Пенообразователи как пищевые добавки

Пенообразователи как пищевые добавки thumbnail

   В эту группу пищевых добавок (см. табл. 1.1, функциональный класс 14) входят вещества, обеспечивающие равномерную диффузию газообразной фазы в жидкие и твердые пищевые продукты, в результате чего образуются пены и газовые эмульсии.

   Пеныконцентрированные дисперсные системы, состоящие из газовой дисперсной фазы и жидкой или твердой дисперсионной среды

   Газовые эмульсии представляют собой разбавленные системы с небольшим содержанием пузырьков в жидкости (содержание дисперсной фазы менее 0,1 %) Для пен с жидкой дисперсионной средой принципиальное практическое значение имеют устойчивость, стабилизация и разрушение. В жидких пенах пузырьки газа плотно соприкасаются друг с другом через тонкие прослойки дисперсионной среды (пенные пленки), что ограничивает их свободное перемещение. Со временем толщина пленок уменьшается из-за отекания жидкости под действием силы тяжести и капиллярного давления в местах контакта нескольких газовых пузырьков.

   Следствием утончения пленок становятся прорыв слоя жидкости между газовыми пузырьками и их коалесценция (слияние).

   Увеличение размеров газовых пузырьков приводит к изменению раздела фаз, способствующему разрушению пены. В связи с этим время «жизни» пены, дисперсионная среда которой представляет собой однокомпонентную жидкость (например, чистую воду), сравнительно мало и пена, образованная путем диспергирования газа в жидкости, разрушается практически сразу после ее образования.

   Разрушение газовых эмульсий, в которых концентрация дисперсной фазы невелика, связано с процессом обратной седиментациивсплытием газовых пузырьков из объема жидкой дисперсионной среды на ее поверхность.

   Для получения пен необходимой устойчивости в систему вводят пенообразователи, которые подразделяют на два типа (рода):

• истинно растворимые (низкомолекулярные) ПАВ;

• коллоидные ПАВ, белки и некоторые другие природные высокомолекулярные соединения.

   В общем случае при образовании пены в присутствии ПАВ происходит адсорбция их молекул в тонком слое пленки жидкой дисперсионной среды на границе с газовой дисперсной фазой, что вызывает изменение поверхностного натяжения на границе раздела фаз. В результате истечение жидкости из пенной пленки и ее утончение замедляются, а время «жизни» пены увеличивается.

   Утончению пленок препятствует также избыточное давление, возникающее в тонком слое. Адсорбционный слой ПАВ изменяет структуру поверхности межфазной границы, повышая ее механическую прочность.

   В присутствии пенообразователей первого рода устойчивость пен повышается пропорционально концентрации введенного ПАВ, однако такие пены быстро разрушаются по мере истечения жидкости из пенных пленок. При использовании пенообразователей второго рода с увеличением их концентрации повышается прочность структуры пены, каркас которой способен сдержать истечение межпленочной жидкости. При этом образуются устойчивые пены, время «жизни» которых составляет десятки минут и даже часы.

   Пенообразование в пищевых системах может осуществляться диспергационным или конденсационным способом. Диспергирование происходит за счет перемешивания, встряхивания, взбивания, барботажа струи газа через жидкость и интенсифицируется в присутствии пенообразователей, растворенных в жидкой дисперсионной среде, а также при нагревании или снижении давления.

   Конденсационный способ основан на пересыщении дисперсной среды газом, что происходит, в частности, в результате химических реакций или микробиологических процессов, которые сопровождаются выделением газа.

   Примеры некоторых пищевых пен и природа их образования приведены в табл. 3.35.

   Таблица  3.35

   Источники образования основных видов пищевых пен

Продукт

Тип пены

Источник образования

Хлеб

Кондитерские взбивные массы (зефир, суфле и т. п.)

Твердый

Твердый, образованный из жидких

Процесс брожения теста Диспергирование воздуха в

исходном сырье

Игристые вина, пиво Газированные напитки

Жидкий

»

Процессы брожения Диспергирование диоксида углерода в водной среде

   В соответствии с СанПиН 2.3.2.560—96 технологические функции пенообразователя имеют четыре пищевые добавки (табл. 3.36).

