С каким свойством пространства связан закон сохранения момента импульса
В предыдущих разделах рассмотрены три фундаментальных закона природы: закон сохранения импульса, момента импульса и энергии. Следует
понимать, что эти законы выполняются только в инерциальных системах отсчета.
В самом деле, при выводе этих законов мы пользовались вторым и третьим законами Ньютона, а они применимы только в инерциальных
системах. Напомним также, что импульс и момент импульса сохраняются в том случае, если система замкнутая (сумма всех внешних сил и
всех моментов сил равна нулю). Для сохранения же энергии тела условия замкнутости недостаточно – тело должно быть еще и адиабатически
изолированным (т.е. не участвовать в теплообмене).
Во всей истории развития физики законы сохранения оказались чуть ли не единственными законами, сохранившими свое значение при
замене одних теорий другими. Эти законы тесно связаны с основными свойствами пространства и времени.
равнозначность всех моментов времени (симметрия по отношению к сдвигу начала отсчета времени). Равнозначность следует понимать в
том смысле, что замена момента времени t1 на момент времени t2, без изменения значений
координат и скорости частиц, не изменяет механические свойства системы. Это означает то, что после указанной замены, координаты
и скорости частиц имеют в любой момент времени t2 + t такие же значения, какие имели
до замены, в момент времени t1 + t.
одинаковость свойств пространства во всех точках (симметрия по отношению к сдвигу начала координат). Одинаковость следует понимать
в том смысле, что параллельный перенос замкнутой системы из одного места пространства в другое, без изменения взаимного расположения
и скоростей частиц, не изменяет механические свойства системы.
одинаковость свойств пространства по всем направлениям (симметрия по отношению к повороту осей координат). Одинаковость следует
понимать в том смысле, что поворот замкнутой системы, как целого, не отражается на её механических свойствах.
Между законами типа основного уравнения динамики и законами сохранения имеется принципиальная разница. Законы динамики дают нам
представление о детальном ходе процесса. Так, если задана сила, действующая на материальную точку и начальные условия, то можно
найти закон движения, траекторию, величину и направление скорости в любой момент времени и т. п. Законы же сохранения не дают
нам прямых указаний на то, как должен идти тот или иной процесс. Они говорят лишь о том, какие процессы запрещены и потому в
природе не происходят.
Таким образом, законы сохранения проявляются как принципы запрета: любое явление, при котором не выполняется хотя бы один из
законов сохранения, запрещено, и в природе такие явления никогда не наблюдаются. Всякое явление, при котором не нарушается ни
один из законов сохранения, в принципе может происходить.
Рассмотрим следующий пример. Может ли покоящееся тело за счет внутренней энергии начать двигаться? Этот процесс не противоречит
закону сохранения энергии. Нужно лишь, чтобы возникающая кинетическая энергия точно равнялась убыли внутренней энергии.
На самом деле такой процесс никогда не происходит, ибо он противоречит закону сохранения импульса. Раз тело покоилось, то его
импульс был равен нулю. А если оно станет двигаться, то его импульс сам собой увеличится, что невозможно. Поэтому внутренняя
энергия тела не может превратиться в кинетическую, если тело не распадётся на части.
Если же допустить возможность распада этого тела на части, то запрет, налагаемый законом сохранения импульса, снимается. При этом
возникшие осколки могут двигаться так, чтобы их центр масс оставался в покое, – а только этого и требует закон сохранения импульса.
Итак, для того чтобы внутренняя энергия покоящегося тела могла превратиться в кинетическую, это тело должно распасться на части.
Если же есть еще один какой-либо закон, запрещающий распад этого тела на части, то его внутренняя энергия и масса покоя будут
постоянными величинами.
Фундаментальность законов сохранения заключается в их универсальности. Они справедливы при изучении любых физических
процессов (механических, тепловых, электромагнитных и др.). Они одинаково применимы в релятивистском и нерелятивистском движении,
в микромире, где справедливы квантовые представления, и в макромире, с его классическими представлениями.
