальный цикл охлаждения.

Рис. 4. Изображение цикла реального сжатия на диаграмме «Давление-теплосодержание»
C`L: потеря давления при всасывании
MD: потеря давления при выходе
HDHC`: теоретический термический эквивалент сжатия
HD`HC`: реальный термический эквивалент сжатия
C`D: теоретическое сжатие
LM: реальное сжатие

В действительности в результате потерь давления, возникающих на линии всасывания и нагнетания, а также в клапанах компрессора, цикл охлаждения отображается на диаграмме несколько иным образом (рис. 4).

Из-за потерь давления на входе (участок C`-L) компрессор должен производить всасывание при давлении ниже давления испарения.

С другой стороны, из-за потерь давления на выходе (участок М-D`), компрессор должен сжимать парообразный хладагент до давлений выше давления конденсации.

Необходимость компенсации потерь увеличивает работу сжатия и снижает эффективность цикла.

Помимо потерь давления в трубопроводах и клапанах, на отклонение реального цикла от теоретического влияют также потери в процессе сжатия.

Во-первых, процесс сжатия в компрессоре отличается от адиабатического, поэтому реальная работа сжатия оказывается выше теоретической, что также ведет к энергетическим потерям.

Во-вторых, в компрессоре имеются чисто механические потери, приводящие к увеличению потребной мощности электродвигателя компрессора и увеличению работы сжатия.

В третьих, из-за того, что давление в цилиндре компрессора в конце цикла всасывания всегда ниже давления пара перед компрессором (давления испарения), также уменьшается производительность компрессора. Кроме того, в компрессоре всегда имеется объем, не участвующий в процессе сжатия, например, объем под головкой цилиндра.

Оценка эффективности цикла охлаждения

Эффективность цикла охлаждения обычно оценивается коэффициентом полезного действия или коэффициентом термической (термодинамической) эффективности.

Коэффициент эффективности может быть вычислен как соотношение изменения теплосодержания хладагента в испарителе (НС-НВ) к изменению теплосодержания хладагента в процессе сжатия (НD-НС).

Фактически он представляет собой соотношение холодильной мощности и электрической мощности, потребляемой компрессором.

Причем он не является показателем производительности холодильной машины, а представляет собой сравнительный параметр при оценке эффективности процесса передачи энергии. Так, например, если холодильная машина имеет коэффициент термической эффективности, равный 2,5, то это означает, что на каждую единицу электроэнергии, потребляемую холодильной машиной, производится 2,5 единицы холода.

Источник