На каком свойстве металлов основано изготовление сплавов

На чтение 5 мин.
Металлические изделия и детали используются в разных сферах промышленности. Существует множество видов металлов и каждый из них обладает сильными и слабыми сторонами. При изготовлении деталей для машин, самолётов или промышленного оборудования мастера обращают внимание на характеристики материала. Поэтому требуется знать свойства металлов и сплавов.
Свойства металлов и сплавов
У металлов есть признаки, которые их характеризуют:
- Высокие показатели теплопроводности. Металлические материалы хорошо проводят электричество.
- Блеск на изломе.
- Ковкость.
- Кристаллическая структура.
Не все материалы прочные и обладают высокими показателя износоустойчивости. Это же касается плавления при высоких температурах.
Классификация металлов
Металлы разделяются на две большие группы — черные и цветные. Представители обоих видов различаются не только характеристиками, но и внешним видом.
Черные
Представители этой группы считаются самыми распространёнными и недорогими. В большинстве своем имеют серый или тёмный цвет. Плавятся при высокой температуре, обладают высокой твердостью и большой плотностью. Главный представитель этой группы — железо. Эта группа разделяется на подгруппы:
- Железные — к представителям этой подгруппы относится железо, никель и кобальт.
- Тугоплавкие — сюда входят металлы температура плавления которых начинается с 1600 градусов. Их применяют при создании основ для сплавов.
- Редкоземельные — к ним относятся церий, празеодим и неодим. Обладают низкой прочностью.
Существуют урановые и щелочноземельные металлы, однако они менее популярны.
Цветные
Представители этой группы отличаются яркой окраской, меньшей прочностью, твердостью и температурой плавления (не для всех). Разделяется эта группа на следующие подгруппы:
- Лёгкие — подгруппа, включающая в себя металлы с плотностью до 5000 кг/м3. Это такие материалы, как литий, натрий, калий, магний и другие.
- Тяжёлые — сюда относится серебро, медь, свинец и другие. Плотность превышает 5000 кг/м3.
- Благородные — представили этой подгруппы имеют высокую стоимость и устойчивость к коррозийным процессам. К ним относятся золото, палладий, иридий, платина, серебро и другие.
Выделяются тугоплавкие и легкоплавкие металлы. К тугоплавким относится вольфрам, молибден и ниобий, а к легкоплавким все остальные.
Основные виды сплавов
Человечество знакомо с различными металлическими сплавами. Самыми многочисленными из них являются соединения на основе железа. К ним относятся ферриты, стали и чугун. Ферриты имеют магнитные свойства, в чугуне содержится более 2,4% углерода, а сталь — это материал с высокой прочность и твердостью.
Отдельное внимания требуют металлические сплавы из цветных металлов.
Производство стали
Цинковые сплавы
Соединения металлов, которые плавятся при низких температурах. Смеси на основе цинка устойчивы к воздействию коррозийных процессов. Легко обрабатываются.
Алюминиевые сплавы
Популярность алюминий и сплавы на его основе получили во второй половине 20 века. Этот материал обладает такими преимуществами:
- Устойчивость к низким температурам.
- Электропроводность.
- Малый вес заготовок в сравнении с другими металлами.
- Износоустойчивость.
Однако нельзя забывать про то, что алюминий плавится при низких температурах. При температуре около 200 градусов характеристики ухудшаются.
Алюминий применяется при изготовлении комплектующих к машинам, производстве деталей для самолётов, составляющих промышленного оборудования, посуды, инструментов. Не многие знают, что алюминий популярен в сфере производства оружия. Связано это с тем, что детали из алюминия не искрят при сильном трении.
Чтобы увеличить прочность детали, алюминий смешивают с медью. Чтобы заготовка выдерживала давление — с марганцем. Кремний добавляют, чтобы получить обычную отливку.
Медные сплавы
Сплавы на основе меди — марки латуни. Из этого материала изготавливаются детали высокой точности, так как латунь легко обрабатывать. В составе сплава может содержаться до 45% цинка.
Свойства сплавов
Чтобы изготавливать детали и конструкции, нужно знать основные свойства металлов и сплавов. При неправильной обработке готовая деталь может быстро выйти из строя и разрушить оборудование.
