При каком объемном отношении метана и хлора основным продуктом реакции является

При каком объемном отношении метана и хлора основным продуктом реакции является thumbnail

Насыщенные углеводороды активно вступают в реакцию с хлором. Хлорируют алканы атомами или катионами хлора, которые более реакционноспособны, чем молекулярный хлор. Диссоциация молекулы хлора на атомы требует затраты 242,8 кДж/моль энергии. Такая диссоциация хлора легко происходит при обычной температуре под действием УФ-света, поглощение которого молекулой придает ей 293,0 кДж/моль энергии. Для термической диссоциации молекулы хлора на атомы необходима температура около $300^circ C$ . Диссоциация молекулы хлора на ионы требует затраты 1130,2 кДж / моль. Из приведенных энергетических данных видно, что насыщенные углеводороды легче хлорировать на свете.

Хлорирование алканов происходит с выделением 108,8 кДж / моль теплоты и является менее экзотермическим процессом, чем фторирование. Фотохимическое хлорирование алканов проводят при рассеянном свете, поскольку при прямом освещении реакция происходит со взрывом. При хлорировании атомы водорода алканов постепенно замещаются на хлор. В результате образуются хлоропохидни насыщенных углеводородов.

Итак, если смесь метана с хлором нагреть до $200^circ C$ или воздействовать на неё УФ-светом подходящей длины волны, протекает сильно экзотермическая реакция:

Рисунок 1. Хлорирование метана

Тепловой эффект первой стадии хлорирования метана в газовой фазе до $CH_3Cl$ и $HCl$ может быть рассчитан на основании закона Гесса.

Хлорирование метана

Рисунок 2. Хлорирование метана

Замечание 1

Суммарный тепловой эффект $Delta underline{H}^circ = – 25$ ккал/моль. Эти данные показывают, что хлорирование метана представляет собой вполне вероятный процесс, хотя тепловой эффект никоим образом не связан со скоростью реакции, которая определяется свободной энергией активации.

Радикальный механизм хлорирования метана

Хлорирование алканов при нагревании, облучении и в присутствии радикалообразующих инициаторов происходит радикально-цепным механизмом $SR$ (Семенов) и состоит из трех основных стадий:

  1. зарождение цепи (инициирование)

    Хлорирование метана

    Рисунок 3. Хлорирование метана

  2. рост цепи

    Рисунок 4. Хлорирование метана

  3. обрыв цепи (рекомбинация)

    Хлорирование метана

    Рисунок 5. Хлорирование метана

Итак, молекула хлора $Cl_2$ под действием света ($h nu $) или при нагревании получает избыток энергии, становится возбужденной и распадается на два атома, которые по своей природе являются радикалами. Атом-радикал хлора в процессе столкновений или взаимодействия с другими молекулами отщепляет атом водорода от молекулы метана $CH_4$ с образованием метильного радикала $^*CH_3$. Метательный радикал, в свою очередь, отщепляет атом хлора от следующей молекулы $Cl_2$ и т.д. Таким образом, один образованный радикал инициирует много повторений стадии роста цепи. Количество таких повторений определяет длину кинетического цепи всей реакции, для хлорирования может достигать $10 000$ и более.

На рис. 6 показана энергетическая диаграмма хлорирования метана.

Диаграмма изменения свободной энтальпии для взаимодействия атома хлора и молекулы метана

Рисунок 6. Диаграмма изменения свободной энтальпии для взаимодействия атома хлора и молекулы метана

Закономерности радикального хлорирования метана

Исходя из общетеоретических соображений атом хлора и молекула метана будут взаимодействовать между собой только тогда, когда их свободная энтальпия будет равна величине энергетического барьера (и энергии активации) 16,7 кДж / моль, которая всегда немного больше, чем просто разница (-6 кДж / моль) энергий разрыва старой связи $C-H$ (+425 кДж / моль) и образования новой связи – связи $H-Cl$ (-431 кДж / моль). Поэтому не каждое столкновение реагирующих частиц вызывает их взаимодействие, а только те, которые достаточны для преодоления этого барьера.

