От каких факторов зависит свойства оксидов металлов

От каких факторов зависит свойства оксидов металлов thumbnail
  • Оксиды

    Оксиды – это бинарные соединения элемента с кислородом, находящимся в степени окисления (-2). Оксиды являются характеристическими соединениями для химических элементов. Неслучайно Д.И. Менделеев при составлении периодической таблицы ориентировался на стехиометрию высшего оксида и объединял в одну группу элементы с одинаковой формулой высшего оксида. Высший оксид – это оксид, в котором элемент присоединил максимально возможное для него количество кислородных атомов. В высшем оксиде элемент находится в своей максимальной (высшей) степени окисления. Так, высшие оксиды элементов VI группы, как неметаллов S, Se, Te, так и металлов Cr, Mo, W, описываются одинаковой формулой ЭО3. Все элементы группы проявляют наибольшее сходство именно в высшей степени окисления. Так, например, все высшие оксиды элементов VI группы – кислотные.

    Оксиды это самые распространенные соединения в металлургических технологиях.

    Многие металлы находятся в земной коре в виде оксидов. Из природных оксидов получают такие важные металлы, как Fe, Mn, Sn, Cr.

    В таблице приведены примеры природных оксидов, используемых для получения металлов.

    МеОксидМинерал
    FeFe2O3 и Fe3O4Гематит и магнетит
    MnMnO2пиролюзит
    CrFeO .Cr2O3хромит
    TiTiO2 и FeO .TiO2Рутил и ильменит
    SnSnO2Касситерит

    Оксиды являются целевыми соединениями в ряде металлургических технологий. Природные соединения предварительно переводят в оксиды, из которых затем восстанавливают металл. Например, природные сульфиды Zn, Ni, Co, Pb, Mo обжигают, превращая в оксиды.

    2ZnS + 3O2 = 2 ZnO + 2SO2

    Природные гидроксиды и карбонаты подвергают термическому разложению, приводящему к образованию оксида.

    2MeOOH = Me2O3 + H2O

    MeCO3 = MeO + CO2

    Кроме того, поскольку металлы, находясь в окружающей среде, окисляются кислородом воздуха, а при высоких температурах, характерных для многих металлургических производств, окисление металлов усиливается, необходимы знания о свойствах получаемых оксидов.

    Приведенные выше причины объясняют, почему при обсуждении химии металлов оксидам уделяется особое внимание.

    Среди химических элементов металлов – 85, и многие металлы имеют не по одному оксиду, поэтому класс оксидов включает огромное количество соединений, и эта многочисленность делает обзор их свойств непростой задачей. Тем не менее, постарается выявить:

    • общие свойства, присущие всем оксидам металлов,
    • закономерности в изменениях их свойств,
    • выявим химические свойства оксидов, наиболее широко используемых в металлургии,
    • приведем некоторые из важных физических характеристик оксидов металлов.
  • Оксиды металлов различаются стехиометрическим соотношением атомов металла и кислорода. Эти стехиометрические соотношения определяют степень окисления металла в оксиде.

    В таблице приведены стехиометрические формулы оксидов металлов в зависимости от степени окисления металла и указано, какие именно металлы способны образовывать оксиды данного стехиометрического типа.

    Помимо таких оксидов, которые в общем случае могут быть описаны формулой МеОХ/2, где Х – это степень окисления металла, существуют также оксиды, содержащие металл в разных степенях окисления, например, Fe3O4, а также, так называемые, смешанные оксиды, например, FeO .Cr2O3.

    Не все оксиды металлов имеют постоянный состав, известны оксиды переменного состава, например, TiOx, где x = 0,88 – 1,20; FeOx, где x = 1,04 – 1,12 и др.

    Оксиды s-металлов имеют только по одному оксиду. Металлы p- и d- блоков, как правило, имеют несколько оксидов, исключение Al, Ga, In и d-элементы 3 и 12 групп.

