Свойства каких паров ближе к свойствам газов
Насыщенные и ненасыщенные пары.
Рассмотрим процессы, происходящие в закрытом сосуде:
- процесс испарения, скорость которого постепенно уменьшается
- конденсации, скорость которого постепенно возрастает
С течением времени в сосуде закрытом крышкой между жидкостью и её паром устанавливается состояние динамического (подвижного) равновесия, когда число молекул, вылетающих из жидкости, равно числу молекул, возвращающихся в жидкость из пара, то есть когда скорости процессов испарения и конденсации одинаковы. Такую систему называютдвухфазной.
Пар, находящийся в динамическом равновесии со своей жидкостью, называютнасыщенным.
Название «насыщенный» подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара.
Ненасыщенный пар – это пар, не достигший динамического равновесия со своей жидкостью. При данной температуре давление ненасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому жидкости в сосуде с течением времени становится все меньше и меньше.
Рассмотрим некоторые свойства насыщенного пара:
1. Концентрация молекул насыщенного пара не зависит от его объёма при постоянной температуре. Если уменьшить объем насыщенного пара, то сначала концентрация его молекул увеличится и из газа в жидкость начнет переходить больше молекул до тех пор, пока опять на установится динамическое равновесие.
2. Давление насыщенного пара при постоянной температуре не зависит от его объёма.
p = n*k*T, т.к. n не зависит от V , то и р не зависит от V.
Независимое от объёма давление пара, при котором жидкость находится в равновесии со своим паром, называется давлением насыщенного пара. Это наибольшее давление, которое может иметь пар при данной температуре.
3. Давление насыщенного пара зависит от температуры. Чем выше будет температура жидкости, тем больше молекул будет испаряться, динамическое равновесие нарушится, но концентрация молекул пара будет расти до тех пор, пока равновесие не установится опять, а значит, больше станет и давление насыщенного пара. С увеличением температуры давление насыщенных паров возрастает.
В атмосферном воздухе всегда присутствуют пары воды, которая испаряется с поверхности морей, рек, океанов и т.п.
Воздух, содержащий водяной пар, называют влажным.
Влажность воздуха оказывает огромное влияние на многие процессы на Земле: на развитие флоры и фауны, на урожай сельхоз. культур, на продуктивность животноводства и т.д. Влажность воздуха имеет большое значение для здоровья людей, т.к. от неё зависит теплообмен организма человека с окружающей средой. При низкой влажности происходит быстрое испарение с поверхности и высыхание слизистой оболочки носа, гортани, что приводит к ухудшению состояния.
Значит, влажность воздуха надо уметь измерять. Для количественной оценки влажности воздуха используют понятия абсолютной и относительной влажности.
Абсолютная влажность – величина, показывающая, какая масса паров воды находится в 1 м³ воздуха. Она равна парциальному давлению пара при данной температуре.
Парциальное давление пара – это давление, которое оказывал бы водяной пар, находящийся в воздух , если бы все остальные газы отсутствовали.
Относительная влажность воздуха – это величина, показывающая, как далек пар от насыщения. Это отношение парциального давления p водяного пара, содержащегося в воздухе при данной температуре, к давлению насыщенного пара p0 при той же температуре, выраженное в процентах:
Если воздух не содержит паров воды, то его абсолютная и относительная влажность равны 0.
Если влажный воздух охлаждать, то находящийся в нем пар можно довести до насыщения, и далее он будет конденсироваться.
Примеры:
выпадение росы под утро,
запотевание холодного стекла, если на него подышать,
образование капли воды на холодной водопроводной трубе,
сырость в подвалах домов.
Точка росы – это температура, при которой водяной пар, содержащийся в воздухе, становится насыщенным.
Точка росы также характеризует влажность воздуха.