Двигатель внутреннего сгорания
Физические свойства
Сюда относятся визуальные параметры и характеристики материала, изменяющиеся при обработке:
- Теплопроводность. От этого зависит насколько поверхность будет передавать тепло при нагревании.
- Плотность. По этому параметру определяется количество материла, которое содержится в единице объёма.
- Электропроводность. Возможность металла проводить электрический ток. Этот параметр называется электрическое сопротивление.
- Цвет. Этот визуальный показатель меняется под воздействием температур.
- Прочность. Возможность материала сохранять структуру при обработке. Сюда же относится твердость. Эти показатели относятся и к механическим свойствам.
- Восприимчивость к действию магнитов. Это возможность материала проводить через себя магнитные лучи.
Физические основы позволяют определить в какой сфере будет использоваться материал.
Химические свойства
Сюда относятся возможности материала противостоять воздействию химических веществ:
- Устойчивость к коррозийным процессам. Этот показатель определяет на сколько материал защищён от воздействия воды.
- Растворимость. Устойчивость металла к воздействию растворителей — кислотам или щелочным составам.
- Окисляемость. Параметр указывает на выделение оксидов металлом при его взаимодействии с кислородом.
Обуславливаются эти характеристики химическим составом материала.
Механические свойства
Механические свойства металлов и сплавов отвечают за целостность структуры материала:
- прочность;
- твердость;
- пластичность;
- вязкость;
- хрупкость;
- устойчивость к механическим нагрузкам.
Технологические свойства
Технологические свойства определяют способность металла или сплава изменяться при обработке:
- Ковкость. Обработка заготовки давлением. Материал не разрушается. Структура изменяется.
- Свариваемость. Восприимчивость детали к работе сварочным оборудованием.
- Усадка. Происходит этот процесс при охлаждении заготовки после её разогрева.
- Обработка режущим инструментом.
- Ликвация (затвердевание жидкого металла при понижении температуры).
Основной способ обработки металлических деталей — нагревание.
Свойства металлов и сплавов отвечают за то, как себя будет вести готовое изделие при эксплуатации. При обработке материалов также важно знать его характеристики.
Источник
Слово “металл” восходит к греческому корню «металлон», означающему «рудник». Действительно, многие металлы встречаются в природе в виде руд, содержащих один или несколько минералов. Минералы, содержащие металлы, называют рудными, а все остальные – пустой породой. Железные руды содержат магнитный железняк – магнетит $mathrm{Fe_3O_4}$ или красный железняк – гематит $mathrm{Fe_2O_3}$, алюминиевые – корунд $mathrm{Al_2O_3}$ или боксит $mathrm{AlOOH}$, медные – медный блеск $mathrm{Cu_2S}$ или медный колчедан $mathrm{CuFeS_2}$. Извлечением металлов из руд занимается особая наука – металлургия.
Металлургия
Определение
Науку о промышленных способах получения металлов из природного сырья называют металлургией.
Такое же название носит и отрасль промышленности, занимающаяся добычей и производством металлов. Различают черную (производство железа и его сплавов) и цветную металлургию (производство всех других металлов, кроме железа).
Определение
Пирометаллургией называют процессы восстановления металлов из руд, проводимые при высоких температурах.
Она включает восстановление оксидов активными металлами (алюминием – алюмотермия, магнием – магнийтермия), углем, водородом. Методами пирометаллургии получают цинк, олово, свинец, железо, хром, титан, молибден и многие другие металлы.
ВОССТАНОВЛЕНИЕ ОКСИДОВ МЕТАЛЛОВ
Из оксидов и некоторых солей металлы выделяют восстановлением. В качестве восстановителя чаще всего используют уголь (карботермия):
$ZnO + C xrightarrow[]{t, ^circ C}Zn + CO$
Некоторые металлы восстанавливают действием водорода (водородотермия). Так в промышленности получают тугоплавкие металлы – молибден и вольфрам:
$MoO_3 + 3H_2 xrightarrow[]{t, ^circ C}Mo + 3H_2O$
Иногда в качестве восстановителя используют другой, более активный металл, например, кальций или алюминий (алюмотермия):
$2Al + Fe_2O_3 xrightarrow[]{t, ^circ C} 2Fe + Al_2O_3$
Если металл встречается в природе в виде соединений с серой, первоначально их переводят в оксиды путем обжига – нагревания на воздухе или в кислороде:
$ 2ZnS + 3O_2 xrightarrow[]{t, ^circ C} 2ZnO + 2SO_2$
Карбонатные породы переводят в оксиды нагреванием:
$BaCO_3 xrightarrow[]{t, ^circ C} BaO + CO_2$
Определение
Гидрометаллургия охватывает методы получения металлов из растворов их солей путем электролиза растворов или вытеснением более активным металлом.