Дополнительная энергия активации возникает благодаря облучению или нагреву молекул. Возбужденые молекулы проявляют достаточно высокие скорости движения, кинетическая энергия которого и превращается в потенциальную энергию при столкновениях. На вершине кривой в переходном состоянии $ПС_1$ между реагирующими компонентами образуется активированный комплекс, в котором разрыв старого связи $C-H$ и формирования новой ${rm H}-Cl$ происходят примерно одновременно. Образованный метательный радикал имеет достаточную потенциальную энергию и относительно легко взаимодействует с последующей молекулой $Cl_2$. Энергия активации этой стадии составляет всего 2 кДж / моль. Формирование конечного соединения $CH_3Cl$ проходит через стадию второго активированного комплекса с переходным состоянием $ПС_2.$

Хлорирование метана и других алканов при таких температурах – плохоуправляемый процесс, который обычно не останавливается на стадии образования хлористого метила $CH_3C1$ и может происходить дальше:

Рисунок 7. Хлорирование метана

Ионный механизм хлорирования метана

В присутствии катализаторов (кислот Льюиса $A1C1_3$, $SbF_5$), способствующих ионному механизму реакции, процесс хлорирования в кислой среде имеет электрофильный характер ($Sе$). Химизм взаимодействия електроноакцепторного хлорида алюминия с молекулой хлора заключается в значительной поляризации неполярной связи $C-C$, что вызывает её диссоциацию с образованием электрофильного агента. Без таких катализаторов реакция хлорирования по ионному механизму почти не происходит, поскольку гетеролитических расщепления молекулы хлора на катион и анион требует значительной энергии (1130 кДж / моль).

Хлорирование насыщенных углеводородов при наличии катализаторов, происходит цепным ионным електрофильным механизмом ($Se$):

Хлорирование метана

Рисунок 8. Хлорирование метана

Молекула хлора при воздействии катализатора распадается гетеролически с образованием комплексной ионной пары $[A1Cl_4]-Cl+$, поскольку алюминий соединен с электроотрицательными атомами хлора и имеет потребность в электронах. В связи с этим он отщепляет от молекулы $Cl_2$ атом хлора с парой электронов. При этом одновременно образуется катион хлора, который затем взаимодействует с молекулой метана и гетеролитично разрывает связь $C-H$. Такое взаимодействие приводит к образованию метильного карбкатиона. Последний дальше вступает в реакцию с молекулой хлора и образует хлористый метил и катион хлора, реагирует с другой молекулой метана. Такие ионные реакции, в которых промежуточными частицами являются положительно заряженные ионы, называют электрофильными.

Хлорирование насыщенных углеводородов при наличии катализаторов проводят при нагревании реакционной смеси, поскольку диссоциация молекулы хлора на ионы требует значительной затраты энергии.

Источник

Радикальный механизм хлорирования метана

Закономерности радикального хлорирования метана

Ионный механизм хлорирования метана

Одной из характерных особенностей насыщенных углеводородов является их способность активно вступать в реакцию с таким химическим элементом как хлор. Молекулярный хлор обладает невысокой способностью вступать в реакцию с алканами, поэтому они хлорируются катионами или атомами хлора, обладающими большей активностью. Для осуществления процесса распада хлорной молекулы на атомы необходимо затратить энергию, составляющую 242,8 кДж/моль. Подобная диссоциация может быть легко проведена при обычных температурных условиях под воздействием ультрафиолетового света. В ходе процесса молекула хлора, поглощая ультрафиолет, получает энергию в 293,0 кДж/моль. Реализация термической диссоциации хлорной молекулы на атомы должна происходить в условиях достаточно высоких температур – около 300ºC. Затраты энергии на диссоциацию молекулы для получения ионов хлора составляют порядка 1130,2 кДж/моль. Анализируя энергетические показатели разнообразных вариантов хлорирования можно сделать вывод о том, что наиболее предпочтительным способом хлорирования насыщенных углеводородов является процесс, проводимый на свету.

Процесс хлорирования алканов по сравнению с фторированием представляет собой процесс менее экзотермический, сопровождаемый выделением теплоты в количестве 108,8 кДж/моль. Осуществление хлорирования алканов фотохимическим способом проходит с применением рассеянного света, по причине того, что воздействие прямого света при проведении реакции приводит к взрыву. В ходе реакции хлорирования происходит постепенное замещение в алканах атомами хлора атомов водорода. Для реакций данного вида характерно образование в их результате хлорпроизводных насыщенных углеводородов.

