С каким свойством пространства связан закон сохранения импульса
В предыдущих разделах рассмотрены три фундаментальных закона природы: закон сохранения импульса, момента импульса и энергии. Следует
понимать, что эти законы выполняются только в инерциальных системах отсчета.
В самом деле, при выводе этих законов мы пользовались вторым и третьим законами Ньютона, а они применимы только в инерциальных
системах. Напомним также, что импульс и момент импульса сохраняются в том случае, если система замкнутая (сумма всех внешних сил и
всех моментов сил равна нулю). Для сохранения же энергии тела условия замкнутости недостаточно – тело должно быть еще и адиабатически
изолированным (т.е. не участвовать в теплообмене).
Во всей истории развития физики законы сохранения оказались чуть ли не единственными законами, сохранившими свое значение при
замене одних теорий другими. Эти законы тесно связаны с основными свойствами пространства и времени.
равнозначность всех моментов времени (симметрия по отношению к сдвигу начала отсчета времени). Равнозначность следует понимать в
том смысле, что замена момента времени t1 на момент времени t2, без изменения значений
координат и скорости частиц, не изменяет механические свойства системы. Это означает то, что после указанной замены, координаты
и скорости частиц имеют в любой момент времени t2 + t такие же значения, какие имели
до замены, в момент времени t1 + t.
одинаковость свойств пространства во всех точках (симметрия по отношению к сдвигу начала координат). Одинаковость следует понимать
в том смысле, что параллельный перенос замкнутой системы из одного места пространства в другое, без изменения взаимного расположения
и скоростей частиц, не изменяет механические свойства системы.
одинаковость свойств пространства по всем направлениям (симметрия по отношению к повороту осей координат). Одинаковость следует
понимать в том смысле, что поворот замкнутой системы, как целого, не отражается на её механических свойствах.
Между законами типа основного уравнения динамики и законами сохранения имеется принципиальная разница. Законы динамики дают нам
представление о детальном ходе процесса. Так, если задана сила, действующая на материальную точку и начальные условия, то можно
найти закон движения, траекторию, величину и направление скорости в любой момент времени и т. п. Законы же сохранения не дают
нам прямых указаний на то, как должен идти тот или иной процесс. Они говорят лишь о том, какие процессы запрещены и потому в
природе не происходят.
Таким образом, законы сохранения проявляются как принципы запрета: любое явление, при котором не выполняется хотя бы один из
законов сохранения, запрещено, и в природе такие явления никогда не наблюдаются. Всякое явление, при котором не нарушается ни
один из законов сохранения, в принципе может происходить.
Рассмотрим следующий пример. Может ли покоящееся тело за счет внутренней энергии начать двигаться? Этот процесс не противоречит
закону сохранения энергии. Нужно лишь, чтобы возникающая кинетическая энергия точно равнялась убыли внутренней энергии.
На самом деле такой процесс никогда не происходит, ибо он противоречит закону сохранения импульса. Раз тело покоилось, то его
импульс был равен нулю. А если оно станет двигаться, то его импульс сам собой увеличится, что невозможно. Поэтому внутренняя
энергия тела не может превратиться в кинетическую, если тело не распадётся на части.
Если же допустить возможность распада этого тела на части, то запрет, налагаемый законом сохранения импульса, снимается. При этом
возникшие осколки могут двигаться так, чтобы их центр масс оставался в покое, – а только этого и требует закон сохранения импульса.
Итак, для того чтобы внутренняя энергия покоящегося тела могла превратиться в кинетическую, это тело должно распасться на части.
Если же есть еще один какой-либо закон, запрещающий распад этого тела на части, то его внутренняя энергия и масса покоя будут
постоянными величинами.
Фундаментальность законов сохранения заключается в их универсальности. Они справедливы при изучении любых физических
процессов (механических, тепловых, электромагнитных и др.). Они одинаково применимы в релятивистском и нерелятивистском движении,
в микромире, где справедливы квантовые представления, и в макромире, с его классическими представлениями.
Источник
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 ноября 2017; проверки требуют 20 правок.
Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) — закон, утверждающий, что сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю[1].
В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении системы в пустом пространстве импульс сохраняется во времени, а при наличии внешнего воздействия скорость изменения импульса определяется суммой приложенных сил.
Как и любой из фундаментальных законов сохранения, закон сохранения импульса связан, согласно теореме Нётер, с одной из фундаментальных симметрий, — однородностью пространства[2].