   Таблица   3.36

   Пищевые пенообразователи

Е-номер

Название

Природа, строение, состав

Е465

Метилэтилцеллюдоза

Простые эфиры целлюлозы

Е570

Жирные кислоты

Предельные и непредельные одноосновные кислоты алифатического ряда

Е999

Квиллайи экстракт

Растительный экстракт

Е1505

Триэтилцитрат

Сложный эфир лимонной кислоты и этилового спирта

Источник

   В эту группу пищевых добавок (см. табл. 1.1, функциональный класс 14) входят вещества, обеспечивающие равномерную диффузию газообразной фазы в жидкие и твердые пищевые продукты, в результате чего образуются пены и газовые эмульсии.

   Пеныконцентрированные дисперсные системы, состоящие из газовой дисперсной фазы и жидкой или твердой дисперсионной среды

   Газовые эмульсии представляют собой разбавленные системы с небольшим содержанием пузырьков в жидкости (содержание дисперсной фазы менее 0,1 %) Для пен с жидкой дисперсионной средой принципиальное практическое значение имеют устойчивость, стабилизация и разрушение. В жидких пенах пузырьки газа плотно соприкасаются друг с другом через тонкие прослойки дисперсионной среды (пенные пленки), что ограничивает их свободное перемещение. Со временем толщина пленок уменьшается из-за отекания жидкости под действием силы тяжести и капиллярного давления в местах контакта нескольких газовых пузырьков.

   Следствием утончения пленок становятся прорыв слоя жидкости между газовыми пузырьками и их коалесценция (слияние).

   Увеличение размеров газовых пузырьков приводит к изменению раздела фаз, способствующему разрушению пены. В связи с этим время «жизни» пены, дисперсионная среда которой представляет собой однокомпонентную жидкость (например, чистую воду), сравнительно мало и пена, образованная путем диспергирования газа в жидкости, разрушается практически сразу после ее образования.

   Разрушение газовых эмульсий, в которых концентрация дисперсной фазы невелика, связано с процессом обратной седиментациивсплытием газовых пузырьков из объема жидкой дисперсионной среды на ее поверхность.

   Для получения пен необходимой устойчивости в систему вводят пенообразователи, которые подразделяют на два типа (рода):

• истинно растворимые (низкомолекулярные) ПАВ;

• коллоидные ПАВ, белки и некоторые другие природные высокомолекулярные соединения.

   В общем случае при образовании пены в присутствии ПАВ происходит адсорбция их молекул в тонком слое пленки жидкой дисперсионной среды на границе с газовой дисперсной фазой, что вызывает изменение поверхностного натяжения на границе раздела фаз. В результате истечение жидкости из пенной пленки и ее утончение замедляются, а время «жизни» пены увеличивается.

   Утончению пленок препятствует также избыточное давление, возникающее в тонком слое. Адсорбционный слой ПАВ изменяет структуру поверхности межфазной границы, повышая ее механическую прочность.

   В присутствии пенообразователей первого рода устойчивость пен повышается пропорционально концентрации введенного ПАВ, однако такие пены быстро разрушаются по мере истечения жидкости из пенных пленок. При использовании пенообразователей второго рода с увеличением их концентрации повышается прочность структуры пены, каркас которой способен сдержать истечение межпленочной жидкости. При этом образуются устойчивые пены, время «жизни» которых составляет десятки минут и даже часы.

   Пенообразование в пищевых системах может осуществляться диспергационным или конденсационным способом. Диспергирование происходит за счет перемешивания, встряхивания, взбивания, барботажа струи газа через жидкость и интенсифицируется в присутствии пенообразователей, растворенных в жидкой дисперсионной среде, а также при нагревании или снижении давления.

   Конденсационный способ основан на пересыщении дисперсной среды газом, что происходит, в частности, в результате химических реакций или микробиологических процессов, которые сопровождаются выделением газа.

   Примеры некоторых пищевых пен и природа их образования приведены в табл. 3.35.

   Таблица  3.35

   Источники образования основных видов пищевых пен

Продукт

Тип пены

Источник образования

Хлеб

Кондитерские взбивные массы (зефир, суфле и т. п.)