Читайте также:  Какие продукты любит мозг

Таким образом, нагревая до 200ºC смесь метана и хлора или подвергая её воздействию ультрафиолетового света, обладающего длиной волны подходящей величины, запускается реакция, сопровождаемая достаточно сильным выделением теплоты:

Для расчёта теплового эффекта, получаемого в ходе хлорирования метана, находящегося в газовой фазе, на первой стадии до состояния CH3Cl и HCl применяется закон Гесса.

Величина суммарного теплового эффекта ∆Hº равна 25 ккал/моль. Рассматриваемые показатели позволяют сделать вывод о полной вероятности проведения процесса хлорирования метана, причём сопровождающий реакцию тепловой эффект никак не связан со скоростью её протекания, определяемой количеством свободной энергии активации.

Радикальный механизм хлорирования метана

Осуществление реакции хлорирования метана, сопровождаемой нагревом и облучением, а также участием в ней инициаторов, способствующих образованию радикалов, реализует механизм радикально-цепного типа SR (Семенов), состоящий из следующих трёх базовых стадий:

инициирования цепи, или её зарождения

рост цепи

рекомбинация или обрыв цепи

Под воздействием света (hv) или под воздействием температуры молекула хлора Cl2 обретает избыточную энергию и переходит в возбуждённое состояние, которое заканчивается её распадом на два атома, являющиеся по своей природе радикалами. Взаимодействие или столкновение атома-радикала хлора с другими молекулами метана CH4 приводит к отщеплению от них водородных атомов, при котором образуется метильный радикал ●CH3. В свою очередь он отщепляет от следующей молекулы атом хлора Cl2 и т.д. Образование одного радикала, таким образом, инициирует многократное повторение стадии, при которой растёт цепь. Для протекающей реакции длина кинетической цепи определяется в соответствии с количеством подобных повторений. Для процесса хлорирования число повторений может достигать 10 и более тысяч.

Энергетическая диаграмма взаимодействия метановой молекулы и атома хлора изображена на рисунке.

Закономерности радикального хлорирования метана

Согласно общетеоретическим положениям, взаимодействие атомов хлора и молекулы метана будет происходить исключительно в случае равенства их свободной энергии величине энергии активации (или энергетического барьера), составляющего 16,7 кДж/моль. Сама по себе свободная энергия, как правило, немного больше простой разницы между энергией разрыва существующей в молекуле связи C–H (+425 кДж/моль), и образования связи нового вида H-Cl (-431 кДж/моль), которая составляет -6 кДж/моль. По этой причине взаимодействие реагирующих частиц запускается не каждым столкновением между ними, а только обладающими достаточной энергией для преодоления барьера.

Возникновение дополнительной активационной энергии связано с нагревом либо облучением молекул. В возбуждённом состоянии молекулы движутся с достаточно высокой скоростью, что позволяет при столкновении превратить их кинетическую энергию в энергию потенциальную. В переходном состоянии ПС1, соответствующем первой вершине кривой энергетической диаграммы, практически одновременно происходят разрыв старых связей C-H и образование связей нового вида H-Cl в активированном комплексе, который сформировался. Метильный радикал, образуемый в ходе реакции, обладает достаточной потенциальной энергией и впоследствии взаимодействует с молекулой хлора Cl2 сравнительно легко. Энергия, необходимая для активации данной стадии относительно не высока и составляет всего 2 кДж/моль. Окончательное образование соединения CH3Cl осуществляется в находящемся в переходном состоянии ПС2 активированном комплексе, сформировавшемся повторно.

Процесс хлорирования алканов и метана в частности, протекающий при температурах такой величины, представляет собой процесс, плохо поддающийся управлению. Обычно он не прекращается на стадии формирования соединения хлористого метила CH3Cl и способен протекать далее с получением промежуточных соединений – хлористого метилена, хлороформа и тетрахлорометана.

Ионный механизм хлорирования метана

Реакция хлорирования, осуществляемая в кислой среде в присутствии способствующих её протеканию по ионному механизму катализаторов (ими обычно являются кислоты Льюиса SbF5, AlCl3), обладает электрофильным характером (Se). Сущность процесса реагирования молекулы хлора с электроноакцепторного хлорида алюминия, в химическом плане, состоит в значительной поляризации связи C-C, являющейся до этого неполярной, приводящей к образованию электрофильного агента после её диссоциации. При отсутствии катализаторов хлорирование, происходящее по ионному механизму, практически не может осуществляться, по причине того, что для гетеролитического расщепления на анион и катион молекулы хлора необходима значительная энергия – порядка 1130 кДж/моль.

