Основные свойства какого амина выражены слабее

Основные свойства какого амина выражены слабее thumbnail

Амины – органические соединения, продукты замещения атомов водорода в аммиаке NH3 различными углеводородными радикалами. Функциональная
группой аминов является аминогруппа – NH2.

Аминогруппа

Классификация аминов

По числу углеводородных радикалов амины подразделяются на первичные, вторичные и третичные.

Первичные, вторичные и третичные амины

Запомните, что основные свойства аминов выражены тем сильнее, чем больше электронной плотности присутствует на атоме азота. Однако, у третичных аминов три углеводородных радикала создают значительные затруднения для химических реакций.

Таким образом,
у третичных аминов основные свойства выражены слабее, чем у вторичных аминов. Основные свойства возрастают в ряду: третичные амины (слабые основные свойства) → первичные амины → вторичные амины (основные свойства хорошо выражены).

Основные свойства аминов

Номенклатура и изомерия аминов

Названия аминов формируются путем добавления суффикса “амин” к названию соответствующего углеводородного радикала: метиламин, этиламин,
пропиламин, изопропиламин, бутиламин и т.д. В случае если радикалов несколько, их перечисляют в алфавитном порядке.

Общая формула предельных аминов CnH2n+3N. Атомы углерода находятся в sp3 гибридизации.

Номенклатура аминов

Для аминов характерна структурная изомерия: углеродного скелета, положения функциональной группы и изомерия аминогруппы.

Изомерия аминов

Получение
  • Нагревание галогеналканов с аммиаком
  • В основе этой реакции лежит замещение атома галогена в галогеналканах на аминогруппу, при этом образуются амин и соль аммония.

    Получение аминов реакцией галогеналкана с аммиаком

  • Восстановление нитросоединений
  • При такой реакции нитрогруппа превращается в аминогруппу, образуется вода.

    Восстановление нитросоединений

    Знаменитой является предложенная в 1842 году Н.Н. Зининым реакция получения аминов восстановления ароматических нитросоединений (анилина
    и других). Она возможна в нескольких вариантах, главное, чтобы в начале реакции выделился водород.

    Реакция Зинина

  • Восстановление амидов
  • Реакция сопровождается разрушением карбонильной группы и отщеплении ее от молекулы амида в виде воды.

    Восстановление амидов

  • Восстановление нитрилов
  • Этим способом в промышленности получают гексаметилендиамин, используемый в изготовлении волокна – нейлон.

    Восстановление нитрилов

  • Реакция аммиака со спиртами
  • В промышленности амины получают реакцией аммиака со спиртами, в ходе которой происходит замещение гидроксогруппы на аминогруппу.

    Получение аминов реакцией спирта с аммиаком

  • Реакция галогеналканов с аминами
  • В ходе реакции галогеналканов с аммиаком, аминами, становится возможным получение первичных, вторичных и третичных аминов.

    Реакция галогеналканов с аминами

    Реакция галогеналканов с аминами

Химические свойства аминов
  • Основные свойства
  • Как и аммиак, амины обладают основными свойствами, их растворы окрашивают лакмусовую бумажку в синий цвет.

    В реакции с водой амины образуют гидроксиды алкиламмония, которые аналогичны гидроксиду аммония. Анилин с водой не реагирует, так как является слабым основанием.

    Реакция аминов с водой

    Как основания, амины вступают в реакции с различными кислотами и образуют соли алкиламмония.

    Реакции аминов с кислотами

  • Реакция с азотистой кислотой
  • Данная реакция помогает различить первичные, вторичные и третичные амины, которые по-разному с ней взаимодействуют.

    Реакции аминов с азотистой кислотой

  • Конденсация аминов с альдегидами и кетонами
  • При конденсации первичных аминов с альдегидами и кетонами получают основания Шиффа, соединения, которые содержат фрагмент “N=C”.

    Реакция аминов с альдегидами и кетонами

  • Разложение солей аминов
  • Соли аминов легко разлагаются щелочами (растворимыми основаниями). В результате образуется исходный амин, соль кислоты и вода.