Источник
Из уравнения динамики вращательного движения следует, что если суммарный момент внешних сил равен нулю, то момент импульса тела или системы тел остается постоянным
Закон сохранения момента импульса: векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.
Для замкнутой механической системы условие равенства нулю суммарного момента внешних сил выполняется всегда.
При неизменном моменте инерции тела и равном нулю моменте внешних сил угловая скорость вращения будет постоянной как по величине, так и по направлению. Если момент инерции тела изменяется, то одновременно должна изменяться и угловая скорость его вращения, чтобы произведение
оставалось постоянным. Изменение момента инерции тела может происходить под действием внутренних сил, вызывающих перемещение частей тела.
Яркой демонстрацией закона сохранения момента импульса служат опыты со скамьей Жуковского, которая представляет собой металлическую платформу, способную вращаться относительно вертикальной оси с малым трением (рис. 12).
Фигурист на коньках или балерина, чтобы сообщить своему телу быстрое вращение, при первом толчке разводят руки в стороны, а затем приближают их к телу. В результате момент инерции тела уменьшается, а скорость вращения возрастает.
Закон сохранения момента импульса позволяет при изучении вращательного движения исключить из рассмотрения моменты внутренних сил. При соответствующем выборе осей исключается также действие ряда внешних сил, моменты которых относительно выбранных осей равны нулю. Поэтому он широко применяется в технических расчетах.
И в заключении, рассмотрим связь закона сохранения момента импульса с изотропностью пространства.
Изотропность пространства проявляется в том, что физические свойства и законы движения замкнутой системы не изменяются при ее повороте в пространстве как целого на любой угол, т.е. не зависят от выбора направления осей координат инерциальной системы отсчета. В частности, при произвольном малом повороте замкнутой системы как целого вокруг неподвижной точки – начала координат – должна быть равна нулю работа всех сил, действующих в системе. Если момент силы относительно точки , а – радиус – вектор, проведенный в -ю точку системы из точки , то согласно уравнению
Так как , должна быть равна нулю сумма моментов относительно точки всех внутренних сил:
Из этого соотношения и уравнения динамики вращательного движения следует закон сохранения момента импульса замкнутой системы.
Закон сохранения момента импульса имеет важное значение для современной физики, где понятие момента импульса расширяется на немеханические системы и постулируется сохранение момента импульса для всех физических процессов. Так, каждая элементарная частица (протон, нейтрон) обладает собственным моментом импульса (спином). Сумма этих моментов сохраняется, например, в ядерных реакциях, которые сопровождаются превращением одних элементарных частиц в другие. При этом могут выполняться законы сохранения и других физических величин: импульса, энергии и др. Закон сохранения момента импульса – фундаментальный закон природы.
Источник
При сравнении законов вращательного и поступательного движений просматривается аналогия между ними, только во вращательном движении вместо силы «выступает» ее момент, роль массы играет момент инерции. Какая же величина будет аналогом импульса тела? Ею является момент импульса тела относительно оси.
Моментом импульса (количества движения)материальной точки А относительно неподвижной точкиО называется физическая величина, определяемая векторным произведением:
L= [rp| = [rmv],
где r — радиус-вектор, проведенный из точки О в точку A; p = mv — импульс материальной точки (рис.28); L—псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к p. Модуль вектора момента импульса
L = rpsinalfa=mvrsinalfa=pl,
где a — угол между векторами r и p, l — плечо вектора р относительно точки О.
Моментом импульса относительно неподвижной осиz называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Значение момента импульса Lzне зависит от положения точки О на оси z.
При вращении абсолютно твердого тела вокруг неподвижной оси z каждая отдельная точка тела движется по окружности постоянного радиуса ri с некоторой
скоростью vi. скорость vi; и импульс mivi
перпендикулярны этому радиусу, т. е. радиус является плечом вектора mivi. Поэтому можем записать, что момент импульса отдельной частицы
Liz = тiviri (19.1)
и направлен по оси в сторону, определяемую правилом правого винта.
Момент импульса твердого телаотносительно оси есть сумма моментов импульса отдельных частиц:
Используя формулу (17.1) vi = wri, получим
т. е.