Цепной ионный электрофильный механизм (Se), по которому осуществляется хлорирование в присутствии катализаторов насыщенных углеводородов, изображен на рисунке:

Под воздействием катализатора происходит гетеролитический распад молекулы хлора, сопровождаясь возникновением ионной комплексной пары [AlCl4] – Cl +, из-за того, что алюминий соединён с атомами хлора, имеющими отрицательный электрический заряд, и нуждается в электронах. По этой причине алюминием от атома хлора Cl2 отщепляется пара электронов, сопровождаясь одновременным образованием катиона хлора, взаимодействующего впоследствии с молекулой метана гетеролитично разрывая связь C-H. Результатом данного процесса является образование метильного карбкатиона, который затем реагирует с хлорной молекулой, образуя, в конце концов, хлористый метил и катион хлора, взаимодействующий впоследствии со следующей молекулой. Ионные реакции, у которых промежуточными частицами являются ионы с положительным зарядом, имеют название реакций электрофильных.

По причине того, что для диссоциации хлорных молекул на ионы необходима значительная энергия, хлорирование углеводородов в насыщенном состоянии в присутствии катализаторов должно сопровождаться нагревом реакционной смеси.

Источник

Химические свойства, получение и применение алканов

Существует огромное число различных алканов. Их многообразие объясняется как возможностью образования углеродных цепей различной длины, так и изомерией. В связи с этим изучать химические свойства каждого алкана отдельно не представляется возможным. В то же время молекулы различных алканов имеют сходное строение: атомы углерода соединены между собой и атомами водорода одинарными ковалентными связями. Учитывая это, можно ожидать, что химические свойства  различных  алканов  будут  во многом сходными.

Все алканы характеризуются низкой химической  активностью.  Они не взаимодействуют с растворами кислот, оснований, солей. На них не действует такой сильный окислитель, как KMnO4, и такие сильные восстановители, как щелочные металлы. Вы знаете, что щелочные металлы очень активны и реагируют практически со всеми веществами, с которыми соприкасаются, в том числе легко окисляются кислородом воздуха. Чтобы уберечь щелочные металлы от окисления, их хранят под слоем керосина — смеси, состоящей в основном из насыщенных углеводородов. При этом алканы, входящие в состав керосина, не реагируют со щелочными металлами.

Из-за низкой химической активности алканов реакции с их участием протекают в жёстких условиях (при нагревании или облучении ультрафиолетовым излучением).

Читайте также:  Какие продукты нельзя есть людям с 3 группой крови

Мы изучим реакции алканов с галогенами (Cl2  и  Br2)  и  кислородом  (O2), а также превращения, которые они претерпевают при нагревании.

1. Галогенирование. Взаимодействие с галогенами

Взаимодействие алканов с галогенами — хлором и бромом — протекает при нагревании или облучении ультрафиолетовым излучением.

Если смесью газообразных метана и хлора заполнить стеклянный сосуд и поместить его в тёмное место, реакция протекать не будет. Однако при нагревании смеси или облучении её ультрафиолетовым излучением протекает химическая реакция замещения атомов водорода в молекуле метана на атомы хлора:

При каком объемном отношении метана и хлора основным продуктом реакции является

В уравнениях реакций, протекающих при облучении, над стрелкой записывают буквы hv. Данная реакция называется реакцией галогенирования и относится к реакциям замещения.

Если только один атом водорода в молекуле замещается на атом галогена, то реакцию называют моногалогенированием. Приведённая выше реакция является реакцией монохлорирования метана. В избытке хлора оставшиеся три атома водорода молекулы метана могут последовательно замещаться на галоген:

При каком объемном отношении метана и хлора основным продуктом реакции является

Приведём уравнения реакций всех четырёх стадий хлорирования метана с использованием молекулярных формул:

При каком объемном отношении метана и хлора основным продуктом реакции является

При каком объемном отношении метана и хлора основным продуктом реакции является

Рассмотрим реакции монохлорирования гомологов метана.

Монохлорирование этана

Для этана уравнение реакции следующее:

При каком объемном отношении метана и хлора основным продуктом реакции является

Отметим, что в названии «хлорэтан» нет необходимости указывать цифрой положение атома хлора. Это связано с тем, что при замещении любого атома водорода в молекуле этана на атом хлора образуется одно и то же вещество:

При каком объемном отношении метана и хлора основным продуктом реакции является

Таким образом, при монохлорировании этана так же, как и в случае метана, получается только одно органическое вещество — хлорэтан.