Закон сохранения импульса впервые был сформулирован Р. Декартом[3].
Вывод в механике Ньютона[править | править код]
Согласно второму закону Ньютона, для системы из N частиц выполняется соотношение
где — импульс системы:
— импульс материальной точки, а — равнодействующая всех сил, приложенных к частицам системы:
Здесь — сила (или сумма сил, если таковых несколько), действующая на n-ю частицу со стороны m-ой, а — равнодействующая всех внешних сил, приложенных к k-й частице.
Согласно третьему закону Ньютона, силы вида и равны по абсолютному значению и противоположны по направлению, то есть . Поэтому вторая сумма в правой части выражения для будет равна нулю, внутренние силы исключаются, и получаем, что производная импульса системы по времени равна векторной сумме всех внешних сил, действующих на систему:
Для системы из N частиц, в которой сумма всех внешних сил равна нулю:
и тем более для системы, на частицы которой не действуют внешние силы
( для всех k от 1 до N), имеем
Как известно, если производная от некоторого выражения равна нулю, то это выражение есть постоянная величина относительно переменной дифференцирования, а значит:
(постоянный вектор).
То есть суммарный импульс системы из N частиц является постоянной величиной. При N = 1 получаем выражение для случая одной частицы. Таким образом, следует вывод[1]:
Если векторная сумма всех внешних сил, действующих на систему, равна нулю, то импульс системы сохраняется, то есть не меняется со временем.
Закон сохранения импульса выполняется не только для систем, на которые не действуют внешние силы, он справедлив и в тех случаях, когда сумма всех внешних сил, действующих на систему, равна нулю. То есть отсутствие внешних сил, действующих на систему, достаточно, но не необходимо для выполнения закона сохранения импульса.
Если проекция суммы внешних сил на какое-либо направление или координатную ось равна нулю, то в этом случае говорят о законе сохранения проекции импульса на данное направление или координатную ось.
Связь с однородностью пространства[править | править код]
Согласно теореме Нётер каждому закону сохранения ставится в соответствие некая симметрия уравнений, описывающих систему. В частности, закон сохранения импульса эквивалентен однородности пространства, то есть независимости всех законов, описывающих систему, от положения системы в пространстве. Простейший вывод этого утверждения основан на применении лагранжева подхода к описанию системы.
Вывод из закона сохранения энергии[править | править код]
Рассмотрим систему нескольких соударяющихся упругим образом (без превращения части механической энергии в другие формы) частиц с массами и скоростями до столкновений и после столкновений. Закон сохранения энергии имеет вид
Перейдём в систему отсчёта, равномерно и прямолинейно движущуюся со скоростью . Скорости частиц с точки зрения этой системы отсчёта будут до столкновений и после столкновений. Закон сохранения энергии с точки зрения этой системы имеет вид
или
Следовательно , откуда следует . Поскольку скорость произвольна, то последнее равенство будет справедливым только в случае выполнения закона сохранения импульса
[4]
Вывод из формализма Лагранжа[править | править код]
Рассмотрим функцию Лагранжа свободного тела зависящую от обобщённых координат обобщённых скоростей и времени . Здесь точка над обозначает дифференцирование по времени, Выберем для рассмотрения прямоугольную декартову систему координат, тогда для каждой -той частицы. Используя однородность пространства, мы можем дать всем радиус-векторам частиц одинаковое приращение, которое не будет влиять на уравнения движения: где В случае постоянства скорости функция Лагранжа изменится следующим образом:
,
где суммирование идет по всем частицам системы. Так как приращение не влияет на уравнения движения, вариация функции Лагранжа должна быть равной нулю: С учётом того, что вектор — произвольный, последнее требование выполняется при:
Воспользуемся уравнением Лагранжа
Это означает, что сумма, стоящая под знаком дифференциала, — постоянная величина для рассматриваемой системы. Сама сумма и есть суммарный импульс системы:
.
Учитывая, что лагранжиан свободной частицы имеет вид: нетрудно видеть, что последнее выражение совпадает с выражением в ньютоновом формализме:
Для релятивистской свободной частицы лагранжиан имеет несколько другую форму: что приводит к релятивистскому определению импульса
В настоящее время не существует каких-либо экспериментальных фактов, свидетельствующих о невыполнении закона сохранения импульса.