Твердый

Твердый, образованный из жидких

Процесс брожения теста Диспергирование воздуха в

исходном сырье

Игристые вина, пиво Газированные напитки

Жидкий

»

Процессы брожения Диспергирование диоксида углерода в водной среде

   В соответствии с СанПиН 2.3.2.560—96 технологические функции пенообразователя имеют четыре пищевые добавки (табл. 3.36).

   Таблица   3.36

   Пищевые пенообразователи

Е-номер

Название

Природа, строение, состав

Е465

Метилэтилцеллюдоза

Простые эфиры целлюлозы

Е570

Жирные кислоты

Предельные и непредельные одноосновные кислоты алифатического ряда

Е999

Квиллайи экстракт

Растительный экстракт

Е1505

Триэтилцитрат

Сложный эфир лимонной кислоты и этилового спирта

Источник

Одним из способов изменения консистенции и структуры пищевых продуктов в целях удовлетворения вкусов потребителей является введение в пищевое сырье диспергированного воздуха или другого газа. Для многих продуктов питания пенообразная структура оказывает решающее влияние на их отличительные свойства (например, в хлебобулочных и некоторых кондитерских изделиях, мороженом, напитках и десертных изделиях).

В этот функциональный класс входят вещества, обеспечивающие равномерную диффузию газообразной фазы в жидкие и твердые пищевые продукты. В результате образуются пены и газовые эмульсии.

Пена представляет собой дисперсную систему, состоящую из ячеек — пузырьков газа (пара), разделенных пленками жидкости (или твердого вещества). Обычно газ (пар) рассматривается как дисперсная фаза, а жидкость (или твердое вещество) — как непрерывная дисперсионная среда. Пены, в которых дисперсионной средой является твердое вещество, образуются при отверждении растворов или расплавов, насыщенных каким-либо газом. Жидкие или твердые пленки, разделяющие пузырьки газа, образуют в совокупности пленочный каркас, являющийся основой пены.

Структура пен определяется соотношением объемов газовой и жидкой фаз и в зависимости от него ячейки пены могут иметь сферическую или многогранную (полиэдрическую) форму.

Получить пены, как и другие дисперсные системы, можно диспергационным и конденсационным способами.

При диспергационном способе пена образуется в результате интенсивного совместного диспергирования пенообразующего раствора и воздуха. Диспергирование осуществляется следующими методами:

при прохождении струи газа через слой жидкости в барботаж-ных или аэрационных установках, в аппаратах с “пенным слоем”, применяемых для очистки отходящих газов, в пеногенераторах некоторых типов, имеющих сетку, которая орошается пенообразующим раствором;

при действии движущихся устройств на жидкость в атмосфере газа или при действии движущейся жидкости на преграду в технологических аппаратах при перемешивании мешалками, встряхивании, взбивании, переливании растворов.

Получение пен может быть обусловлено действием нескольких источников пенообразования одновременно. Так, некоторые технологические процессы осуществляют с аэрацией и перемешиванием.

Для получения пен необходимой устойчивости в систему вводят пенообразователи, которые подразделяют на два типа (рода):

истинно растворимые (низкомолекулярные) ПАВ;

коллоидные ПАВ, белки и ряд других природных высокомолекулярных соединений.

В общем случае при образовании пены в присутствии ПАВ происходит адсорбция их молекул в тонком слое пленки жидкой дисперсионной среды на границе с газовой дисперсной фазой, что вызывает изменение поверхностного натяжения на границе раздела фаз.

В результате истечение жидкости из пенной пленки и ее утончение замедляются, а время “жизни” пены увеличивается. Утончению пленок препятствует также избыточное давление, возникающее в тонком слое. Адсорбционный слой ПАВ изменяет структурy поверхности межфазной границы, повышая ее механическую прочность.

В присутствии пенообразователей первого рода устойчивость пен повышается пропорционально концентрации введенного ПАВ. Однако такие пены быстро разрушаются по мере истечения жидкости из пенных пленок.

Если пенообразующим веществом служит яичный белок, то вследствие развертывания его молекул на границе межфазного раздела наступает поверхностная денатурация. Денатурированный белок повышает стабильность пен.

Одновременно могут образовываться связи между полипептидными цепями с возникновением пространственной двух- и трехмерной структуры в виде сетки, которая благоприятствует повышению стабильности пены.