Lz = Jzw. (19.2)
Таким образом, момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость.
Продифференцируем уравнение (19.2) по времени:
т. е.
dLz/dt= Mz
Это выражение — еще одна форма уравнения (закона) динамики вращательного движения твердого телаотносительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.
Можно показать, что имеет место векторное равенство
dL/dt= М. (19.3)
В замкнутой системе момент внешних сил М=0 и dL/dt=0, откуда
L = const. (19.4)
Выражение (19.4) представляет собой закон сохранения момента импульса:момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.
Закон сохранения момента импульса — фундаментальный закон природы, Он связан со свойством симметрии пространства — его изотропностью, т. е. с ин-
вариантностью физических законов относительно выбора направления осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).
Продемонстрировать закон сохранения момента импульса можно с помощью скамьи Жуковского. Пусть человек, сидящий на скамье, которая без трения вращается вокруг вертикальной оси, и держащий в вытянутых руках гантели (рис. 29), приведен во вращение с угловой скоростью w1. Если человек прижмет гантели к себе, то момент инерции системы уменьшится. Поскольку момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения w2 возрастает. Аналогично, гимнаст во время прыжка через голову поджимает к туловищу руки и ноги, чтобы уменьшить свой момент инерции и увеличить тем самым угловую скорость вращения.
Сопоставим основные величины и уравнения, определяющие вращение тела вокруг неподвижной оси и его поступательное движение (табл.2).
Свободные оси. Гироскоп
Для того чтобы сохранить положение оси вращения твердого тела с течением времени неизменным, используют подшипники, в которых она удерживается. Однако существуют такие оси вращения тел, которые не изменяют своей ориентации в пространстве без действия на нее внешних сил. Эти оси называются свободными осями(или осями свободного вращения).Можно доказать, что в любом теле существуют три взаимно перпендикулярные оси, проходящие через центр масс тела, которые могут служить свободными осями (они называются главными осями инерциитела). Например, главные оси инерции однородного прямоугольного параллелепипеда проходят через центры противоположных граней (рис. 30). Для однородного цилиндра одной из главных осей инерции является его геометрическая ось, а в качестве остальных осей могут быть две любые взаимно перпендикулярные оси, проведенные через центр масс в плоскости, перпендикулярной геометрической оси цилиндра. Главными осями инерции шара
являются любые три взаимно перпендикулярные оси, проходящие через центр масс.
Для устойчивости вращения большое значение имеет, какая именно из свободных осей служит осью вращения.
Можно показать, что вращение вокруг главных осей с наибольшим и наименьшим моментами инерции оказывается устойчивым, а вращение около оси со средним моментом — неустойчивым. Так, если подбросить тело, имеющее форму параллелепипеда, приведя его одновременно во вращение, то оно, падая, будет устойчиво вращаться вокруг осей 1 и 2 (рис. 30).
Если, например, палочку подвесить за один конец нити, а другой конец, закрепленный к шпинделю центробежной машины, привести в быстрое вращение, то палочка будет вращаться в горизонтальной плоскости около вертикальной оси, перпендикулярной оси палочки и проходящей через ее середину (рис.31). Это и есть свободная ось вращения (момент инерции при этом положении палочки максимальный). Если теперь палочку, вращающуюся вокруг свободной оси, освободить от внешних связей (аккуратно снять верхний конец нити с крючка шпинделя), то положение оси вращения в пространстве в течение некоторого времени сохраняется. Свойство свободных осей сохранять свое положение в пространстве широко применяется в технике. Наиболее интересны в этом плане гироскопы— массивные однородные тела, вращающиеся с большой угловой скоростью около своей оси симметрии, являющейся свободной осью.