    Разложение солей аминов щелочами

  • Горение аминов
  • При горении аминов азот чаще всего выделяется в молекулярном виде, так как для реакции азота с кислородом необходима очень высокая
    температура. Выделение углекислого газа и воды обыкновенно при горении органических веществ.

    4C2H5NH2 + 15O2 → 8CO2 + 14H2O + 2N2

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Амины – это органические производные аммиака NH3, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы.

R-NH2,   R1-NH-R2,   R1-N(R2)-R3

Атом азота находится в состоянии sp3-гибридизации, поэтому молекула имеет форму тетраэдра.

Также атом азота в аминах имеет неподелённую электронную пару, поэтому амины проявляют свойства органических оснований.

По количеству углеводородных радикалов, связанных с атомом азота, различают первичные, вторичные и третичные амины.

По типу радикалов амины делят на алифатические, ароматические и смешанные.

АминыПервичныеВторичныеТретичные
АлифатическиеМетиламин

CH3-NH2

Диметиламин

CH3-NH-CH3

Триметиламин

(CH3)3N

АроматическиеФениламин

C6H5-NH2

Дифениламин

(C6H5)2NH

Трифениламин

(C6H5)3N

СмешанныеМетилфениламин

CH3-NH-C6H5

Диметилфениламин

(CH3)2N-C6H5

  • Названия аминов образуют из названий углеводородных радикалов и суффикса амин. Различные радикалы перечисляются в алфавитном порядке.

При наличии одинаковых радикалов используют приставки ди и три.

CH3-NH2                   Метиламин                       

СH3CH2-NH2            Этиламин  

CH3-CH2-NH-CH3    Метилэтиламин  

 (CH3)2NH                 Диметиламин

  • Первичные амины могут быть названы как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы -NH2.

В этом случае аминогруппа указывается в названии приставкой  амино-:

1-Аминопропан1,3-Диаминобутан
CH3-CH2-CH2-NH2 NH2-CH2-CH2-CH(NH2) -CH3
  • Для смешанных аминов, содержащих алкильные и ароматические радикалы, за основу названия обычно берется название первого представителя ароматических аминов – анилин.

Например, N-метиланилин:

   Символ N- ставится перед названием алкильного радикала, чтобы показать, что этот радикал связан с атомом азота, а не является заместителем в бензольном кольце.

Для аминов характерна изомерия углеродного скелета, изомерия положения аминогруппы и изомерия различных типов аминов.

Изомерия углеродного скелета

Для   аминов характерна изомерия углеродного скелета (начиная с С4H9NH2).

Например. Формуле С4Н9NH2 соответствуют два амина-изомера углеродного скелета.

Изомерия положения аминогруппы

Для аминов характерна изомерия положения аминогруппы (начиная с С3H9N).

Например.Формуле С4Н11N соответствуют амины положения аминогруппы.

1-Аминобутан (н-бутиламин)

2-Аминобутан (втор-бутиламин)

Изомерия между типами аминов

Например. Формуле  С3Н9N соответствуют первичный, вторичный и третичный амины. 

Пропиламин

(первичный амин)

Метилэтиламин (вторичный амин)Триметиламин

(третичный амин)

При обычной температуре низшие алифатические амины CH3NH2, (CH3)2NH и (CH3)3N – газы (с запахом аммиака), средние гомологи – жидкости (с резким рыбным запахом), высшие – твердые вещества без запаха.      

Ароматические амины – бесцветные жидкости с высокой температурой кипения или твердые вещества.

Первичные и вторичные амины образуют слабые межмолекулярные водородные связи:

Это объясняет относительно более высокую температуру кипения аминов по сравнению с алканами с близкой молекулярной массой.

 Амины также способны к образованию водородных связей с водой:

Поэтому низшие амины хорошо растворимы в воде.

 С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается. Ароматические амины в воде не растворяются.

Амины имеют сходное с аммиаком строение и проявляют подобные ему свойства.

Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов:

Аммиак  :NH3

Первичный амин    R–:NH2

Поэтому амины и аммиак обладают свойствами оснований.

1. Основные свойства аминов

Алифатические амины являются более сильными основаниями, чем аммиак, а ароматические — более слабыми.

Это объясняется тем, что радикалы СН3–, С2Н5–  увеличивают электронную плотность на атоме азота:

Это приводит к усилению основных свойств.