    Оксиды типа MeO и Ме2О3 образуют почти все d-металлы 4 периода. Для большинства d-металлов 5 и 6 периодов характерны оксиды, в которых металл, находится в высоких степенях окисления ³ 4. Оксиды типа МеО, образуют только Cd, Hg и Pd; типа Me2O3, помимо Y и La, образуют Au, Rh; серебро и золото образуют оксиды типа Ме2O.

  • Стехиометрические типы оксидов металлов

    Степень окисленияТип оксидаМеталлы, образующие оксид
    +1Me2OМеталлы 1 и 11 групп
    +2MeO Все d-металлы 4 периода (кроме Sc), все металлы 2 и 12 групп, а также Sn, Pb; Cd, Hg и Pd
    +3Me2O3 Почти все d-металлы 4 периода (кроме Cu и Zn), все металлы 3 и 13 групп, Au, Rh
    +4MeO2 Металлы 4 и 14 групп и многие другие d-металлы: V, Nb, Ta; Cr, Mo, W; Mn, Tc, Re; Ru, Os; Ir, Pt
    +5Me2O5 Металлы 5 и 15 групп
    +6MeO3 Металлы 6 группы
    +7Me2O7 Металлы 7 группы
    +8MeO4Os и Ru
  • Подавляющее большинство оксидов металлов при обычных условиях это твердые кристаллические вещества. Исключение – кислотный оксид Mn2O7 (это жидкость темно-зеленого цвета). Лишь очень немногие кристаллы кислотных оксидов металлов имеют молекулярную структуру, это кислотные оксиды с металлом в очень высокой степени окисления: RuO4, OsO4, Mn2O7, Tc2O7, Re2O7.

    В самом общем виде структуру многих кристаллических оксидов металлов можно представить как регулярное трехмерное расположение кислородных атомов в пространстве, в пустотах между кислородными атомами находятся атомы металлов. Поскольку кислород – это очень электроотрицательный элемент, он перетягивает часть валентных электронов от атома металла, преобразуя его в катион, а сам кислород переходит в анионную форму и увеличивается в размерах за счет присоединения чужих электронов. Крупные кислородные анионы образуют кристаллическую решетку, а в пустотах между ними размещаются катионы металлов. Только в оксидах металлов, находящихся в небольшой степени окисления и отличающихся небольшим значение электроотрицательности, связь в оксидах можно рассматривать как ионную. Практически ионными являются оксиды щелочных и щелочноземельных металлов. В большинстве оксидов металлов химическая связь оказывается промежуточной между ионной и ковалентной. С повышением степени окисления металла вклад ковалентной составляющей возрастает.

  • Кристаллические структуры оксидов металлов

  • Координационные числа металлов в оксидах

    Металл в оксидах характеризуется не только степенью окисления, но и координационным числом, указывающим, какое количество кислородных атомов он координирует.

    Очень распространенным в оксидах металлов является координационное число 6, в этом случае катион металла находится в центре октаэдра, образованного шестью кислородными атомами. Октаэдры так упаковываются в кристаллическую решетку, чтобы выдерживалось стехиометрическое соотношение атомов металла и кислорода. Так в кристаллической решетке оксида кальция, координационное число кальция равно 6. Кислородные октаэдры с катионом Ca2+ в центре так объединяются между собой, что каждый кислород оказывается в окружении шести атомов кальция, т.е. кислород принадлежит одновременно 6 атомам кальция. Говорят, что такой кристалл имеет координацию (6, 6). Первым указывается координационное число катиона, а вторым аниона. Таким образом формулу оксида СаО следовало бы записать
    СаО6/6 ≡ СаО.
    В оксиде TiO2 металл также находится в октаэдрическом окружении кислородных атомов, часть кислородных атомов соединяется противоположными ребрами, а часть вершинами. В кристалле рутила TiO2 координация (6, 3) означает, что кислород принадлежит трем атомам титана. Атомы титана образуют в кристаллической решетке рутила прямоугольный параллепипед.

    Кристаллические структуры оксидов достаточно разнообразны. Металлы могут находиться не только в октаэдрическом окружении из кислородных атомов, но и в тетраэдрическом окружении, например в оксиде BeO ≡ BeO4|4. В оксиде PbO, также имеющем координацию кристалла (4,4), свинец оказывается в вершине тетрагональной призмы, в основании которой находятся атомы кислорода.