Рассмотрим одну из разновидностей гироскопов — гироскоп на кардановом подвесе (рис.32). Дискообразное тело — гироскоп — закреплено на оси АА, которая может вращаться вокруг перпендикулярной ей горизонтальной оси ВВ, которая, в свою очередь, может поворачиваться вокруг вертикальной оси DD. Все три оси пересекаются в одной точке С, являющейся центром масс гироскопа и остающейся неподвижной, а ось гироскопа может принять любое направление в пространстве. Силами трения в подшипниках всех трех осей и моментом импульса колец пренебрегаем.
Так как трение в подшипниках мало, то, пока гироскоп неподвижен, его оси можно придать любое направление. Если начать гироскоп быстро вращать (например, с помощью намотанной на ось веревочки) и поворачивать его подставку, то ось гироскопа сохраняет свое положение в пространстве неизменной. Это можно объяснить с помощью основного закона динамики вращательного движения. Для свободного вращающегося гироскопа сила тяжести не может изменить ориентацию его оси вращения, так как эта сила приложена к центру масс (центр вращения С совпадает с центром масс), а момент силы тяжести относительно закрепленного центра масс равен нулю. Моментом сил трения мы также пренебрегаем. Поэтому если момент внешних сил относительно его закрепленного центра масс равен нулю, то, как следует из уравнения (19.3), L =
= const, т. е. момент импульса гироскопа сохраняет свою величину и направление в пространстве. Следовательно, вместе с ним сохраняет свое положение в пространстве и ось гироскопа.
Чтобы ось гироскопа изменила свое направление в пространстве, необходимо, согласно (19.3), отличие от нуля момента внешних сил. Если момент внешних сил, приложенных к вращающемуся гироскопу относительно его центра масс, отличен от нуля, то наблюдается явление, получившее название гироскопического эффекта.Оно состоит в том, что под действием пары сил F, приложенной к оси вращающегося гироскопа, ось гироскопа (рис. 33) поворачивается вокруг прямой О3О3, а не вокруг прямой О2О2, как это казалось бы естественным на первый взгляд (O1O1и О2О2лежат в плоскости чертежа, а О3О3 и силы F перпендикулярны ей).
Гироскопический эффект объясняется следующим образом. Момент М пары сил F направлен вдоль прямой О2О2. За время dt момент импульса L гироскопа получит приращение dL = Mdt (направление dLсовпадает с направлением М) и станет равным L’=L+dL. Направление вектора L‘ совпадает с новым направлением оси вращения гироскопа. Таким образом, ось вращения гироскопа повернется вокруг прямой О3О3. Если время действия силы мало, то, хотя момент сил М и велик, изменение момента импульса dL гироскопа будет также весьма малым. Поэтому кратковременное действие сил практически не приводит к изменению ориентации оси вращения гироскопа в пространстве. Для ее изменения следует прикладывать силы в течение длительного времени.
Если ось гироскопа закреплена подшипниками, то вследствие гироскопического эффекта возникают так называемые гироскопические силы,действующие на опоры, в которых вращается ось гироскопа. Их действие необходимо учитывать при конструировании устройств, содержащих быстровращающиеся массивные составные части. Гироскопические силы имеют смысл только во вращающейся системе отсчета и являются частным случаем кориолисовой силы инерции (см. §27).
Гироскопы применяются в различных гироскопических навигационных приборах (гирокомпас, гирогоризонт и т. д.). Другое важное применение гироскопов — поддержание заданного направления движения транспортных средств, например судна (авторулевой) и самолета (автопилот) и т. д. При всяком отклонении от курса вследствие каких-то воздействий (волны, порыва ветра и т. д.) положение оси гироскопа в пространстве сохраняется. Следовательно, ось гироскопа вместе с рамами карданова подвеса поворачивается относительно движущегося устройства. Поворот рам карданова подвеса с помощью определенных приспособлений включает рули управления, которые возвращают движение к заданному курсу.
Впервые гироскоп применен французским физиком Ж. Фуко (1819—1868) для доказательства вращения Земли.
Деформации твердого тела
Рассматривая механику твердого тела, мы пользовались понятием абсолютно твердого тела. Однако в природе абсолютно твердых тел нет, так как все реальные тела под действием сил изменяют свою форму и размеры, т. е. деформируются.