Основные свойства аминов возрастают в ряду:

1.1. Взаимодействие с водой

В водном растворе амины обратимо реагируют с водой. Среда водного раствора аминов — слабощелочная:

Основные свойства какого амина выражены слабее

1.2. Взаимодействие с кислотами

Амины реагируют с кислотами, как минеральными, так и карбоновыми, и аминокислотами, образуя соли (или амиды в случае карбоновых кислот):

При взаимодействии аминов с многоосновными кислотами возможно образование кислых солей:

1.3. Взаимодействие с солями

Амины способны осаждать гидроксиды тяжелых металлов из водных растворов.

Например, при взаимодействии с хлоридом железа (II) образуется осадок гидроксида железа (II):

2. Окисление аминов

Амины сгорают в кислороде, образуя азот, углекислый газ и воду. Например, уравнение сгорания этиламина:

3. Взаимодействие с азотистой кислотой

Первичные алифатические амины при действии азотистой кислоты превращаются в спирты:

Это качественная реакция на первичные амины – выделение азота.

Вторичные амины (алифатические и ароматические) образуют нитрозосоединения — вещества желтого цвета:  

4. Алкилирование аминов

Первичные амины  способны взаимодействовать с галогеналканами с образованием соли вторичного амина:

Из полученной соли щелочью выделяют вторичный амин, который можно далее алкилировать до третичного амина.

Особенности анилина

Анилин С6H5-NH2 – это ароматический амин.

Анилин – бесцветная маслянистая жидкость с характерным запахом. На воздухе окисляется и приобретает красно-бурую окраску. Ядовит.  В воде практически не растворяется.

При 18 оС  в 100 мл воды растворяется 3,6г анилина. Раствор анилина не изменяет окраску индикаторов.

Видеоопыт изучения среды раствора анилина можно посмотреть здесь.

Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу.

  • Бензольное кольцо уменьшает основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком:

Анилин не реагирует с водой, но реагирует с сильными кислотами, образуя соли:

  • Бензольное кольцо в анилине становится более активным в реакциях замещения, чем у бензола.

Реакция с галогенами идёт без катализатора во все три орто- и пара- положения.

Качественная реакция на анилин: реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок ↓).

Основные свойства какого амина выражены слабее

Видеоопыт бромирования анилина можно посмотреть здесь.

Восстановление нитросоединений

Первичные амины можно получить восстановлением нитросоединений.

  • Гидрирование водородом:
  • Восстановление сульфидом аммония (реакция Зинина):
  • Алюминий или цинк в щелочной среде.

Алюминий и цинк реагируют с щелочами с образованием гидроксокомплексов.

В щелочной и нейтральной среде получаются амины.

Восстановлением нитробензола получают анилин.

  • Металлами в кислой среде – железом, оловом или цинком в соляной кислоте.

При этом образуются не сами амины, а соли аминов:

Амины из раствора соли  выделяют с помощью щелочи: 

Алкилирование аммиака и аминов

При взаимодействии аммиака с галогеналканами происходит образование соли первичного амина, из которой действием щелочи можно выделить сам первичный амин.

Если проводить реакцию с избытком аммиака, то сразу получится амин, а галогеноводород образует соль с аммиаком:

Гидрирование нитрилов

Таким образом получают первичные амины. Возможно восстановление нитрилов водородом на катализаторе:

.

Соли аминов

  • Соли аминов — это  твердые вещества без запаха, хорошо растворимые в воде, но не растворимые в органических растворителях (в отличие от аминов).
  • При действии щелочей на соли аминов выделяются свободные амины:

Видеоопыт взаимодействия хлорида диметиламмония с щелочью с образованием диметиламина можно посмотреть здесь.

  • Соли аминов вступают в обменные реакции в растворе:
  • Взаимодействие с аминами.

Соль амина с более слабыми основными свойствами может реагировать с другим амином, образуя новую соль (более сильные амины вытесняют менее сильные из солей):

Основные свойства какого амина выражены слабее

Источник

Амины

Амины – производные аммиака, в молекуле которого один, два или все три атома водорода замещены на углеводородные радикалы.

