При какой температуре железо теряет магнитные свойства при

Еще со времен
Гильберта было известно, что железо и
сталь теряют свои магнитные свойства,
будучи нагреты до светло-красного
каления. Они при этом перестают
намагничиваться и не притягиваются
магнитом, но при охлаждении восстанавливают
свои обычные качества. То же происходит
при несколько более высокой температуре
с кобальтом и при более низкой — с
никкелем. Вообще говоря, переход от
магнитного состояния к немагнитному
происходит очень быстро, как только
температура тела достигает определенного
предела.
152
В
виде примера приведем данные, которые
былиполучены:
Гопкинсоном во время одного опыта с
куском кованого железа. Когда этот
материал был подвергнут действию слабого
магнитного поля (H=0,3
эрстеда), его магнитная проницаемость
непрерывно возрастала с повышением
температуры сначала медленно, затем
все быстрее и быстрее и так далее, до
предельной температуры, которая в
описываемом случае оказалась равной
775° С. При этой температуре магнитная
проницаемость во много раз больше, чем
в случае холодного железа. При дальнейшем
нагревании последовала чрезвычайно
быстрая потеря магнитных свойств: когда
температура поднялась всего только на
11°, т. е. до 786°С, железо сделалось
практически немагнитным. Его магнитная
проницаемость стала равной 1,1, между
тем как при 775°С проницаемость имела
значение около 11000. На рисунке 89)
представлена графически зависимость
от температуры в данном случае, т. е. при
H=0,3
эрстеда.
Здесь весьма
отчетливо видно, насколько внезапно
магнитная проницаемость данного образца
железа падает при приближении температуры
его к 786°С. Когда материал был подвергнут
действию сравнительно более сильного
поля, переход от магнитного состояния
к немагнитному совершался более плавно,
но потеря
153
магнитных свойств
столь же полная, и происходит это при
той же температуре, что и раньше. Гопкинсон
назвал ее критической температурой.
На рисунках 90 и 91 представлена зависимость
от температуры
при
H=4
эрстедам,
H=45
эрстедам,
для того же сорта
железа, к которому относится и рисунок
89. В случае H=4
эрстедам, по мере повышения температуры
еще наблюдается некоторый подъем ,
и это
продолжается приблизительно до 650°.
Затем довольно
быстро падает. В случае же Н=45
эрстедам, повышения
по мере повышения температуры совсем
не наблюдается. В пределах от 0 до 500°С
магнитная проницаемость практически
сохраняется неизменною, а при дальнейшем
нагревании начинает медленно падать и
сравнительно медленно же падает до
предельного значения =1,1
при температуре в 786° С. Критическая
температура различных сортов железа и
стали колеблется, как показали
исследования, в пределах от 690° до 870°С.
У кобальта критическая температура
равна приблизительно 1000°, у никкеля
—около 310°С.
Из приведенных на
рисунках 89, 90 и 91 кривых ясно, что в
пределах нормальных рабочих температур,
встречающихся в обычной электротехнической
практике, изменение магнитных свойств
железа и стали в зависимости от нагревания
настолько ничтожно, что при всякого
рода расчетах им можно пренебречь.
На рисунке 92
приведены еще характерные кривые,
представляющие результаты наблюдений
Гопкинсона над ходом намагничения
железа при разных температурах.
Здесь
кривая I
дает зависимость В
от
Н
при
температуре в 10°. Кривая 11 дает ту же
зависимость при температуре в 670°. Кривая
III
построена для
154
температуры
около 742°, и, наконец, кривая IV
— для температуры около 771°. На рисунке
93 представлены начальные части этих
кривых.
Здесь
масштаб Н
взят
нарочно большим, чтобы наглядно показать
относительное расположение кривых и
их пересечение. Обозначения кривых те
же, что и на рисунке 92.
Из
всех приведенных кривых отчетливо
видно, что чем слабее магнитное поле,
воздействующее на железо, тем большее
значение имеет повышение температуры
в смысле достижения высших степеней
намагничения. В этом отношении мы имеем
полную аналогию с влиянием сотрясений
на магнитные свойства ферромагнитных
материалов (см. § 39). В данном случае
гипотеза элементарных магнитов дает
возможность высказать предположение,
что с повышением температуры устойчивость
отдельных групп магнитиков должна
уменьшаться, так как при этом возрастает
общая подвижность всех молекул тела.
Надо полагать, что при приближении
к критической температуре эта подвижность
настолько уже велика, что достаточно
небольших добавочных воздействий со
стороны слабой намагничивающей силы
для того, чтобы нарушить исходные
группировки молекулярных магнитиков
и ориентировать ихв
направлении поля.