Деформацияназывается упругой,если после прекращения действия внешних сил тело принимает первоначальные размеры и форму. Деформации,которые сохраня-
ются в теле после прекращения действия внешних сил, называются пластическими(или остаточными).Деформации реального тела всегда пластические, так как они после прекращения действия внешних сил никогда полностью не исчезают. Однако если остаточные деформации малы, то ими можно пренебречь и рассматривать упругие деформации, что мы и будем делать.
В теории упругости доказывается, что все виды деформаций (растяжение или сжатие, сдвиг, изгиб, кручение) могут быть сведены к одновременно происходящим деформациям растяжения или сжатия и сдвига.
Рассмотрим однородный стержень длиной l и площадью поперечного сечения S (рис. 34), к концам которого приложены направленные вдоль его оси силы f1 и F2 (F1=F2=F), в результате чего длина стержня меняется на величину Dl. Естественно, что при растяжении Dl положительно, а при сжатии — отрицательно.
Сила, действующая на единицу площади поперечного сечения, называется напряжением:
s=F/S. (21.1)
Если сила направлена по нормали к поверхности, напряжениеназывается нормальным,если же по касательной к поверхности — тангенциальным.
Количественной мерой, характеризующей степень деформации, испытываемой телом, является его относительная деформация.Так, относительное изменение длины стержня (продольная деформация)
e=Dl/l, (21.2) относительное поперечное растяжение
(сжатие)
e’ = Dd/d, где d -— диаметр стержня.
Деформации e и e‘ всегда имеют разные знаки (при растяжении Dl положительно, a Ad отрицательно, при сжатии Dl отрицательно, a Ad положительно). Из опыта вытекает взаимосвязь e и e’:
e’=-me,
где m — положительный коэффициент, зависящий от свойств материала, называемый коэффициентом Пуассона.
Английский физик Р. Гук (1635— 1703) экспериментально установил, что для малых деформаций относительное удлинение e и напряжение s прямо пропорциональны друг другу:
s = Ee, (21.3)
где коэффициент пропорциональности Е называется модулем Юнга. Из выражения (21.3) видно, что модуль Юнгаопределяется напряжением, вызывающим относительное удлинение, равное единице. Из формул (21.2), (21.3) и (21.1) вытекает, что
где k — коэффициент упругости.Выражение (21.4) также задает закон Гука, согласно которому удлинение стержня при упругой деформации пропорционально действующей на стержень силе.
Деформации твердых тел подчиняются закону Гука до известного предела. Связь между деформацией и напряжением представляется в виде диаграммы напряжений, которую мы качественно рассмотрим для металлического образца (рис. 35). Из рисунка видно, что линейная зависимость s (e), установленная Гуком, выполняется
лишь в очень узких пределах до так называемого предела пропорциональности(sп). При дальнейшем увеличении напряжения деформация еще упругая (хотя зависимость s (e) уже не линейна) и до предела упругости(sу) остаточные деформации не возникают. За пределом упругости в теле возникают остаточные деформации и график, описывающий возвращение тела в первоначальное состояние после прекращения действия силы, изобразится не кривой ВО, а параллельной ей — CF. Напряжение, при котором появляется заметная остаточная деформация (~=0,2 %), называется пределом текучести(sт) — точка С на кривой. В области CD деформация возрастает без увеличения напряжения, т. е. тело как бы «течет». Эта область называется областью текучести(или областью пластических деформаций).Материалы, для которых область текучести значительна, называются вязкими,для которых же она практически отсутствует — хрупкими.При дальнейшем растяжении (за точку D) происходит разрушение тела. Максимальное напряжение, возникающее в теле до разрушения, называется пределом прочности(sp).
Диаграмма напряжений для реальных твердых тел зависит от различных факторов. Одно и то же твердое тело может при кратковременном действии сил проявлять себя как хрупкое, а при длительных, но слабых силах является текучим.