Так производят медь, кадмий, извлекают золото и серебро.
Определение
Электрометаллургия занимается получением металлов при помощи электролиза расплавов.
Этим способом получают активные металлы – алюминий, натрий, кальций.
Способ получения данного металла выбирают исходя из его химической активности, а также из типа соединений, в виде которых он встречается в природе.
Электролиз
Электролиз является еще одним распространенным способом производства металлов (подробнее см. тему “Электролиз расплавов и растворов”). Многие активные металлы (натрий, кальций, алюминий) получают электролизом расплавленных солей или оксидов. Малоактивные металлы, например, медь, выделяют при пропускании электрического тока через водные растворы их солей:
$2CuSO_4 + 2H_2O xrightarrow[]{textrm{эл.ток}} 2Cu + 2H_2SO_4 + O_2$
Электролиз используют также для очистки металлов (электролитическое рафинирование).
Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов 1 в электролизер 3. При пропускании тока металл, подлежащий очистке 1, подвергается анодному растворению, то есть переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде 2, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми 4, либо переходят в электролит и удаляются.
Большинство металлов переводят в слитки при помощи литья: расплавленный металл заливают в форму, где он и застывает. Однако наиболее тугоплавкие металлы, например, вольфрам, из которого делают нити накаливания элепктроламп, расплавить в печи необычайно трудно. Для получения их слитков применяют порошковую металлургию – особый метод, позволяющий избежать литья. Он основан на спекании предварительно спрессованного порошка металла при температуре выше 1000°C в атмосфере водорода. Затем через брусок из металла пропускают электрический ток, за счет чего он разогревается до температуры плавления, и при этом отдельные его зерна свариваются друг с другом. Полученное изделие подвергают горячей ковке и прокатке.
ПРОИЗВОДСТВО АЛЮМИНИЯ
По практической важности cреди металлов на втором месте после железа находится алюминий. Он почти в три раза легче стали, имеет высокую электропроводность, устойчив к коррозии. Из алюминия делают провода и конденсаторы, бытовую посуду, алюминиевая фольга является удобным оберточным материалом. Чистый алюминий – мягкий и пластичный, что ограничивает его применение в технике. Для увеличения твердости металл легируют магнием, медью, цинком, кремнием.
Так создают сплавы алюминия:
дуралюмин (алюминий-медь-магний),
магналий (алюминий-магний) и
силумин (алюминий-кремний), используемые в авиастроении, машиностроении, строительстве зданий.
Сырьем для производства алюминия служат бокситы, которые прокаливанием переводят в корунд. Алюминий подобно другим высоко активным металлам в промышленности алюминий получают электролизом расплава.
В качестве элеткролита используют расплавленную смесь корунда Al2O3 и криолита. Корпус электролизера, являющийся катодом, выполняют из стали. Анодом служат графитовые блоки, погруженные в реактор. Так как в ходе процесса выделяется кислород, они постепенно выгорают, восстанавливая его до угарного газа:
$2Al_2O_3 xrightarrow[]{960^circ C} 4Al + 3O_2$
$2C + O_2 = 2CO$
Плотность жидкого алюминия выше плотности расплава криолита, поэтому продукт собирается на дне электролизера, откуда его периодически выпускают и разливают в слитки. Производство алюминия относят к числу энергоемких, поэтому его размещают не рядом с местом добычи сырья, а вблизи источников дешевой электроэнергии.
Производство чугуна и стали
Сырьем для производства чугуна служат железная руда и кокс, то есть чистый углерод, полученный при коксовании каменного угля – его разложении без доступа воздуха (подробнее см. тему “Принципы переработки и применение горючих ископаемых”). В качестве железной руды обычно используют железняки – магнитный Fe3O4, красный Fe2O3, бурый Fe2O3×xH2O.