155
Есть
много данных в пользу того предположения,
что при переходе через критическую
температуру железо я
другие
магнитные материалы вообще претерпевают
какое-то резкое изменение в своих
свойствах. Так, при переходе через
критическую температуру резко меняются
термо-электрические свойства, а также
электрическое сопротивление материала.
Далее, железо и сталь, предварительно
нагретые выше критической температуры,
при остывании темнеют до достижения
этой температуры и затем внезапно
вспыхивают, проходя через нее. Это
последнее явление, открытое Барретом.
было им названо рекалесценцией.
Выяснилось,
что температура рекалесценции как раз
и есть температура критическая в
магнитном отношении. Современная
металлургия в полной мере выяснила
сущность того, что происходит с
железом и другими подобными материалами
при переходе через критическую
температуру. Именно, при этом происходит
очень быстрое изменение молекулярного
строения вещества, связанное с превращением
одной модификации его (магнитной)
в другую (немагнитную).
Кроме
тех изменений магнитных качеств железа,
которые обнаруживаются немедленно
при повышении температуры его, на
практике приходится встречаться еще с
одним явлением, которое также повидимому
обусловливается нагреванием. Речь идет
о так называемом старении
железа. Этот
процесс протекает очень медленно
при сравнительно низких температурах
и выражается между прочим в изменении
потерь на гистерезис, которые обычно
возрастают с течением времени. Такое
возрастание потерь на гисте-
156
резис
в прежнее время нередко наблюдалось
при работе трансформаторов переменного
тока, для изготовления которых применялось
простое железо. Есть основание полагать,
что в данном случае мы имеем дело с
медленным изменением молекулярного
строения железа. Опыт показывает,
что процесс старения ускоряется при
нагревании. В частности при температурах
порядка 150°—200° процесс этот протекает
в несколько дней, в то время как при
температурах порядка 50° он протекает
годы, прежде чем железо придет в некоторое
установившееся состояние. В связи с
тем, что явление впервые было наблюдено
в
трансформаторах,
сначала высказывалось предположение,
что возрастание потерь нагистерезис
представляет собою результат некоторой
усталости материала, происходящей
вследствие непрерывного перемагничивания,
подобно усталости упругого тела,
подверженного повторным механическим
напряжениям. Юинг, однако, показал, что
переменное намагничение само по себе
не производит никакого действия. Мордей
выяснил совершенно определенно, что
возрастание потерь на гистерезис
происходит исключительно благодаря
длительному нагреванию материала.
Это было затем подтверждено исследованием
Роджета. Для иллюстрации сказанного
выше о старении железа приведены на
рисунке 94 кривые гистерезиса, полученные
Роджетомдля
некоторого сорта железа при
Bmax=4000
гауссов.
Здесь изображены
три цикла. Первый характеризует железо
в начальной стадии, т. е. до нагревания.
Второй — через 19 часов нагревания при
200°. Третий цикл характеризует материал
после нагревания при той же температуре
в течение 4 дней. За это время был пройден
максимум потерь на гистерезис.
В настоящее время
в области электрического машиностроения
и аппаратостроения вопрос о старении
железа потерял свою остроту, благодаря
тому, что удалось получить сплавы железа,
обладающие весьма устойчивыми магнитными
качествами (например, кремнистое железо).
Источник
Железо теряет свой магнетизм, когда его нагревают до нескольких сотен градусов, но ядро Земли, которое создает достаточно сильное магнитное поле для удержания планеты, состоит из железа, который настолько горячен, что он находится в жидком состоянии!
Почему же тогда расплавленное железо в ядре Земли производит магнитное поле?
Давайте начнем прямо со всей этой тайны.
Ферромагнитные материалы
Железо представляет собой ферромагнитный материал. (Фото: Pixabay)
Чтобы объяснить ферромагнетизм железа вам простыми словами, я бы сказал, что железо состоит из крошечных «вещей» (точнее атомных моментов), атомов, которые действуют как крошечные магниты, так как все они имеют север и южные полюса (как обычные магниты).
Когда вы задерживаете магнит возле железного объекта, эти крошечные магниты присутствуют внутри объекта, выстраиваются сами или выстраиваются в линию. Это то, что делает этот объект магнитным, и любой объект, который ведет себя подобным образом при наличии внешнего магнитного поля, называется ферромагнитным материалом.
Однако, когда вы нагреваете ферромагнитный материал, как железо, все начинает меняться.