По количеству замещенных атомов водорода амины делят на:

По характеру углеводородных заместителей амины делят на

Общие особенности строения аминов

Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:

По этой причине у аминов как и у аммиака существенно выражены основные свойства.

Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:

Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота. Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом. В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н+.

Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком. Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается. В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.

Химические свойства предельных аминов

Как уже было сказано, амины обратимо реагируют с водой:

Водные растворы аминов имеют щелочную реакцию среды, вследствие диссоциации образующихся оснований:

Предельные амины реагируют с водой лучше, чем аммиак, ввиду более сильных основных свойств.

Основные свойства предельных аминов увеличиваются в ряду.

Вторичные предельные амины являются более сильными основаниями, чем первичные предельные, которые являются в свою очередь более сильными основаниями, чем аммиак. Что касается основных свойств третичных аминов, то то если речь идет о реакциях в водных растворах, то основные свойства третичных аминов выражены намного хуже, чем у вторичных аминов, и даже чуть хуже чем у первичных. Связано это со стерическими затруднениями, существенно влияющими на скорость протонирования амина. Другими словами три заместителя «загораживают» атом азота и мешают его взаимодействию с катионами H+.

Взаимодействие с кислотами

Как свободные предельные амины, так и их водные растворы вступают во взаимодействие с кислотами. При этом образуются соли:

Так как основные свойства предельных аминов сильнее выражены, чем у аммиака, такие амины реагируют даже со слабыми кислотами, например угольной:

Соли аминов представляют собой твердые вещества, хорошо растворимые в воде и плохо в неполярных органических растворителях. Взаимодействие солей аминов с щелочами приводит к высвобождению свободных аминов, аналогично тому как происходит вытеснение аммиака при действии щелочей на соли аммония:

2. Первичные предельные амины реагируют с азотистой кислотой с образованием соответствующих спиртов, азота N2 и воды. Например:

Характерным признаком данной реакции является образование газообразного азота, в связи с чем она является качественной на первичные амины и используется для их различения от вторичных и третичных. Следует отметить, что чаще всего данную реакцию проводят, смешивая амин не с раствором самой азотистой кислоты, а с раствором соли азотистой кислоты (нитрита) и последующим добавлением к этой смеси сильной минеральной кислоты. При взаимодействии нитритов с сильными минеральными кислотами образуется азотистая кислота, которая уже затем реагирует с амином:

Вторичные амины дают в аналогичных условиях маслянистые жидкости, так называемые N-нитрозаминами, но данная реакция в реальных заданиях ЕГЭ по химии не встречается. Третичные амины с азотистой кислотой взаимодействуют также как и с другими кислотами — с образованием соответствующих солей, в данном случае, нитритов.

Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:

Взаимодействие с галогеналканами

Примечательно, что абсолютно такая же соль получается при действии хлороводорода на более замещенный амин. В нашем случае, при взаимодействии хлороводорода с диметиламином:

Получение аминов:

1) Алкилирование аммиака галогеналканами:

В случае недостатка аммиака вместо амина получается его соль:

2) Восстановление металлами (до водорода в ряду активности) в кислой среде:

с последующей обработкой раствора щелочью для высвобождения свободного амина:

3) Реакция аммиака со спиртами при пропускании их смеси через нагретый оксид алюминия. В зависимости от пропорций спирт/амин образуются первичные, вторичные или третичные амины:

Химические свойства анилина

Анилин – тривиальное название аминобензола, имеющего формулу:

Как можно видеть из иллюстрации, в молекуле анилина аминогруппа непосредственно соединена с ароматическим кольцом. У таких аминов, как уже было сказано, основные свойства выражены намного слабее, чем у аммиака. Так, в частности, анилин практически не реагирует с водой и слабыми кислотами типа угольной.

Взаимодействие анилина с кислотами

Анилин реагирует с сильными и средней силы неорганическими кислотами. При этом образуются соли фениламмония:

Взаимодействие анилина с галогенами

Как уже было сказано в самом начале данной главы, аминогруппа в ароматических аминах , втянута в ароматическое кольцо, что в свою очередь снижает электронную плотность на атоме азота, и как следствие увеличивает ее в ароматическом ядре. Увеличение электронной плотности в ароматическом ядре приводит к тому, что реакции электрофильного замещения, в частности, реакции с галогенами протекают значительно легче, особенно в орто- и пара- положениях относительно аминогруппы. Так, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:

Данная реакция является качественной на анилин и часто позволяет определить его среди прочих органических соединений.