    Атомы металла могут находиться в разном окружении кислородных атомов, например в октаэдрических и в тетраэдрических пустотах, и металл при этом оказывается в разных степенях окисления, как например, в магнетите Fe3O4 ≡ FeO . Fe2O3.

    Дефекты в кристаллических решетках объясняют непостоянство состава некоторых оксидов.

    Представление о пространственных структурах позволяет понять причины образования смешанных оксидов. В пустотах между кислородными атомами могут находиться атомы не одного металла, а двух разных, как например,
    в хромите FeO .Cr2O3.

  • Некоторые физические свойства оксидов металлов

    Подавляющее большинство оксидов при обычной температуре это твердые вещества. Они имеют меньшую плотность, чем металлы.

    Многие оксиды металлов являются тугоплавкими веществами. Это позволяет использовать тугоплавкие оксиды как огнеупорные материалы для металлургических печей.

    Оксид CaO получают в промышленном масштабе в объеме 109 млн т/год. Его используют для футеровки печей. В качестве огнеупоров используют также оксиды BeO и MgO. Оксид MgO один из немногих огнеупоров очень устойчивых к действию расплавленных щелочей.

    Иногда тугоплавкость оксидов создает проблемы при получении металлов электролизом из их расплавов. Так оксид Al2O3, имеющий температуру плавления около 2000оС, приходится смешивать с криолитом Na3[AlF6], чтобы снизить температуру плавления до ~ 1000 оС, и через этот расплав пропускать электрический ток.

    Тугоплавкими являются оксиды d-металлов 5 и 6 периодов Y2O3 (2430), La2O3 (2280), ZrO2 (2700), HfO2 (2080), Ta2O5 (1870), Nb2O5 (1490), а также многие оксиды d-металлов 4 периода (см. табл.). Высокие температуры плавления имеют все оксиды s-металлов 2 группы, а также Al2O3, Ga2O3, SnО ,SnO2, PbO (см. табл.).

    Низкие температуры плавления (оС) обычно имеют кислотные оксиды: RuO4 (25), OsO4 (41); Te2O7 (120), Re2O7 (302), ReO3 (160), CrO3 (197). Но некоторые кислотные оксиды имеют достаточно высокие температуры плавления (оС): MoO3 ( 801) WO3 (1473), V2O5 (680).

    Некоторые из основных оксидов d-элементов, завершающих ряды, оказываются непрочными, плавятся при низкой температуре или при нагревании разлагаются. Разлагаются при нагревании HgO (400oC), Au2O3 (155), Au2O, Ag2O (200), PtO2 (400).

    При нагревании выше 400оС разлагаются и все оксиды щелочных металлов с образованием металла и пероксида. Оксид Li2O более устойчив и разлагается при температуре выше 1000оС.

    В таблице, приведенной ниже, приводятся некоторые характеристики d-металлов 4 периода, а также s- и p-металлов.

  • Характеристики оксидов s- и р-металлов

    MeОксидЦветТ пл., оСКислотно-основной характер
    s-металлы
    LiLi2OбелыйВсе оксиды разлагаются при
    T > 400 оС, Li2O при Т > 1000oC
    Все оксиды щелочных металлов основные, растворяются в воде
    NaNa2Oбелый
    KK2Oжелтый
    RbRb2Oжелтый
    CsCs2Oоранжевый
    BeBeOбелый2580амфотерный
    MgMgOбелый2850основной
    CaCaOбелый2614Основные, ограниченно растворяются в воде
    SrSrOбелый2430
    BaBaOбелый1923
    p-металлы
    AlAl2O3белый2050амфотерный
    GaGa2O3желтый1795амфотерный
    InIn2O3желтый1910амфотерный
    TlTl2O3коричневый716амфотерный
    Tl2Oчерный303основной
    SnSnOтемно-синий1040амфотерный
    SnO2белый1630амфотерный
    PbPbOкрасныйПереходит в желтый при Т > 490 оСамфотерный
    PbOжелтый1580амфотерный
    Pb3O4красныйРазл.
    PbO2черныйРазл. При 300оСамфотерный