В соответствии с СанПиН 2.3.2.560 — 96 технологические функции пенообразователя имеют четыре пищевые добавки (таблица 2.3).

Конденсационный способ получения пен основан на пересыщении раствора газом. К этому способу относится получение пен в результате химических реакций и микробиологических процессов, сопровождающихся выделением газа. Так, в процессе ферментации теста, которая идет по схеме молочнокислого брожения, из глюкозы помимо молочной и янтарной кислот образуются вызывающие пенообразование газы (СО2 + Н2).

При снижении давления и повышении температуры растворимость газа в жидкости снижается. Жидкость вспенивается, из нее может выделяться газ.

Подобный процесс происходит при вскрытии бутылок с игристыми винами, пивом и другими напитками. В отличие от шампанского, лимонада и боржоми пиво содержит пенообразователи — хмелевые смолы, белки, декстрины и др.

Источник

Пенообразователи. Характеристика, цель использования в пищевых системах

Пенообразователи из природных соединений на основе растительного сырья и животных продуктов используются человеком для мытья и стирки, приготовления пищи и для некоторых технологических процессов уже несколько тысячелетий. В жарких районах Кавказа, Средней Азии, Африки, Южной Америки издавна широко применялся мыльный корень. Это корень растения сапониноса, содержащего легко извлекаемый водой сильный пенообразователь – сапонин. Корень очищали, сушили, размалывали. Полученный порошок смешивали с глиной и формовали кусочки «мыла». Последние хорошо мылились (давая пену) в мягкой и даже жесткой воде.

К числу известных эффективных природных пенообразователей относятся также смеси полисахаридов морских водорослей – агар-агар. Известно несколько десятков водорослей, из которых агар-агар получают в промышленном масштабе. Все они содержат агар-агар в виде солей щелочных или щелочноземельных металлов. Он и сейчас широко применяется в кондитерской промышленности и в медицине в качестве пенообразующего и желирующего средства, а также стабилизатора.

Но наиболее устойчивые пены образуются на основе белковых пенообразователей, которые получают из разнообразных веществ, либо полностью состоящих из белка, либо содержащих его в значительных количествах. Эти белки извлекаются из крови животных, кожи, костей, рогов, копыт, щетины, перьев, рыбьей чешуи, жмыха масличных культур, а также продуктов, получаемых из молока.

При производстве таких пенообразователей белки предварительно гидролизуют, так как продукты их гидролиза обладают гораздо более высокой пенообразующей способностью, чем исходные белки и протеины. Для этого их подвергают тепловой обработке, как правило, в щелочной среде. Причем гидролиз не доводят до конца – т.к. продукты конечного распада белков – аминокислоты – хотя и тоже достаточно сильные пенообразователи, но они дают неустойчивую, быстро разрушающуюся пену.

Все белковые пенообразователи представляют собой питательную среду для различного рода микроорганизмов. Поэтому в их состав вводят антисептики – фториды или фенол. Без них пенообразователи быстро теряют свои свойства, загнивают и дурно пахнут.

Промышленность выпускает пенообразователи на основе белкового сырья – пенообразователи ПО-6, ПО-7 и др., приготавливаемые путем многостадийной обработки. Так, при производстве пенообразователя ПО-6, боенская кровь, получаемая с мясокомбинатов вначале гидролизуется едким натром, затем нейтрализуется хлоридом аммония или серной кислотой. Полученный раствор упаривается до заданной концентрации. Для повышения устойчивости пены в состав пенообразователя вводят сульфат железа.

При производстве пищевых продуктов используют пенообразователи на основе яичного белка и молочных продуктов. По пенообразующим свойствам не уступают яичному белку выжимки из семян сои и хлопчатника, экстракт чая. Для повышения устойчивости пищевых пен, как правило, вводят стабилизаторы – казеин, альгинаты, желатин и т.д[5].

Идентифицировать пищевые добавки в различных продуктах питания в соответствии с кодами Европейского союза и технологическими свойствами (маргарин)

Маргарин – широко известный и популярный продукт, потребление которого у нас в стране в последнее время неуклонно растет, поскольку он используется не только в домашнем хозяйстве, но и в отраслях пищевой промышленности, например, кондитерской и хлебопекарной, где объемы производства продукции также возрастают.