Закон сохранения импульса в квантовой механике[править | править код]
Закон сохранения импульса в изолированных системах выполняется и в квантовой механике[5][6]. В тех явлениях, когда проявляются корпускулярные свойства частиц, их импульс, как и в классической механике, равен , а когда проявляются волновые свойства частиц, их импульс равен , где – длина волны[7]. В квантовой механике закон сохранения импульса является следствием симметрии относительно сдвигов по координатам[8].
Закон сохранения импульса в теории относительности[править | править код]
Закон сохранения импульса выполняется и в теории относительности. Отличие от классической механики состоит лишь в том, что в теории относительности зависимость импульса от
скорости имеет вид
[9][6]
В общей теории относительности, аналогично ситуации с законом сохранения энергии, при переходе к искривлённому пространству-времени закон сохранения импульса, выражаемый пространственными компонентами соотношения для тензора энергии-импульса
где точка с запятой выражает ковариантную производную, приводит лишь к локально сохраняющимся величинам. Это связано с отсутствием глобальной однородности пространства в пространстве-времени общего вида.
Можно придумать такие определения импульса гравитационного поля, что глобальный закон сохранения импульса будет выполняться при движении во времени системы тел и полей, но все такие определения содержат элемент произвола, так как вводимый импульс гравитационного поля не может быть тензорной величиной при произвольных преобразованиях координат.
См. также[править | править код]
- Закон сохранения момента импульса
- Теорема о движении центра масс системы
- Теорема об изменении количества движения системы
Ссылки[править | править код]
- Опыт с шарами по демонстрации закона сохранения импульса (видео)
Литература[править | править код]
- Кузнецов Б. Г. Принципы классической физики. — М.: АН СССР, 1958. — 321 с.
- Фейнман Р. Ф. Фейнмановские лекции по физике. Вып. 1 Современная наука о природе. Законы механики.. — М.: Едиториал УРСС, 2004. — 440 с. — ISBN 5-354-00699-6.
- Широков Ю. М., Юдин Н. П. Ядерная физика. — М.: Наука, 1972. — 670 с.
- Готт В. С. Философские вопросы современной физики. — М.: Высшая школа, 1972. — 416 с.
- Ферми Э. Квантовая механика. — М.: Мир, 1968. — 367 с.
Примечания[править | править код]
- ↑ 1 2 Тарг С. М. Краткий курс теоретической механики. — М.: Высшая школа, 1995. — С. 282. — 416 с. — ISBN 5-06-003117-9.
- ↑ Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. — 4-е изд., испр. — М.: «Наука», 1988. — Т. I. Механика. — С. 26. — 215 с. — ISBN 5-02-013850-9.
- ↑ Готт, 1972, с. 222.
- ↑ Кузнецов, 1958, с. 135.
- ↑ Перкинс Д.[en] Введение в физику высоких энергий. — М., Мир, 1975. — c. 94
- ↑ 1 2 Широков, 1972, с. 276.
- ↑ Фейнман, 2004, с. 194.
- ↑ Ферми, 1968, с. 183.
- ↑ Фейнман, 2004, с. 193.
Источник
Законы сохранения энергии и импульса, как и законы Ньютона, выполняются в любых инерциальных системах отсчета. Другими словами, эти законы удовлетворяют механическому принципу относительности. Хотя и механическая энергия, и импульс рассматриваемой системы материальных точек имеют разные значения в разных системах отсчета, их изменение во всех инерциальных системах отсчета описывается одними и теми же законами.
В замкнутых механических системах при любых взаимодействиях частиц полный импульс системы сохраняется независимо от того, будут ли внутренние силы потенциальными или непотенциальными. При наличии внешних сил изменение полного импульса системы равно суммарному импульсу этих сил.
В консервативных механических системах сохраняется полная механическая энергия. При наличии непотенциальных сил изменение энергии равно суммарной работе этих сил, как внешних, так и внутренних. Для «истинно механических», замкнутых систем, где нет так называемых диссипативных сил, подобных силам
трения, полная энергия сохраняется. Когда на такую систему действуют внешние силы, изменение ее энергии равно работе этих внешних сил.
Законы сохранения энергии и импульса тесно связаны с определенными свойствами симметрии пространства и времени. Хотя выше они были получены как следствие законов динамики Ньютона, в действительности они представляют собой более общие принципы, область их применения шире и не ограничивается ньютоновской динамикой.