Монохлорирование пропана

При монохлорировании пропана образуется смесь двух органических веществ:

При каком объемном отношении метана и хлора основным продуктом реакции является

В  случае I  происходит замещение на  галоген атома водорода  при первоматоме углерода, продукт реакции 1-хлорпропан. В случае II замещается атом водорода при втором атоме углерода, продуктом реакции является 2-хлорпропан. Обратите внимание на то, что при построении названий нумерацию атомов углерода начинают с того конца углеродной цепи, к которому ближе расположен атом хлора.

В результате реакции монохлорирования пропана образуются два продукта: 1-хлорпропан и 2-хлорпропан, имеющие одинаковые молекулярные формулы C3H7Cl. Это неудивительно, ведь 1-хлорпропан и 2-хлорпропан — изомеры.

Если мы запишем уравнение реакции монохлорирования пропана с использованием молекулярных формул, оно будет выглядеть следующим образом:

Уравнение реакции, записанное в таком виде, не только не позволяет определить, какой именно продукт (1-хлорпропан или 2-хлорпропан) имеется в виду, но и приводит к распространённому заблуждению, что при монохлорировании пропана образуется только один органический продукт — C3H7Cl, хотя на самом деле их два. Поэтому в органической химии при  записи уравнений реакций обычно используют структурные, а не молекулярные формулы веществ.

В результате хлорирования алканов происходит замещение одного или нескольких атомов водорода в молекуле алкана на атомы галогена. Поэтому получающиеся органические вещества называют галогенпроизводными алканов.

Пример. Замещение двух атомов водорода хлором в молекуле этана.

Реакция протекает в два этапа.

а) Первая стадия хлорирования этана. На первой стадии происходит замещение одного атома водорода. При этом образуется только одно органическое вещество — хлорэтан:

При каком объемном отношении метана и хлора основным продуктом реакции является

б) Вторая стадия хлорирования этана. На данной стадии происходит взаимодействие молекулы хлора с молекулой хлорэтана, образовавшегося на первой стадии. Очевидно, что при этом могут образоваться два органических вещества:

При каком объемном отношении метана и хлора основным продуктом реакции является

Действительно, в результате хлорирования этана можно получить смесь двух дихлорпроизводных.

Алканы вступают в реакции замещения также с бромом. Например:

При каком объемном отношении метана и хлора основным продуктом реакции является

При каком объемном отношении метана и хлора основным продуктом реакции являетсяВ заключение ещё раз обратим внимание, что реакции алканов с хлором и бромом протекают в жёстких условиях: при облучении или нагревании.

С механизмом реакции галогенирования алканов вы можете познакомиться, перейдя по ссылке в QR-коде.

В реакциях галогенирования атомы водорода в молекуле алкана замещаются на атомы галогена, при этом углеродная цепь молекулы сохраняется. В других реакциях алканов их углеродный скелет изменяется или полностью разрушается. Рассмотрим такие реакции.

2. Пиролиз

При сильном нагревании алканов в их молекулах происходит разрыв связей  и . В результате молекулы алканов могут быть полностью разрушены с образованием углерода и водорода. Разложение веществ при высоких температурах называют пиролизом (от греч. пиро — огонь, жар и лизис — разложение, распад). Например:

Общая схема реакции пиролиза  алканов  (—  число  атомов  углерода в молекуле алкана):

Эту реакцию используют в промышленности для получения сажи и водорода.

3. Изомеризация

Ещё одним химическим свойством алканов является изомеризация, то есть превращение одного изомера в другой. Это свойство возможно для алканов, начиная с бутана, так как метан, этан и пропан изомеров не имеют. Реакция изомеризации протекает при пропускании алкана через реактор, нагретый до высокой температуры, в присутствии катализатора. При этом молекулы алканов линейного строения превращаются в молекулы разветвлённого строения, например реакция изомеризации н-бутана:

При каком объемном отношении метана и хлора основным продуктом реакции является

4. Горение.  Взаимодействие  с кислородом

Важнейшее свойство алканов — горение. Алканы воспламеняются при поджигании. Уравнение реакции горения метана:

Эта реакция вам хорошо знакома, она протекает при поджигании газа в кухонной газовой плите, ведь метан — основной компонент природного газа. Смесью пропана и изомерных бутанов наполняют газовые баллоны. Уравнения реакций горения этих алканов:

При каком объемном отношении метана и хлора основным продуктом реакции является

Последующие члены гомологического ряда алканов также горят при поджигании. Можно записать общее уравнение реакции горения:

Видно, что при горении атомы водорода из молекулы алкана переходят в молекулы воды, а атомы углерода — в молекулы углекислого газа. Если горение алкана происходит в условиях недостатка кислорода, то, наряду с углекислым газом (СО2), может образоваться угарный газ (СО) или  углерод (С) в виде сажи:

При каком объемном отношении метана и хлора основным продуктом реакции является

Отметим, что свойство гореть в кислороде присуще почти всем органическим соединениям. Поскольку все органические вещества содержат углерод, то при их горении могут образовываться оксиды углерода и сажа.

Образование угарного газа (CO) при неполном сгорании органического вещества смертельно опасно из-за высокой токсичности СО. Отравление угарным газом может произойти при неправильной эксплуатации печей и каминов.

Как видно, химические свойства алканов не отличаются большим разнообразием. Для них характерны в основном реакции окисления (в частности, горения), разложения и изомеризации при высокой температуре, а также реакции замещения, в результате которых получают галогенпроизводные алканов.

Получение и применение алканов

* Другие методы
получение алканов

Алканы входят в состав природного газа и нефти, поэтому основной метод их получения — выделение из природных источников (природного газа и нефти).

Вместе с тем, алканы могут быть получены из других органических веществ. Эти реакции мы будем рассматривать по мере дальнейшего изучения органической химии.

Читайте также:  В каком продукте есть вся группа витаминов в

При горении алканов выделяется большое количество теплоты. В связи с этим алканы используются в качестве топлива. Мы уже говорили, что метан является основным компонентом природного газа. Смесью пропана   и изомерных бутанов заполняют газовые баллоны. Жидкие алканы входят  в состав бензина и дизельного топлива.

Другим направлением использования алканов является получение из них различных веществ. То есть алканы применяются в качестве сырья в химической промышленности. Взаимодействием метана с водяным паром получают водород:

Этот процесс называют конверсией метана. Образующаяся смесь водорода и оксида углерода(II) называется синтез-газом. Из водорода, выделенного из синтез-газа, и азота воздуха получают аммиак. Эти процессы осуществляют в больших масштабах на предприятии ОАО «Гродно Азот».

Из алканов получают углеводороды с двойными и тройными связями (ненасыщенные углеводороды). Эти углеводороды являются химически более активными, и из них синтезируют множество полезных органических веществ. Способы получения и свойства ненасыщенных углеводородов рассмотрим в следующих параграфах.

Молекулы различных алканов имеют сходное строение, поэтому алканы обладают сходными химическими свойствами.

Алканы при повышенной температуре или облучении вступают в реакции замещения с галогенами (хлором и бромом), в результате которых углеродный скелет молекулы алкана сохраняется, а атомы водорода замещаются атомами галогенов.

При сильном нагревании алканов в их молекулах происходит разрыв связей  и . В результате молекулы алканов могут быть полностью разрушены с образованием углерода и водорода (пиролиз).

Нагревая алканы неразветвлённого строения в присутствии катализатора, можно получить разветвлённые алканы (изомеризация).

Алканы сгорают в кислороде. В результате реакции могут образовываться СО2, СО, С и Н2О.

Алканы содержатся в природном газе и нефти.

Алканы в основном используются в качестве топлива, а также для получения других веществ (водород, ненасыщенные углеводороды).

*Механизм реакции галогенирования алканов

Для того чтобы метан вступил в реакцию замещения с хлором, необходимо облучение смеси ультрафиолетовым излучением. Интересно, что данная реакция продолжается и после прекращения облучения.

Какое же воздействие оказывает ультрафиолетовое излучение на смесь метана с хлором? Сначала под действием излучения молекула хлора распадается на два атома хлора, каждый из которых имеет неспаренный электрон. Эта реакция называется инициированием:

img

Частицы, имеющие неспаренный электрон, называются радикалами. Радикалы при обычных условиях чрезвычайно неустойчивы и сразу же вступают во взаимодействие с другими молекулами.