Если раньше маргарин покупали у нас в стране по причине дефицита сливочного масла, то теперь многие потребители отдают предпочтение маргариновой продукции благодаря ряду его несомненных преимуществ: низкой калорийности, пониженному содержанию холестерина, более длительному сроку хранения. Таким образом, маргарин стал позиционироваться как лечебно-профилактический продукт. Если раньше для его производства использовали и животные, и растительные жиры, то с изобретением гидрогенизации в рецептуре маргарина остался преимущественно растительный жир. В ассортименте продукции также произошли изменения: на смену брусковому маргарину пришел наливной, в который можно вводить до 70% жидкой фазы, появились специальные виды маргарина, например, маргарин, используемый в слоеном тесте, который должен иметь более высокую температуру плавления.

Мною были рассмотрены следующие марки маргарина: «Петровский двор», «Молочный», «Радуга», «Экстра», «Сливочный», «Столовый», «Домашний», «Маргарет», «Пышный», «Хозяюшка».

Далее выпишем пищевые добавки, указанные на этикетках:

Наименование продукта

Торговая марка

Код по классификатору

Наименование по классификатору

Функциональный класс, технологические свойства

Маргарин «Экстра»

ЗАО «Солнечный»

Е 625

Е 181

Е 579

Е 631

Глутамат натрия

Танины пищевые

Глюконат железа

5-Инозинат натрия 2-замещенный

Усилитель вкуса

Краситель, эмульгатор, стабилизатор

Стабилизатор окраски

Усилитель вкуса и аромата

Маргарин «Петровский двор»

ЗАО «Молочный завод»

Е 579

Глюконат железа

Стабилизатор окраски

Маргарин «Молочный»

ЗАО «Камьска»

Е 625

Е 181

Глутамат натрия

Танины пищевые

Усилитель вкуса

Краситель, эмульгатор, стабилизатор

Маргарин «Радуга»

ЗАО «Молкомбанат»

Е 625

Е 181

Глутамат натрия

Танины пищевые

Усилитель вкуса

Краситель, эмульгатор, стабилизатор

Маргарин «Сливочный»

ООО «Прота»

Е 625

Е 181

Е 579

Е 631

Глутамат натрия

Танины пищевые

Глюконат железа

5-Инозинат натрия 2-замещенный

Усилитель вкуса

Краситель, эмульгатор, стабилизатор

Стабилизатор окраски

Усилитель вкуса и аромата

Маргарин «Сливочный»

ООО «Прота»

Е 625

Е 181

Е 579

Е 631

Глутамат натрия

Танины пищевые

Глюконат железа

5-Инозинат натрия 2-замещенный

Усилитель вкуса

Краситель, эмульгатор, стабилизатор

Стабилизатор окраски

Усилитель вкуса и аромата

Маргарин «Столовый»

ЗАО «Барин»

Е 631

5-Инозинат натрия 2-замещенный

Усилитель вкуса и аромата

Маргарин «Домашний»

ЗАО «Хозяюшка»

Е 625

Е 181

Е 579

Е 631

Глутамат натрия

Танины пищевые

Глюконат железа

5-Инозинат натрия 2-замещенный

Усилитель вкуса

Краситель, эмульгатор, стабилизатор

Стабилизатор окраски

Усилитель вкуса и аромата

Маргарин «Маргарет»

ТМ «Маргарет»

Е 181

Танины пищевые

Краситель, эмульгатор, стабилизатор

Маргарин «Пышный»

ЗАО «Моломбинат»

 

Глутамат натрия

5-Инозинат натрия 2-замещенный

Усилитель вкуса

Усилитель вкуса и аромата

Маргарин «Хозяюшка»

ЗАО «Хозяюшка»

Е 625

Е 181

Е 579

Е 631

Глутамат натрия

Танины пищевые

Глюконат железа

5-Инозинат натрия 2-замещенный

Усилитель вкуса

Краситель, эмульгатор, стабилизатор

Стабилизатор окраски

Усилитель вкуса и аромата

Перейти на страницу: 1 2

Источник