Однородность пространства. Сохранение импульса в замкнутой системе связано с однородностью пространства. Однородность пространства означает, что все явления в замкнутой системе не изменятся, если осуществить параллельный перенос системы из одного места в другое таким образом, чтобы все тела в ней оказались в тех же условиях, в каких они находились в прежнем положении. При таком переносе потенциальная энергия взаимодействия тел, которая, как это следует из однородности пространства, зависит только от их взаимного расположения, остается неизменной. Значит, при переносе всех тел замкнутой системы на один и тот же вектор равна нулю работа всех внутренних сил
Так как — произвольный вектор, одинаковый во всех слагаемых этой суммы, то отсюда следует, что
т. е. сумма сил в замкнутой системе равна нулю. Это и есть то условие, при выполнении которого второй закон Ньютона приводит к закону сохранения импульса. В этих рассуждениях третий закон Ньютона уже не используется. Вместо него использовано одно из свойств симметрии пространства — однородность.
Из приведенных рассуждений следует не только закон сохранения полного импульса системы, но и сам третий закон Ньютона для любого взаимодействия двух тел. Действительно, в частном случае системы из двух тел равенство (1) принимает вид откуда
Однородность времени. Сохранение энергии в замкнутой системе связано с однородностью времени. Однородность времени заключается в том, что все явления в замкнутой системе при одинаковых начальных условиях будут дальше протекать совершенно одинаково, независимо от того, в какой момент времени эти начальные условия созданы. Это означает, что энергия системы определяется
только ее механическим состоянием, т. е. зависит только от положений и скоростей образующих ее частиц. С течением времени механическое состояние системы изменяется, т. е. радиусы-векторы частиц и их скорости являются функциями времени. Однако энергия системы явно от времени не зависит — вся зависимость энергии замкнутой системы от времени может проистекать только из-за зависимости
Явная зависимость энергии от времени могла бы соответствовать, например, изменению интенсивности гравитационного взаимодействия с течением времени. В этом случае механическая энергия замкнутой системы не сохранялась бы. Однако опыт показывает, что это не так. Если бы по понедельникам гравитационная постоянная была больше своего обычного значения в соответствии с поговоркой: «Понедельник — день тяжелый», то, с легкостью подняв груз на некоторую высоту в субботу или воскресенье, в понедельник можно было бы получить от него ббльшую работу за счет того, что его потенциальная энергия возросла благодаря увеличению гравитационной постоянной. Мы получили бы «вечный двигатель», качающий энергию из времени.
Однородность времени не только приводит к закону сохранения энергии, но и делает возможным сам факт существования науки, устанавливающей объективные законы природы. Справедливость таких законов подтверждается опытами, которые могут быть воспроизведены в любое время, любую эпоху.
Связь пространства и времени. В классической физике представления о пространстве и времени на первый взгляд совершенно независимы друг от друга. Свойство симметрии пространства — его однородность — приводит к закону сохранения импульса замкнутой системы. Аналогичное свойство симметрии времени связано с законом сохранения энергии замкнутой консервативной системы. Однако уже в рамках классической физики связь между понятиями пространства и времени в действительности четко проявляется. А именно, изменение импульса, сохранение которого связано со свойствами пространства, определяется временнбй характеристикой действия силы — ее импульсом И наоборот, изменение энергии, сохранение которой связано со свойствами времени, определяется пространственной характеристикой действия силы — ее работой В релятивистской физике понятия пространства и времени переплетаются настолько тесно, что можно говорить только о едином физическом пространстве-времени, или о четырехмерном пространственно-временном континууме. Понятия пространства самого по себе и времени самого по себе уже утрачивают физический смысл.
• С какими свойствами симметрии пространства и времени связаны законы сохранения импульса и энергии?
• Покажите, как третий закон Ньютона для взаимодействий любой природы можно обосновать, основываясь на однородности физического пространства.
Сохранение энергии и однородность времени. Приведенный ранее вывод закона сохранения механической энергии фактически был основан на интегрировании в общем виде уравнений динамики (второго закона Ньютона). Именно так была получена теорема о кинетической энергии. Можно дать другое доказательство закона сохранения энергии, основанное на представлении об однородности времени.