    Химические свойства (см. по ссылке)

  • Характеристики оксидов d-металлов 4 периода

    ОксидЦветr, г/см3Т пл., оС– ΔGo, кДж/моль– ΔHo, кДж/мольПреобладающий

    кислотно-основной характер

    ScSc2O3белый3,9245016371908основной
    TiTiOкоричневый4,91780, p490526основной
    Ti2O3фиолетовый4,6183014341518основной
    TiO2белый4,21870945944амфотерный
    VVOсерый5,81830389432основной
    V2O3черный4,9197011611219основной
    VO2синий4,315451429713амфотерный
    V2O5оранжевый3,468010541552кислотный
    CrCr2O3зеленый5,22335 p5361141амфотерный
    CrO3красный2,8197 p513590кислотный
    MnMnOСеро–зеленый5,21842385385основной
    Mn2O3коричневый4,51000 p958958основной
    Mn3O4коричневый4,71560 p13881388
    MnO2коричневый5,0535 p521521амфотерный
    Mn2O7зеленый2,46, 55 p726кислотный
    FeFeOЧерный5,71400265265основной
    Fe3O4черный5,21540 p11171117
    Fe2O3коричневый5,31565 p822822основной
    CoCoOСеро-зеленый5,71830213239основной
    Co3O4черный6,1900 p754887
    NiNiOСеро-зеленый7,41955239240основной
    CuCu2Oоранжевый6,01242151173основной
    CuOчерный6,4800 p134162основной
    ZnZnOбелый5,71975348351амфотерный

    Химические свойства (см. по ссылке)

  • Растворимость оксидов металлов в воде

    При растворении в воде кислотных оксидов Mn2O7, Te2O7, Re2O7 образуются растворы сильных кислот. В воде ограниченно растворяются также кислотные оксиды: V2O5, CrO3.

    Среди основных оксидов хорошо растворяются в воде оксиды щелочных металлов с образованием растворов щелочей.

    Na2O + H2O = 2Na+ + 2OH-

    Ограниченно растворяются в воде оксиды щелочноземельных металлов, при этом образуются растворы соответствующих щелочей.

    Кроме оксидов щелочных и щелочноземельных металлов и некоторых кислотных оксидов остальные оксиды металлов в воде не растворимы.

    Для их растворения следует использовать либо кислоты, либо щелочи в зависимости от кислотно-основного характера оксида.

  • Кислотно-основные свойства оксидов металлов

    Кислотно-основной характер оксидов зависит от степени окисления металла и от природы металла.

    Чем ниже степень окисления, тем сильнее проявляются основные свойства. Если металл находится в степени окисления Х £ 4 , то его оксид имеет либо основной, либо амфотерный характер.

    Чем выше степень окисления, тем сильнее выражены кислотные свойства. Если металл находится в степени окисления Х 5, то его гидроксид имеет кислотный характер.

    Кроме кислотных и основных оксидов существуют амфотерные оксиды, проявляющие одновременно и кислотные и основные свойства.

    Амфотерны все оксиды p-металлов, кроме Tl2O.

    Из s-металлов только Be имеет амфотерный оксид.

    Среди d-металлов амфотерными являются оксиды ZnO, Cr2O3, Fe2O3, Au2O3, и практически все оксиды металлов в степени окисления +4за исключением основных ZrO2 и HfO2.

    Большинство оксидов, в том числе, Cr2O3, Fe2O3 и диоксиды металлов проявляют амфотерность лишь при сплавлении со щелочами. С растворами щелочей взаимодействуют ZnO, VO2, Au2O3.

    Для оксидов, помимо кислотно-основных взаимодействий, т. е. реакций между основными оксидами и кислотами и кислотными оксидами, а также реакций кислотных и амфотерных оксидов со щелочами, характерны также окислительно-восстановительные реакции.

  • Окислительно-восстановительные свойства оксидов металлов

    Поскольку в любых оксидах металл находится в окисленном состоянии, все оксиды без исключения способны проявлять окислительные свойства.