Вычислим потенциальную энергию упругорастянутого (сжатого) стержня, которая равна работе, совершаемой внешними силами при деформации:
где х — абсолютное удлинение стержня, изменяющееся в процессе деформации от 0 до Dl. Согласно закону Гука (21.4), F=kx=ESx/l. Поэтому
т. е. потенциальная энергия упругорастянутого стержня пропорциональна квадрату деформации (Dl)2.
Деформацию сдвига проще всего осуществить, если взять брусок, имеющий форму прямоугольного параллелепипеда, и приложить к нему силу Ftau (рис.36), касательную к его поверхности (нижняя часть бруска закреплена неподвижно). Относительная деформация сдвига определяется из формулы
tgg = Ds/h,
где Ds — абсолютный сдвиг параллельных слоев тела относительно друг друга; h — расстояние между слоями (для малых углов tgg»g).
Контрольные вопросы
• Что такое момент инерции тела?
• Какова роль момента инерции во вращательном движении?
• Какова формула для кинетической энергии тела, вращающегося вокруг неподвижной оси, и как
ее вывести?
• Что называется моментом силы относительно неподвижной точки? относительно неподвижной
оси? Как определяется направление момента силы?
• Выведите и сформулируйте уравнение динамики вращательного движения твердого тела.
• Что такое момент импульса материальной точки? твердого тела? Как определяется направление момента импульса?
• В чем заключается физическая сущность закона сохранения момента импульса? В каких системах он выполняется? Приведите примеры.
• Каким свойством симметрии пространства обусловливается справедливость закона сохранения момента импульса?
• Сопоставьте основные уравнения динамики поступательного и вращательного движений, прокомментировав их аналогию.
• Что такое свободные оси (главные оси инерции)? Какие из них являются устойчивыми?
• Что такое гироскоп? Каковы его основные свойства?
• Сформулируйте закон Гука. Когда он справедлив?
• Дайте объяснение качественной диаграммы напряжений s(e). Что такое пределы пропорциональности, упругости и прочности?
• Каков физический смысл модуля Юнга?
Задачи
4.1.С одного уровня наклонной плоскости одновременно начинают скатываться без скольжения сплошные цилиндр и шар одинаковых масс и одинаковых радиусов. Определить: 1) отношение скоростей цилиндра и шара на данном уровне; 2} их отношение в данный момент времени. [1) 14/15; 2) 14/15]
4.2. К ободу однородного сплошного диска радиусом R = 0,5 м приложена постоянная касательная сила F=100 H. При вращении диска на него действует момент сил трения М = 2Н•м. Определить массу т диска, если известно, что его угловое ускорение к постоянно и равно 12 рад/с2. [32 кг]
4.3. Через неподвижный блок в виде однородного сплошного цилиндра массой m= 1 кг перекинута невесомая нить, к концам которой прикреплены тела массами m1=1 кг и m2=2кг. Пренебрегая трением в оси блока, определить: 1) ускорение грузов; 2) отношения T2/T1сил натяжения нити. [ 1) 2,8 м/с2; 2) 1,11 ]
4.4. Скорость вращения колеса, момент инерции которого 2 кг•м2, вращающегося при торможении равнозамедленно, за время t=1 мин уменьшилась от n1=300 об/мин до n2=180 об/мин. Определить: 1) угловое ускорение e колеса; 2) момент М силы торможения; 3) работу силы торможения. [1) 0,21 рад/с2; 2) 0,42 Н•м; 3) 630 Дж ]
4.5. Человек массой m = 80 кг, стоящий на краю горизонтальной платформы массой М = 100 кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой n1 = 10 мин-1, переходит к ее центру. Считая платформу круглым однородным диском, а человека — точечной массой, определить, с какой частотой n2 будет тогда вращаться платформа. [26 мин-1 ]
4.6. Определить относительное удлинение алюминиевого стержня, если при его растяжении затрачена работа 621 Дж. Длина стержня 2 м, площадь поперечного сечения 1 мм2, модуль Юнга для алюминия E = 69 ГПа. { Dl/l=Ö[2A/(ESl)]=0,03}
Дата добавления: 2016-09-06; просмотров: 3190 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org – Контакты – Последнее добавление
Источник