Энергия замкнутой системы является функцией ее механического состояния, т. е. зависит от радиусов-векторов и импульсов входящих в систему частиц и не зависит явно от времени: Она представляет собой сумму кинетической энергии зависящей от импульсов частиц, и потенциальной энергии зависящей от их положения:
Продифференцируем энергию по времени, учитывая, что меняются со временем:
При дальнейшем преобразовании этого выражения учтем, что в соответствии со вторым законом Ньютона (здесь — равнодействующая всех сил, действующих на частицу); — градиент потенциальной энергии, определяющий действующую на частицу потенциальную силу; наконец, что следует из явного выражения для кинетической энергии Подставляя эти соотношения в (3), приходим к равенству
где — непотенциальная сила, действующая на частицу: Согласно (4) скорость изменения механической энергии замкнутой системы равна мощности действующих в системе непотенциальных сил. При отсутствии таких сил система консервативна и ее механическая энергия сохраняется:
В этом выводе однородность времени проявилась в том, что энергия системы считалась не зависящей от времени явно. В противном случае в правой части выражения (3) появилось бы еще одно слагаемое учитывающее эту зависимость. Мы получили бы , и энергия системы не сохранилась бы.
Симметрия при масштабных преобразованиях. Следствия свойств симметрии не всегда проявляются так наглядно и просто, как в разобранных выше случаях. Симметрия присуща не только пространству и времени, но и самой физической системе. Проявления симметрии могут быть весьма неожиданными и обнаруживать себя в завуалированной форме.
Определенная симметрия характерна и для физических законов, устанавливающих соотношения между характеристиками систем или их изменениями со временем. Она заключается в инвариантности (неизменности) законов или выражающих их уравнений при определенных преобразованиях, которым могут быть подвергнуты физические системы. Одним из таких преобразований является так называемое масштабное преобразование, при котором координаты и время изменяются в определенное число раз:
где — заданные числовые множители.
Выясним, как при таком преобразовании координат и времени преобразуется энергия системы, равная сумме кинетической и потенциальной энергий. При неизменной массе кинетическая энергия, пропорциональная квадрату скорости, очевидно, преобразуется следующим образом:
Чтобы сказать, как преобразуется потенциальная энергия, нужно знать, как она зависит от координат. Напомним, что потенциальные энергии тела в однородном поле тяжести, в ньютоновском поле тяготения и потенциальную энергию упруго деформированной пружины можно записать как определенную функцию координат:
если для каждой из них выбрать начало отсчета соответствующим образом. Это значит, что зависимость каждой из них от соответствующей координаты (где под нужно понимать соответственно или имеет степенной характер:
где для однородного поля, для ньютонова поля тяготения и для упругой пружины.
Из (7) следует, что любая из приведенных потенциальных энергий преобразуется как
Легко видеть, что при определенном выборе таком, что т. е. при
полная механическая энергия преобразуется следующим образом:
Вот здесь-то и начинается самое интересное.
Физическое подобие. Преобразование энергии (10) при преобразовании координат и времени по формулам (5) можно трактовать просто как изменение масштабов используемых единиц длины и времени в заданной физической системе.
Но это же преобразование (10) можно рассматривать и как преобразование энергии при изменении самой физической системы, считая единицы измерения прежними. Например, можно мысленно увеличить все расстояния в несколько раз. Скажем, можно увеличить вдвое радиус орбиты, по которой планета обращается вокруг Солнца, или втрое увеличить высоту, с которой свободно падает тело в однородном поле тяжести Земли, или вчетверо увеличить растяжение пружины. Если при этом время тоже изменить согласно второй из формул (5), причем коэффициент выбрать в соответствии с (9), то по виду преобразования энергии (10) мы не сможем определить, которая из упомянутых двух возможностей была реализована.
Симметрия по отношению к этим возможностям трактовки формулы (10) означает, что при реальном изменении линейных размеров физической системы в а раз все характерные времена в ней изменятся в раз, где в соответствии с (9): В частности, при имеем видно, что в однородном поле время падения с вдвое большей высоты будет больше в раз. При имеем что соответствует третьему закону Кеплера: квадраты периодов пропорциональны кубам линейных размеров геометрически подобных орбит. При получаем — характерное время (период) при колебаниях груза на упругой пружине не зависит от размаха этих колебаний (амплитуды).
Таким образом, использование симметрии физических законов по отношению к масштабным преобразованиям позволяет
найти связь пространственных и временных характеристик движения без обращения к законам динамики.
• В чем проявляется симметрия физических законов по отношению к масштабным преобразованиям?
• Кинооператор снимает сцену взрыва моста на модели в одну десятую натуральной величины. Как следует изменить частоту кадров при съемке, чтобы в кинофильме сцена выглядела правдоподобно?
Источник