    Самые распространенные реакции в пирометаллургии это окислительно-восстановительные взаимодействия между оксидами металлов и различными восстановителями, приводящие к получению металла.

    Примеры

    2Fe2O3 + 3C = 4Fe + 3CO2

    Fe3O4 + 2C = 3Fe + 2CO2

    MnO2 +2C = Mn + 2CO

    SnO2 + C = Sn + 2CO2

    ZnO + C = Zn + CO

    Cr2O3 + 2Al = 2Cr + Al2O3

    WO3 + 3H2 = W + 3H2O

    Если металл имеет несколько степеней окисления, то при достаточном повышении температуры становится возможным разложение оксида с выделением кислорода.

    Примеры

    4CuO = 2Cu2O + O2

    3PbO2 = Pb3O4 + O2,

    2Pb3O4 = O2 + 6PbO

    Некоторые оксиды, особенно оксиды благородных металлов, при нагревании могут разлагаться с образованием металла.

    2Ag2O = 4Ag + O2

    2Au2O3 = 4Au + 3O2

    Сильные окислительные свойства некоторых оксидов используются на практике. Например,

    окислительные свойства оксида PbO2 используют в свинцовых аккумуляторах, в которых за счет химической реакции между PbO2 и металлическим свинцом получают электрический ток.

    PbO2 + Pb + 2H2SO4 = 2PbSO4 + 2H2O

    Окислительные свойства MnO2 также используют для получения электрического тока в гальванических элементах (электрических батарейках).

    2MnO2 + Zn + 2NH4Cl = [Zn(NH3)2 Cl2] + 2MnOOH

    Сильные окислительные свойства некоторых оксидов приводят к их своеобразному взаимодействию с кислотами. Так оксиды PbO2 и MnO2 при растворении в концентрированной соляной кислоте восстанавливаются.

    MnO2 + 4HCl = MnCl2 + Cl2 + 2H2O
    Если металл образует несколько оксидов, то оксиды металла в более низкой степени окисления могут окисляться, т. е. проявлять восстановительные свойства.

    Особенно сильные восстановительные свойства проявляют оксиды металлов в низких и неустойчивых степенях окисления, как например. TiO, VO, CrO. При растворении их в воде они окисляются, восстанавливая воду. Их реакции с водой, подобны реакциям металла с водой.

    2TiO + 2H2O = 2TiOOH + H2.

Источник

оксиды металлов это неорганические соединения, образованные металлическими катионами и кислородом. Они обычно содержат огромное количество ионных твердых веществ, в которых оксид аниона (O2-) электростатически взаимодействует с видами М+.

M+ это любой катион, полученный из чистого металла: от щелочных и переходных металлов, за исключением некоторых благородных металлов (таких как золото, платина и палладий), до более тяжелых элементов блока p периодической таблицы ( как свинец и висмут).

Верхнее изображение показывает железную поверхность, покрытую красноватыми корками. Эти «корочки» – это то, что известно как ржавчина или ржавчина, которые, в свою очередь, представляют собой визуальный тест на окисление металла в зависимости от условий его окружающей среды. Химически ржавчина представляет собой гидратированную смесь оксидов железа (III).

Почему окисление металла приводит к деградации его поверхности? Это связано с включением кислорода в кристаллическую структуру металла.

Когда это происходит, объем металла увеличивается, а исходные взаимодействия ослабевают, что приводит к разрушению твердого тела. Кроме того, эти трещины позволяют большему количеству молекул кислорода проникать во внутренние металлические слои, поглощая весь кусок изнутри..

Однако этот процесс происходит на разных скоростях и зависит от природы металла (его реакционной способности) и физических условий, которые его окружают. Следовательно, существуют факторы, которые ускоряют или замедляют окисление металла; два из них – наличие влаги и pH.

Почему? Поскольку окисление металла с образованием оксида металла подразумевает перенос электрона. Они “путешествуют” от одного химического вида к другому, пока среда способствует этому, либо присутствием ионов (H+, не доступно+, мг2+, Cl-, и т. д.), которые изменяют рН, или молекулами воды, которые обеспечивают транспортные средства.