Выплавку чугуна производят в домнах – больших печах, высотой до 80 м, выложенных изнутри огнеупорным кирпичом, а сверху покрытых стальным кожухом. Сверху в доменную печь непрерывно загружают руду и кокс, а снизу подают горячий воздух, обогащенный кислородом. В основе получения железа из руды лежат реакции восстановления оксидов углем и угарным газом СО – продуктом его неполного окисления:
$Fe_2O_3 + 3C = 2Fe + 3CO$
$Fe_2O_3 + 3CO = 2Fe + 3CO_2$
В верхней части печи температура достигает 2000°C. В расплавленном железе, образовавшемся при восстановлении руды, растворяется углерод, частично взаимодействуя с ним с образованием карбида – цементита Fe3C. Так образуется чугун.
Для передела его в сталь излишний углерод необходимо выжечь – окислить кислородом. Это осуществляют в сталеплавильном цехе. Однако при пропускании кислорода через расплавленный чугун часть железа также окисляется кислородом до оксида:
$2Fe + O_2 = 2FeO$
Для обратного восстановления оксида железа(II) до металла в расплав вводят раскислители, как правило, это марганец, барий, кальций, лантан. Они и восстанавливают окислившееся железо:
$Mn + FeO = MnO + Fe$
а затем отделяются от расплава, всплывая на его поверхность в виде легкоплавких шлаков.
Рис.1.Схема производства чугуна и стали
Источник
Сплавы представляют собой вещества структурно однородные и содержащие в своем составе из двух или нескольких химических элементов в основном металлы. Базой для изготовления большинства сплавов используется до несколько металлических материалов с добавлением модифицирующих и легирующих примесей. Кроме того, сплав может содержать оставшиеся включения естественного, случайного и технологического происхождения.
В зависимости от технологии производства выделяют две категории сплавов:
1. Литые. Для их изготовления используется достаточно популярный метод – кристаллизация однородной консистенции на основе горячих частиц.
2. Сплавы порошковые. Формируются в результате воздействием пресса на смесь различных порошков, которые отправляются в специальную печь и проходят цикл высокотемпературной обработки. Для исходного сырья используют металлический порошок и нескольких химических соединений. К примеру, производство твердых сплавов подразумевает использование карбидов вольфрама или титана.
С учетом способа получения готового материала выделяют 2 разновидности сплавов:
1. Литейные (к ним относятся чугуны и силумины).
2. Деформируемые (порошковые сплавы и стальные).
В разных промышленных отраслях применяется множество подвидов сплавов – инструментальные, специальные, конструкционные. В зависимости от сфер применения их разделяют на несколько типов. К конструкционным сплавам относят чугунные заготовки, сталь, дюралюминий и составы с особыми свойствами, к примеру, антифрикционные характеристики и устойчивость к искрению.
Также в эту категорию входят такие материалы:
1. Латунь.
2. Бронза.
3. Сплавы для изготовления подшипников.
4. Баббит.
5. Сплавы для электронагревательного и измерительного оборудования.
6. Нихром.
7. Манганин.
8. Заготовки для производства режущих инструментов.
9. Победит.
Также для промышленных целей подходят устойчивые к коррозии, термостойкие, легкоплавкие, температурно-электрические, магнитные и аморфные сплавы. Количество разновидностей, которые используются в настоящее время достаточно большое и постоянно увеличивается. Сплавы классифицируют по двум признакам:
1. Материалы на базе железа.
2. Цветные сплавы металлов.
Ниже представлены самые популярные и важные сплавы для промышленного производства с основными сферами их эксплуатации.
Сталь.
Под сталью подразумевается соединение железа с углеродом (концентрация последнего составляет 2%). Из-за включении различных легирующих примесей как ванадий, хром или никель, стал приобретает легированные свойства.
Их всех существующих разновидностей сплавов по объемам поставок и производства, стали занимают ведущие места. Области их эксплуатации очень широкие, поэтому указать все сферы достаточно сложно.