Взаимодействие анилина с азотистой кислотой

Анилин реагирует с азотистой кислотой, но в виду специфичности и сложности данной реакции в реальном ЕГЭ по химии она не встречается.

Реакции алкилирования анилина

С помощью последовательного алкилирования анилина по атому азота галогенпроизводными углеводородов можно получать вторичные и третичные амины:

Получение анилина

1. Восстановление маталлами нитробензола в присутствии сильных кислот-неокислителей:

C6H5-NO2 + 3Fe + 7HCl = [C6H5-NH3]+Cl- + 3FeCl2 + 2H2O

2. Далее полученную соль обрабатывают щелочью для высвобождения анилина:

[C6H5-NH3]+Cl— + NaOH = C6H5-NH2 + NaCl + H2O

В качестве металлов могут быть использованы любые металлы, находящиеся до водорода в ряду активности.

Реакция хлорбензола с аммиаком:

С6H5−Cl + 2NH3 → C6H5NH2 + NH4Cl

Химические свойства аминокислот

Аминокислотами называют соединения в молекулах которых присутствуют два типа функциональных групп – амино (-NH2) и карбокси- (-COOH) группы.

Другими словами, аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода замещены на аминогруппы.

Таким образом, общую формулу аминокислот можно записать как (NH2)xR(COOH)y, где x и y чаще всего равны единице или двум.

Поскольку в молекулах аминокислот есть и аминогруппа и карбоксильная группа, они проявляют химические свойства схожие как аминов, так и карбоновых кислот.

Кислотные свойства аминокислот

Образование солей с щелочами и карбонатами щелочных металлов

Этерификация аминокислот

Аминокислоты могут вступать в реакцию этерификации со спиртами:

NH2CH2COOH + CH3OH → NH2CH2COOCH3+ H2O

Основные свойства аминокислот

1. Образование солей при взаимодействии с кислотами

NH2CH2COOH + HCl → [NH3CH2COOH]+Cl—

2. Взаимодействие с азотистой кислотой

NH2-CH2-COOH + HNO2 → НО-CH2-COOH + N2↑ + H2O

Примечание: взаимодействие с азотистой кислотой протекает так же, как и с первичными аминами

3. Алкилирование

NH2CH2COOH + CH3I → [CH3NH2CH2COOH]+I—

4. Взаимодействие аминокислот друг с другом

Аминокислоты могут реагировать друг с другом образуя пептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-

При этом, следует отметить, что в случае проведения реакции между двумя разными аминокислотами, без соблюдения некоторых специфических условий синтеза, одновременно протекает образование разных дипептидов. Так, например, вместо реакции глицина с аланином выше, приводящей к глицилананину, может произойти реакция приводящая к аланилглицину:

Кроме того, молекула глицина не обязательно реагирует с молекулой аланина. Протекают также и реакции пептизации между молекулами глицина:

И аланина:

Помимо этого, поскольку молекулы образующихся пептидов как и исходные молекулы аминокислот содержат аминогруппы и карбоксильные группы, сами пептиды могут реагировать с аминокислотами и другими пептидами, благодаря образованию новых пептидных связей.

Отдельные аминокислоты используются для производства синтетических полипептидов или так называемых полиамидных волокон. Так, в частности с помощью поликонденсации 6-аминогексановой (ε-аминокапроновой) кислоты в промышленности синтезируют капрон:

Получаемая в результате этой реакции капроновая смола используется для производства текстильных волокон и пластмасс.

Образование внутренних солей аминокислот в водном растворе

В водных растворах аминокислоты существуют преимущественно в виде внутренних солей — биполярных ионов (цвиттер-ионов):

Получение аминокислот

1) Реакция хлорпроизводных карбоновых кислот с аммиаком:

Cl-CH2-COOH + 2NH3 = NH2-CH2-COOH + NH4Cl

2) Расщепление (гидролиз) белков под действием растворов сильных минеральных кислот и щелочей.

Источник