Аналитически тенденция металла образовывать соответствующий оксид отражается в его восстановительных потенциалах, которые показывают, какой металл реагирует быстрее по сравнению с другим.

Золото, например, имеет гораздо больший восстановительный потенциал, чем железо, поэтому оно сияет своим характерным золотым свечением без оксида, который его размывает..

индекс

  • 1 Свойства неметаллических оксидов
    • 1.1 Основность
    • 1.2 Амфотеризм
  • 2 Номенклатура
    • 2.1 Традиционная номенклатура
    • 2.2 Систематическая номенклатура
    • 2.3 Товарная номенклатура
    • 2.4 Расчет числа валентностей
  • 3 Как они образовались?
    • 3.1 Прямая реакция металла с кислородом
    • 3.2 Реакция солей металлов с кислородом
  • 4 использования
  • 5 примеров
    • 5.1 Оксиды железа
    • 5.2 Щелочные и щелочноземельные оксиды
    • 5.3 Группа IIIA оксидов (13)
  • 6 Ссылки

Свойства неметаллических оксидов

Свойства оксидов металлов варьируются в зависимости от металла и того, как он взаимодействует с анионом О2-. Это влечет за собой то, что некоторые оксиды имеют более высокую плотность или растворимость в воде, чем другие. Однако все они имеют общий металлический характер, что неизбежно отражается на его основности..

Другими словами: они также известны как основные ангидриды или основные оксиды.

основность

Основность оксидов металлов может быть проверена экспериментально с использованием кислотно-основного индикатора. Как? Добавление небольшого куска оксида в водный раствор с небольшим количеством растворенного индикатора; это может быть сжиженный сок фиолетовой капусты.

Имея диапазон цветов в зависимости от pH, оксид превратит сок в голубоватый цвет, соответствующий базовому pH (со значениями от 8 до 10). Это потому, что растворенная часть оксида высвобождает ионы ОН- к окружающей среде, будучи в эксперименте ответственными за изменение pH.

Таким образом, для оксида МО, который растворяется в воде, он превращается в гидроксид металла («гидратированный оксид») в соответствии со следующими химическими уравнениями:

МО + Н2O => M (OH)2

М (ОН)2 M2+ + 2OH-

Второе уравнение представляет собой баланс растворимости гидроксида М (ОН)2. Обратите внимание, что металл имеет заряд 2+, что также означает, что его валентность равна +2. Валентность металла напрямую связана с его тенденцией к получению электронов.

Таким образом, чем позитивнее валентность, тем выше ее кислотность. В случае, когда М имел валентность +7, тогда оксид М2О7 это было бы кислым и не основным.

амфотерность

Оксиды металлов являются основными, однако не все имеют одинаковый металлический характер. Как узнать? Расположение металла М в периодической таблице. Чем больше он находится слева от него и в более низкие периоды, тем более металлическим он будет и, следовательно, более основным будет его оксид.

На границе между основными и кислотными оксидами (неметаллическими оксидами) находятся амфотерные оксиды. Здесь слово «амфотерный» означает, что оксид действует и как основание, и как кислота, что так же, как в водном растворе, он может образовывать гидроксид или водный комплекс М (ОН2)62+.

Водный комплекс – не более чем координация N молекулы воды с металлическим центром М. Для комплекса М (ОН2)62+, металл М2+ Он окружен шестью молекулами воды и может рассматриваться как гидратированный катион. Многие из этих комплексов проявляют интенсивную окраску, такую ​​как наблюдаемая для меди и кобальта.

номенклатура

Как называются оксиды металлов? Есть три способа сделать это: традиционный, систематический и фондовый.

Традиционная номенклатура

Чтобы правильно назвать оксид металла в соответствии с правилами, регулируемыми IUPAC, необходимо знать возможные валентности металла М. Самому большому (наиболее положительному) присваивается название металла суффикс -ico, тогда как минор, префикс -oso.