Так, образовавшийся в результате распада молекулы хлора радикал Cl• взаимодействует с молекулой метана. При этом образуется молекула хлороводорода и радикал метил •CH3:

(1)

Радикал •CH3, в свою очередь, взаимодействует со следующей молекулой хлора, образуя хлорметан и новый радикал хлор:

(2)

Далее снова повторяются превращения (1) и (2). Цепочка этих превращений может повторяться сотни раз, поэтому подобные реакции называют цепными. Реакции (1) и (2) называются ростом цепи:

img

Цепь может оборваться в результате взаимодействия двух радикалов. Такая реакция называется обрывом цепи:

img

Следует отметить, что облучение смеси ультрафиолетовым светом необходимо лишь для распада молекулы хлора на атомы — стадии инициирования. Так как на стадии роста цепи в реакциях участвуют активные частицы (радикалы), то на этой стадии подвод энергии уже не требуется. Поэтому реакция хлорирования метана продолжает протекать даже после прекращения облучения.

По цепному радикальному механизму протекает реакция между водородом и кислородом, известная вам из курса неорганической химии. Такие реакции идут с очень большими скоростями и могут сопровождаться взрывом.

*Получение алканов

Нагревание солей карбоновых кислот со щёлочью

Алканы можно получить нагреванием натриевых солей карбоновых кислот с гидроксидом натрия. Так, при нагревании твёрдой смеси натриевой соли уксусной кислоты (ацетата натрия) с гидроксидом натрия образуется метан. Уравнение реакции:

img

Реакция Вюрца

Одним из методов получения алканов является реакция Вюрца, которая заключается во взаимодействии галогенпроизводных алканов с металлическим натрием. В качестве примера приведём реакцию получения этана:

img

Очевидно, что данную реакцию следует использовать для получения алканов симметричного строения, т. е. состоящих из двух одинаковых частей.

Реакция названа в честь её первооткрывателя — французского химика Шарля Адольфа Вюрца (1817–1884).

Вопросы и задания

1. Напишите уравнение реакции монобромирования этана.

2. Напишите уравнения реакций, которые протекают при взаимодействии н-бутана с хлором. Считайте, что только один атом водорода в молекуле н-бутана замещается на хлор. Подпишите названия образующихся органических веществ.

3. Сколько хлорпроизводных можно получить в результате хлорирования этана? Напишите уравнения реакций получения всех возможных хлорпроизводных этана, назовите хлорпроизводные. Можно ли при записи уравнений реакций в данном случае использовать молекулярные формулы?

4. Напишите уравнение реакции горения бутана в избытке кислорода. Какой объём (н. у.) углекислого газа образуется при сжигании 1 моль бутана?

5. Напишите уравнение реакции пиролиза метана с образованием водорода и углерода. Найдите массу углерода, который может быть получен при полном разложении 44,8 дм3 (н. у.) метана.

6. Назовите основные области применения алканов.

7*. Напишите уравнения реакций, при помощи которых из этана и неорганических веществ можно получить н-бутан.

8*. В результате реакции хлорирования этана образуется небольшое количество н-бутана. Объясните данное явление, напишите уравнения соответствующих реакций.

9*. Напишите структурную формулу вещества состава С3Н6О2, если известно, что его водный раствор имеет кислую реакцию, а при прокаливании его натриевой соли с NaOH образуется этан. Напишите уравнения протекающих реакций. (Ответ: пропановая кислота.)

10*. Предложите две возможные структурные формулы вещества состава С4Н8О2, если известно, что его раствор имеет кислую реакцию. При прокаливании натриевой соли вещества с гидроксидом натрия образуется пропан. (Ответ: бутановая кислота и 2-метилпроановая кислота.)

11*. Установите строение углеводорода С6Н14, при монобромировании которого образуется третичное бромпроизводное. Этот углеводород может быть получен по методу Вюрца без побочных продуктов. Напишите схемы протекающих реакций. (Ответ: 2,3-диметилбутан.)

12*. Получите пропан из уксусной кислоты.

13*. В газообразной смеси метана и хлора на три молекулы метана приходится одна молекула хлора.

а) Рассчитайте массовые доли метана и хлора в этой смеси.

б) Исходную смесь объёмом 45 л (н. у.) поместили в замкнутый сосуд и облучили светом. Считая, что только один атом водорода в молекуле метана замещается на хлор, рассчитайте массы всех веществ в смеси, образовавшейся после окончания реакции.

(Ответ:
а) Массовые доли: метана — 40,3 %; хлора — 59,7 %.
б) m(CH4) = 16 г; m(CH3Cl) = 25,25 г; m(HCl) = 18,25 г.)

Источник