Что происходит, когда вы нагреваете ферромагнитный материал?
Ядро Земли состоит из огромного количества железа. (Фото: Naeblys / Shutterstock)
Итак, довольно очевидно, что железо перестает быть ферромагнитным материалом, превышающим 770 градусов по Цельсию. Однако мы также знаем, что ядро Земли состоит из расплавленного железа, который настолько невероятно горячий (почти 6000 градусов Цельсия), что он делает сердцевину такой же горячей, как и поверхность самого солнца! Не только это, но и расплавленный железный сердечник производит очень сильное магнитное поле, что делает Землю пригодной для жизни планетой.
Но разве это не противоречит самому себе? Если железо теряет свои ферромагнитные свойства и перестает быть магнитом при (относительно) ничтожной температуре 770 градусов Цельсия, то как же ядро Земли, которое в основном состоит из железа, создает такое сильное магнитное поле?
Как земное ядро производит магнитное поле?
Динамо – это устройство, которое преобразует механическую энергию в электрическую. Если вы знаете физические условия ядра Земли, то вы сможете понять теорию динамо в мгновение ока.
Обратите внимание, что внутренний сердечник твердый из-за условий высокого давления. (Фото: Kelvinsong / Wikimedia Commons)
Ядро Земли имеет два сегмента: внутреннее и внешнее ядро. Внешний сердечник настолько горячий, что он существует в жидком состоянии, но внутренний сердечник является твердым, из-за условий чрезвычайно высокого давления (источник). Кроме того, внешнее ядро постоянно перемещается из-за вращения Земли и конвекции.
Теперь движение жидкости во внешнем ядре перемещает расплавленное железо (т. Е. Проводящий материал) через уже существующее слабое магнитное поле. Этот процесс генерирует электрический ток (из-за магнитной индукции). Затем этот электрический ток генерирует магнитное поле, которое взаимодействует с движением жидкости для создания вторичного магнитного поля.
Вторичное магнитное поле усиливает начальное магнитное поле, и процесс становится самоподдерживающимся. Если движение жидкости во внешнем сердечнике не прекратится, сердечник продолжит производить магнитное поле. Это как раз предпосылка фильма научной фантастики 2003 года The Core .
Проще говоря, расплавленное железо, присутствующее в ядре, непосредственно не создает магнитного поля; скорее, он производит электрический ток, который, в свою очередь, производит электромагнитный эффект, который в конечном итоге создает сильное магнитное поле ядра Земли.
Источник
Коля Жуков
28 апреля · 1,9 K
При сильном нагревании магнит теряет свои свойства и перестает магнитить. Переход от магнитного состояния к немагнитному происходит очень быстро, как только температура тела достигает определенного предела
При сильном нагревании магнит теряет свои свойства и перестает магнитить. Переход от магнитного состояния к немагнитному происходит очень… Читать далее
Можно ли магнитом найти золото?
Специального поискового магнита на золото и серебро не существует. Однако украшения и монеты из драгоценных сплавов добыть с его помощью вполне возможно, ведь они содержат и другие элементы, которые магнит притянет. … Никель легко притягивается к магниту .
Прочитать ещё 1 ответ
Как распознать солнечный перегрев?
QA инженер в декрете https://www.instagram.com/elena_solosh/
Симптомами солнечного перегрева являются: головокружение, слабость, тошнота, головная боль, затрудненное дыхание, учащённый пульс, полуобморочное состояние (или обморок), потеря интереса ко всему. Не обязательно должны проявляться сразу все симптомы. Если вы нашли хотя бы 3-5 симптома – стоит обратиться за помощью и постараться охладиться (снять одежду, уйти в прохладу, много пить).
Прочитать ещё 1 ответ
Кто может простыми словами объяснить как работает постоянный магнит? В каком направлении двигаются в нем электроны и как получается так что если разрезать магнит получится два маленьких магнита?