Пример: с учетом валентностей +2 и +4 металла М его соответствующими оксидами являются МО и МО2. Если бы М был свинцом, Pb, то PbO был бы оксидным отвесомнести, и PbO2 оксидная сливаICO. Если металл имеет только одну валентность, он называется его оксидом с суффиксом -ico. Итак, На2Или это оксид натрия.

С другой стороны, гипо- и префиксы добавляются, когда для металла доступно три или четыре валентности. Таким образом, Mn2О7 это оксид вМенгенICO, потому что Mn имеет валентность +7, самый высокий из всех.

Тем не менее, этот тип номенклатуры представляет определенные трудности и обычно используется наименее.

Систематическая номенклатура

Он учитывает количество атомов М и кислорода, составляющих химическую формулу оксида. Из них ему назначены соответствующие префиксы: моно-, ди-, три-, тетра- и т. Д..

На примере трех недавних оксидов металлов PbO является моноксидом свинца; PbO2 диоксид свинца; и Na2Или окись динатрия. Для случая ржавчины, Fe2О3, его соответствующее название является триоксидом дигеро.

Товарная номенклатура

В отличие от двух других номенклатур, в этом валентность металла имеет большее значение. Валентность указывается римскими цифрами в скобках: (I), (II), (III), (IV) и т. Д. Оксид металла тогда называют оксидом металла (n).

Применяя номенклатуру запаса для предыдущих примеров, мы имеем:

-PbO: оксид свинца (II).

-PbO2: оксид свинца (IV).

-не доступно2О: оксид натрия. Поскольку он имеет уникальную валентность +1, он не указан.

-вера2О3: оксид железа (III).

-Миннесота2О7: оксид марганца (VII).

Расчет числа валентностей

Но если у вас нет периодической таблицы с валентностями, как вы можете их определить? Для этого мы должны помнить, что анион O2- он вносит два отрицательных заряда в оксид металла. Следуя принципу нейтральности, эти отрицательные заряды должны быть нейтрализованы положительными зарядами металла..

Поэтому, если число атомов кислорода известно по химической формуле, валентность металла может быть определена алгебраически, так что сумма зарядов дает ноль.

Mn2О7 имеет семь атомов кислорода, то его отрицательные заряды равны 7х (-2) = -14. Чтобы нейтрализовать отрицательный заряд -14, марганец должен обеспечить +14 (14-14 = 0). Положить математическое уравнение тогда:

2X – 14 = 0

2 происходит из-за того, что есть два атома марганца. Решаем и очищаем Х, валентность металла:

X = 14/2 = 7

То есть каждый Mn имеет валентность +7.

Как они образовались?

Влажность и рН напрямую влияют на окисление металлов в их соответствующих оксидах. Наличие СО2, Оксид кислоты может быть достаточно растворен в воде, которая покрывает металлическую часть, чтобы ускорить введение кислорода в анионной форме в кристаллическую структуру металла..

Эту реакцию также можно ускорить с повышением температуры, особенно когда желательно получить оксид за короткое время..

Прямая реакция металла с кислородом

Оксиды металлов образуются как продукт реакции между металлом и окружающим кислородом. Это может быть представлено с помощью химического уравнения ниже:

2M (s) + O2(г) => 2MO (s)

Эта реакция медленная, так как кислород имеет сильную двойную связь O = O и электронный перенос между ним и металлом неэффективен.

Тем не менее, он значительно ускоряется с увеличением температуры и площади поверхности. Это связано с тем, что энергия, необходимая для разрыва двойной связи O = O, обеспечивается, и, поскольку существует большая площадь, кислород равномерно движется по всему металлу, одновременно сталкиваясь с атомами металла..

Чем больше количество реагента кислорода, тем больше валентность или степень окисления, возникающая для металла. Почему? Поскольку кислород захватывает все больше электронов из металла, пока он не достигнет максимальной степени окисления.