Малоуглеродистые стали куда входит до 0,25% углерода, используются для конструкционных целей, а те, где процент значительно выше (от 0,55) применяются в производстве низкоскоростных режущих аппаратов, сверл и бритвенных лезвий. Легированные подвиды востребованы в машиностроительной отрасли и при изготовлении быстрорежущего оборудования.
Чугун.
Сплав железа с 2-4% углерода называется чугуном. Еще одним незаменимым элементом этого материала является кремний. Чугунные сплавы используются при изготовлении различной продукции с утилитарными функциями, к примеру, крышки канализационных люков, арматура трубопроводов, двигательные блоки цилиндров. Грамотно отлитое изделие обладает улучшенными механическими характеристиками.
Медные сплавы.
Эта категория сплавов представлена различными подвидами латуни, т.е. материалами на основе меди с включением от 5 до 45% цинка. Если к латуни добавляется от 5 до 20% цинка, ее называют красной (томпаком), а при концентрации цинка в пределах 20-36%, сплав получает название желтая латунь (альфа-латунь).
Данная разновидность широко востребована при изготовлении мелких деталей, которые нуждаются в особой обрабатываемости и точности.
Кроме того, для промышленных целей используют сплавы меди с добавлением алюминия, кремния и олова или бериллия.
К примеру, фосфористая и кремнистая бронза (сплав медный с добавлением кремнием) имеет отличные прочностные характеристики и используются при производстве мембран и пружин.
Свинцовые сплавы.
Незаменимые материалы для процесса пайки. В обычном припое содержится 1 часть свинца и 2 части олова. Металлический сплав востребован для пайки электропроводов и составляющих трубопроводов.
На основе сурьмяно-свинцовых сплавов изготавливают оболочки телефонных кабелей и пластины аккумулятора. Сплавы, использующие кадмий, олово и висмут, обладают точкой плавления, которая намного ниже показателя кипения жидкости (70°C). Из-за этой особенности их применяют при производстве клапанов противопожарного оборудования спринклерных систем.
Сплав пьютер, незаменим для изготовления декоративной кухонной утвари и ювелирных изделий, состоит на 85-90% из олова. Оставшаяся часть состава – свинец. Также свинец добавляют при разработке так называемых баббитов, которые являются подшипниковыми сплавами. В составе свинцовых сплавов также присутствует мышьяк, олово и сурьма.
Легкие сплавы.
В машиностроении востребованы легкие сплавы с улучшенными прочностными свойствами, устойчивостью к высоким температурам и механическим воздействиям. В качестве исходного сырья для изготовления материала используют бериллий, магний, титан и алюминий. Не все сплавы из магния и алюминия подходят для эксплуатации в высокотемпературной и агрессивной среде.
Алюминиевые сплавы.
В эту категорию входят литейные сплавы (алюминий и кремний), для литья под высоким давлением (магний и алюминий), и сплавы интенсивного закаливания высокой прочности на основе алюминия и меди.
Основным преимуществом алюминиевых сплавов является их невысокая стоимость и прочность при невысоких температурах, а также легкость обработки. Заготовку достаточно просто ковать, штамповать или использовать для волочения, экструдирования и глубокой вытяжки.
Материал легко поддаются сварке и обрабатывается при помощи металлорежущего оборудования. Эксплуатационные характеристики алюминиевых сплавов теряются при повышении температуры до 175°C. Но за счет формирования оксидной пленки на поверхности, они не боятся коррозийных процессов при нахождении в различных агрессивных условиях.
Сплав не плохо проводит электрическую энергию и тепло, характеризуется усиленными отражательными свойствами, немагнитностью и безвредностью для здоровья человека при взаимодействии с продуктами питания (изделия из алюминия не подвергаются появлению ржавчины, не имеют какого-либо цвета и вкуса). Кроме того, сплавы алюминия защищены от взрыва, т.к. они не образуют искр и могут подавлять энергию ударов.
За счет перечисленных особенностей алюминиевые сплавы широко применяются в автомобилестроении, вагоно- и самолетостроении, в строительстве, для монтажа линий электропередач высокого напряжения и в пищевой промышленности. Наличие незначительного количества железа в составе сплавов повышает запас прочности при высокотемпературном воздействии, но негативно сказывается на устойчивости к коррозии и пластичности при комнатной температуре.