Давайте заглянем в структуру металлов которые поддаются намагничиванию. Все они имеют в структуре кристаллическую решётку, причём эти решётки, имеют узлы в углах и параллерные связи между узлами. Всё, что может двигаться в кристаллической решётке, движется хаотично. Поместили такой металл в сильное постоянное магнитное поле. Какие изменения протекают в это время? Под действием сильного магнитного поля, которое проходит по внутренней области металла, начинают перестраиваться атомы, у которых не хватает электронов на внешней оболочке имеют (+) заряд и у которых избыток электронов имеют (-) заряд. Под дейсвием магнитного поля образуется упорядочная структура т. е. к положительному (+) заряду притягивается отрицательный (-) заряд образуя связь, которая называется диполь и так во всей структуре металла образуются диполи. И вот, когда сняли магнитное поле, диполи сохраняют свою ориентацию т. е. на одном канце болванки действует сила положительных (+) зарядов, на другом действует сила отрицательных (-) зарядов, что и обясняет появление полюсов на концах болванки. А вот в металлах, в которых другая форма кристаллической рещётки, не удаётся создать однонаправленную ориентацию диполей и поэтому на концах болванки не создаётся сила магнитного действия. При аккуратном разделении болванки на две части, структура диполей сохраняется, при сильном ударе по болванке ударная волна разрушёет структуру диполей, так жэ при нагревании и всё что может двигаться, начинает двигатся хаотично. Есть информация, что в структуре магнита учавствует сила ЭФИРА, но это пока на уровне предположения.
Прочитать ещё 3 ответа
Как добывают магнит?
Я увлекаются очень многими вещами, разносторонний…. Отвечаю на вопросы…
Существуют три основных вида магнитов:
постоянные магниты;
временные магниты;
электромагниты.
Для производства постоянных магнитов используются четыре основных класса материалов:
неодим-железо-бор (Nd-Fe-B, NdFeB, NIB); самарий-кобальт (SmCo); альнико (Alnico); керамические (ферриты).
Временные магниты: в качестве примера можно привести скрепки и гвозди, а также другие изделия из «мягкого» железа.
Электромагнит — это туго намотанные на каркас витки провода, обычно с железным сердечником, который действует как постоянный магнит только тогда, когда по проводу течет ток.
Прочитать ещё 2 ответа
Источник
Еще со времен Гильберта было известно, что железо и сталь теряют свои магнитные свойства, будучи нагреты до светло-красного каления. Они при этом перестают намагничиваться и не притягиваются магнитом, но при охлаждении восстанавливают свои обычные качества. То же происходит при несколько более высокой температуре с кобальтом и при более низкой — с никкелем. Вообще говоря, переход от магнитного состояния к немагнитному происходит очень быстро, как только температура тела достигает определенного предела.
В виде примера приведем данные, которые былиполучены: Гопкинсоном во время одного опыта с куском кованого железа. Когда этот материал был подвергнут действию слабого магнитного поля (H=0,3 эрстеда), его магнитная проницаемость непрерывно возрастала с повышением температуры сначала медленно, затем все быстрее и быстрее и так далее, до предельной температуры, которая в описываемом случае оказалась равной 775° С. При этой температуре магнитная проницаемость во много раз больше, чем в случае холодного железа. При дальнейшем нагревании последовала чрезвычайно быстрая потеря магнитных свойств: когда температура поднялась всего только на 11°, т. е. до 786°С, железо сделалось практически немагнитным. Его магнитная проницаемость стала равной 1,1, между тем как при 775°С проницаемость имела значение около 11000. На рисунке 89) представлена графически зависимость m от температуры в данном случае, т. е. при H=0,3 эрстеда.
Здесь весьма отчетливо видно, насколько внезапно магнитная проницаемость данного образца железа падает при приближении температуры его к 786°С. Когда материал был подвергнут действию сравнительно более сильного поля, переход от магнитного состояния к немагнитному совершался более плавно, но потеря
магнитных свойств столь же полная, и происходит это при той же температуре, что и раньше. Гопкинсон назвал ее критической температурой. На рисунках 90 и 91 представлена зависимость mот температуры при
H=4 эрстедам,
H=45 эрстедам,
для того же сорта железа, к которому относится и рисунок 89. В случае H=4 эрстедам, по мере повышения температуры еще наблюдается некоторый подъем m, и это продолжается приблизительно до 650°. Затем mдовольно быстро падает. В случае же Н=45 эрстедам, повышения m по мере повышения температуры совсем не наблюдается. В пределах от 0 до 500°С магнитная проницаемость практически сохраняется неизменною, а при дальнейшем нагревании начинает медленно падать и сравнительно медленно же падает до предельного значения m=1,1 при температуре в 786° С. Критическая температура различных сортов железа и стали колеблется, как показали исследования, в пределах от 690° до 870°С. У кобальта критическая температура равна приблизительно 1000°, у никкеля —около 310°С.
Из приведенных на рисунках 89, 90 и 91 кривых ясно, что в пределах нормальных рабочих температур, встречающихся в обычной электротехнической практике, изменение магнитных свойств железа и стали в зависимости от нагревания настолько ничтожно, что при всякого рода расчетах им можно пренебречь.