Это можно увидеть, например, для меди. Когда кусок металлической меди реагирует с ограниченным количеством кислорода, образуется медь2O (оксид меди (I), оксид меди или двуокись диоксида):

4Cu (s) + O2(г) + Q (тепло) => 2Cu2O (s) (красное твердое вещество)

Но когда он реагирует в эквивалентных количествах, получается CuO (оксид меди (II), оксид меди или оксид меди):

2Cu (s) + O2(г) + Q (нагрев) => 2CuO (s) (сплошной черный цвет)

Реакция солей металлов с кислородом

Оксиды металлов могут образовываться в результате термического разложения. Чтобы это было возможно, одна или две маленькие молекулы должны быть освобождены от исходного соединения (соли или гидроксида):

М (ОН)2 + Q => МО + Н2О

MCO3 + Q => MO + CO2

2 М (НЕТ3)2 + Q => МО + 4НО2 + О2

Обратите внимание, что H2O, CO2, НЕТ2 и O2 высвобождаются ли молекулы.

приложений

Из-за богатого состава металлов в земной коре и кислорода в атмосфере оксиды металлов обнаруживаются во многих минералогических источниках, из которых можно получить твердую основу для производства новых материалов..

Каждый оксид металла находит очень специфическое применение: от пищевых (ZnO и MgO) до цементных добавок (CaO) или просто в виде неорганических пигментов (Cr).2О3).

Некоторые оксиды настолько плотны, что контролируемый рост их слоев может защитить сплав или металл от дальнейшего окисления. Даже исследования показали, что окисление защитного слоя происходит так, как если бы это была жидкость, покрывающая все трещины или поверхностные дефекты металла..

Оксиды металлов могут принимать захватывающие структуры в виде наночастиц или крупных полимерных агрегатов..

Этот факт делает их предметом исследований для синтеза интеллектуальных материалов из-за его большой площади поверхности, которая используется для разработки устройств, которые реагируют на наименьший физический стимул.

Аналогично, оксиды металлов являются сырьем для многих технологических применений, от зеркал и керамики с уникальными свойствами для электронного оборудования до солнечных батарей..

примеров

Оксиды железа

2Fe (s) + O2(г) => 2FeO (s) оксид железа (II).

6FeO (s) + O2(г) => 2Fe3О4(s) Магнитный оксид железа.

Вера3О4, также известный как магнетит, это смешанный оксид; Это означает, что он состоит из твердой смеси FeO и Fe2О3.

4Fe3О4(s) + O2(г) => 6Fe2О3(s) оксид железа (III).

Щелочные и щелочноземельные оксиды

Как щелочные, так и щелочноземельные металлы имеют одну степень окисления, поэтому их оксиды являются более «простыми»:

-не доступно2O: оксид натрия.

-Li2O: оксид лития.

-К2O: оксид калия.

-CaO: оксид кальция.

-MgO: оксид магния.

-BeO: оксид бериллия (амфотерный оксид)

Группа IIIA оксиды (13)

Элементы группы IIIA (13) могут образовывать оксиды только с степени окисления +3. Таким образом, они имеют химическую формулу М2О3 и его оксиды следующие:

-в2О3: оксид алюминия.

-Джорджия2О3: оксид галлия.

-в2О3: оксид индия.

И наконец

-Т.Л.2О3: оксид таллия.

ссылки

  1. Уиттен, Дэвис, Пек и Стэнли. Химия. (8-е изд.). CENGAGE Learning, стр. 237.
  2. AlonsoFormula. Оксиды металлов. Взято из: alonsoformula.com
  3. Регенты Университета Миннесоты. (2018). Кислотно-основные характеристики оксидов металлов и неметаллов. Взято из: chem.umn.edu
  4. Дэвид Л. Чендлер. (3 апреля 2018 г.) Самовосстанавливающиеся оксиды металлов могут защитить от коррозии. Взято из: news.mit.edu
  5. Физические состояния и структуры оксидов. Взято из: wou.edu
  6. Quimitube. (2012). Окисление железа. Взято из: quimitube.com
  7. Химия LibreTexts. Оксиды. Взято с сайта chem.libretexts.org
  8. Кумар М. (2016) Наноструктуры оксидов металлов: рост и применение. В кн .: Хусаин М., Хан З. (ред.) Достижения в области наноматериалов. Advanced Structured Materials, том 79. Springer, Нью-Дели

Источник