Магниевые сплавы.
Данный тип сплавов отличается небольшим весом и прочностью, а еще улучшенными литейными свойствами. Обрабатывать материал достаточно легко методом резания. В связи с этим, магниевые сплавы нашли применение в ракето- и авиастроительной сферах, где их используют для производства двигателей, колес, корпусов, топливных баков и прочих комплектующих.
Отдельные разновидности сплавов характеризуются повышенным коэффициентом вязкостного демпфирования, из-за этих свойств их применяют при производстве движущихся элементов средств транспортных и составляющих конструкций, которые используются в условиях высоких вибраций.
Из недостатков магниевых сплавов выделяют мягкость, неустойчивость к износу и недостаточную пластичность. Однако заготовку легко формировать путем термической обработки. Кроме того, сплавы магния подходят для обработки газовой, электродуговой и контактной сварки. Для качественной защиты сплавов от коррозии их покрывают специальной оболочкой.
Титановые сплавы.
По эксплуатационным характеристикам титановые сплавы в разы лучше магниевых и алюминиевых, в области прочности и степени упругости. При увеличенной плотности они характеризуются особой стойкостью к механическим воздействиям, уступая только бериллиевым сплавам.
В составе титановых сплавов присутствует минимальная концентрация азота, углерода и кислорода, учитывая это они достаточно пластичны. За счет невысокой электрической проводимости и низкого коэффициента проводимости тепла, сплавы титана устойчивы к износу и истиранию, да и прочность их гораздо выше, чем у других из группы магниевых сплавов.
Ползучесть отдельных сортов при среднем напряжении достигает 90 МПа, оставаясь на этом уровне при нагреве до 600°C, что намного выше предельной отметки у магниевых и алюминиевых сплавов. Сохраняют ковкость сплавы с титаном до температуры 1150°С, поэтому для их обработки разрешено использование электродуговой сварки с инертным газом или точечной и шовной сварки.
Обрабатывать материал с помощью технологии резания неоправданно, что объясняется быстрым схватыванием режущего приспособления. Плавку сплавов титана выполняют в вакуумных условиях или управляемой атмосфере для исключения проблемы выброса врезных примесей кислорода и азота в среду окружающую.
Титановые сплавы, как известно широко применяются в космической и авиационной промышленности. На их основе производятся различные механизмы и детали, которые эксплуатируются в температурных пределах от 150 до 430°C. Также из титана изготовляются составляющие специализированного химического оборудования.
Из титано-ванадиевых сплавов разработана уникальная легкая броня для техники и кабин летчиков в боевых самолетах. А для изготовления реактивных двигателей и корпусов летательных аппаратов основным материалом является сплав алюминия, титана и ванадия.
Бериллиевые сплавы.
Имея прекрасную пластичность, бериллиевый сплав превосходит другие металлические сплавы по удельной прочности. Для его производства используется принцип добавления хрупких зерен бериллия в мягкую пластичную основу, например, в разогретое серебро.
Являясь материалом с низкой плотностью, бериллиевый сплав активно применяется при разработке систем наведения ракет. Модуль его упругости выше, чем у стали или бериллиевой бронзы, что позволяет использовать материал для производства пружин и контактов в электрических схемах.
В чистом виде сплав применяется в качестве замедлителя и отражателя нейтронов в ядерных реакторах. За счет возможности формирования защитной оксидной пленки, он сохраняет свои эксплуатационные показатели при воздействии высоких температур.
Основная сложность при обработке сплава связана с его токсичностью. Пары от разогретого бериллия способствуют развитию опасных проблем со здоровьем, включая заболевания органов дыхания и дерматит.
Металлические изделия на основе различных сплавов вы можете купить через наш сайт. Промышленная компания «Кварто» включает большое количество российских поставщиков металлопродукции из разных регионов. На складах нашего предприятия в Московской области хранится цветной и нержавеющий прокат, продукция из специализированных сплавов и сталей, а также уникальное сырье металлургической промышленности.
Кроме того, мы занимаемся резкой, литьем металла на основе предоставленных заказчиком чертежей и документации. В процессе производства предусматривается строгий контроль с применением ультразвукового и химического оборудования.
Источник