На рисунке 92 приведены еще характерные кривые, представляющие результаты наблюдений Гопкинсона над ходом намагничения железа при разных температурах.
Здесь кривая I дает зависимость В от Н при температуре в 10°. Кривая 11 дает ту же зависимость при температуре в 670°. Кривая III построена для
температуры около 742°, и, наконец, кривая IV — для температуры около 771°. На рисунке 93 представлены начальные части этих кривых.
Здесь масштаб Н взят нарочно большим, чтобы наглядно показать относительное расположение кривых и их пересечение. Обозначения кривых те же, что и на рисунке 92.
Из всех приведенных кривых отчетливо видно, что чем слабее магнитное поле, воздействующее на железо, тем большее значение имеет повышение температуры в смысле достижения высших степеней намагничения. В этом отношении мы имеем полную аналогию с влиянием сотрясений на магнитные свойства ферромагнитных материалов (см. § 39). В данном случае гипотеза элементарных магнитов дает возможность высказать предположение, что с повышением температуры устойчивость отдельных групп магнитиков должна уменьшаться, так как при этом возрастает общая подвижность всех молекул тела. Надо полагать, что при приближении к критической температуре эта подвижность настолько уже велика, что достаточно небольших добавочных воздействий со стороны слабой намагничивающей силы для того, чтобы нарушить исходные группировки молекулярных магнитиков и ориентировать ихв направлении поля.
Есть много данных в пользу того предположения, что при переходе через критическую температуру железо я другие магнитные материалы вообще претерпевают какое-то резкое изменение в своих свойствах. Так, при переходе через критическую температуру резко меняются термо-электрические свойства, а также электрическое сопротивление материала. Далее, железо и сталь, предварительно нагретые выше критической температуры, при остывании темнеют до достижения этой температуры и затем внезапно вспыхивают, проходя через нее. Это последнее явление, открытое Барретом. было им названо рекалесценцией. Выяснилось, что температура рекалесценции как раз и есть температура критическая в магнитном отношении. Современная металлургия в полной мере выяснила сущность того, что происходит с железом и другими подобными материалами при переходе через критическую температуру. Именно, при этом происходит очень быстрое изменение молекулярного строения вещества, связанное с превращением одной модификации его (магнитной) в другую (немагнитную).
Кроме тех изменений магнитных качеств железа, которые обнаруживаются немедленно при повышении температуры его, на практике приходится встречаться еще с одним явлением, которое также повидимому обусловливается нагреванием. Речь идет о так называемом старении железа. Этот процесс протекает очень медленно при сравнительно низких температурах и выражается между прочим в изменении потерь на гистерезис, которые обычно возрастают с течением времени. Такое возрастание потерь на гисте-
резис в прежнее время нередко наблюдалось при работе трансформаторов переменного тока, для изготовления которых применялось простое железо. Есть основание полагать, что в данном случае мы имеем дело с медленным изменением молекулярного строения железа. Опыт показывает, что процесс старения ускоряется при нагревании. В частности при температурах порядка 150°—200° процесс этот протекает в несколько дней, в то время как при температурах порядка 50° он протекает годы, прежде чем железо придет в некоторое установившееся состояние. В связи с тем, что явление впервые было наблюдено в трансформаторах, сначала высказывалось предположение, что возрастание потерь нагистерезис представляет собою результат некоторой усталости материала, происходящей вследствие непрерывного перемагничивания, подобно усталости упругого тела, подверженного повторным механическим напряжениям. Юинг, однако, показал, что переменное намагничение само по себе не производит никакого действия. Мордей выяснил совершенно определенно, что возрастание потерь на гистерезис происходит исключительно благодаря длительному нагреванию материала. Это было затем подтверждено исследованием Роджета. Для иллюстрации сказанного выше о старении железа приведены на рисунке 94 кривые гистерезиса, полученные Роджетомдля некоторого сорта железа при
Bmax=4000 гауссов.
Здесь изображены три цикла. Первый характеризует железо в начальной стадии, т. е. до нагревания. Второй — через 19 часов нагревания при 200°. Третий цикл характеризует материал после нагревания при той же температуре в течение 4 дней. За это время был пройден максимум потерь на гистерезис.
В настоящее время в области электрического машиностроения и аппаратостроения вопрос о старении железа потерял свою остроту, благодаря тому, что удалось получить сплавы железа, обладающие весьма устойчивыми магнитными качествами (например, кремнистое железо).
Дата публикования: 2014-11-03; Прочитано: 9939 | Нарушение авторского права страницы
studopedia.org – Студопедия.Орг – 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования
(0.005 с)…
Источник