C° | Точка россы при относительной влажности воздуха в % | |||||||||||||
30% | 35% | 40% | 45% | 50% | 55% | 60% | 65% | 70% | 75% | 80% | 85% | 90% | 95% | |
30 | 10,5 | 12,9 | 14,9 | 16,8 | 18,4 | 20 | 21,4 | 22,7 | 23,9 | 25,1 | 26,2 | 27,2 | 28,2 | 29,1 |
29 | 9,7 | 12 | 14 | 15,9 | 17,5 | 19 | 20,4 | 21,7 | 23 | 24,1 | 25,2 | 26,2 | 27,2 | 28,1 |
28 | 8,8 | 11,1 | 13,1 | 15 | 16,6 | 18,1 | 19,5 | 20,8 | 22 | 23,2 | 24,2 | 25,2 | 26,2 | 27,1 |
27 | 8 | 10,2 | 12,2 | 14,1 | 15,7 | 17,2 | 18,6 | 19,9 | 21,1 | 22,2 | 23,3 | 24,3 | 25,2 | 26,1 |
26 | 7,1 | 9,4 | 11,4 | 13,2 | 14,8 | 16,3 | 17,6 | 18,9 | 20,1 | 21,2 | 22,3 | 23,3 | 24,2 | 25,1 |
25 | 6,2 | 8,5 | 10,5 | 12,2 | 13,9 | 15,3 | 16,7 | 18 | 19,1 | 20,3 | 21,3 | 22,3 | 23,2 | 24,1 |
24 | 5,4 | 7,6 | 9,6 | 11,3 | 12,9 | 14,4 | 15,8 | 17 | 18,2 | 19,3 | 20,3 | 21,3 | 22,3 | 23,1 |
23 | 4,5 | 6,7 | 8,7 | 10,4 | 12 | 13,5 | 14,8 | 16,1 | 17,2 | 18,3 | 19,4 | 20,3 | 21,3 | 22,2 |
22 | 3,6 | 5,9 | 7,8 | 9,5 | 11,1 | 12,5 | 13,9 | 15,1 | 16,3 | 17,4 | 18,4 | 19,4 | 20,3 | 21,1 |
21 | 2,8 | 5 | 6,9 | 8,6 | 10,2 | 11,6 | 12,9 | 14,2 | 15,3 | 16,4 | 17,4 | 18,4 | 19,3 | 20,2 |
20 | 1,9 | 4,1 | 6 | 7,7 | 9,3 | 10,7 | 12 | 13,2 | 14,4 | 15,4 | 16,4 | 17,4 | 18,3 | 19,2 |
19 | 1 | 3,2 | 5,1 | 6,8 | 8,3 | 9,8 | 11,1 | 12,3 | 13,4 | 14,5 | 15,3 | 16,4 | 17,3 | 18,2 |
18 | 0,2 | 2,3 | 4,2 | 5,9 | 7,4 | 8,8 | 10,1 | 11,3 | 12,5 | 13,5 | 14,5 | 15,4 | 16,3 | 17,2 |
17 | -0,6 | 1,4 | 3,3 | 5 | 6,5 | 7,9 | 9,2 | 10,4 | 11,5 | 12,5 | 13,5 | 14,5 | 15,3 | 16,2 |
16 | -1,4 | 0,5 | 2,4 | 4,1 | 5,6 | 7 | 8,2 | 9,4 | 10,5 | 11,6 | 12,6 | 13,5 | 14,4 | 15,2 |
Для измерения влажности воздуха используют приборы гигрометры и психрометры.
1. Конденсационный гигрометр.
Состоит из укрепленной на подставке металлической круглой коробочки с отполированной плоской поверхностью. В коробочке сверху имеются два отверстия. Через одно из них в коробочку наливают эфир и вставляют термометр, а другое соединяют с резиновой грушей. Действие конденсационного гигрометра основано на определении точки росы.
Продувают воздух через эфир (с помощью резиновой груши), при этом эфир быстро испаряется и охлаждает коробочку. При определенной температуре на отполированной поверхности коробочки появляются капельки воды (роса). По термометру определяют эту температуру, это и будет точка росы. В специальной таблице по точке росы находят абсолютную влажность.
Чтобы найти относительную влажность, надо давление насыщенного пара при температуре точки росы разделить на давление насыщенного пара при температуре окружающего воздуха и умножить на 100%.
2. Волосной гигрометр.
Его работа основана на том, что обезжиренный человеческий волос при увеличении влажности воздуха удлиняется, а при уменьшении влажности укорачивается. Волос оборачивают вокруг легкого блока, прикрепив один конец к раме, а к другому подвешивают груз. При изменении длины волоса указатель (стрелка), прикрепленный к блоку, будет двигаться, перемещаясь по шкале. Шкалу градуируют по эталонному прибору.
3. Психрометр. (от греч «психриа» – холод).
Состоит из двух одинаковых термометров. Резервуар одного из них обернут марлей, опущенной в сосуд с водой. Вода смачивает резервуар термометра и при её испарении он охлаждается. По разности температур сухого и влажного термометров по психрометрической таблице определяют влажность воздуха.
Источник
Физические законы и параметры газов являются основополагающими для создания вакуумных систем. Даже при крайне низких значениях давлений, используемых в вакуумной технике, физические процессы, протекающие в газах, подчиняются общим газовым законам. Необходимость создания вакуума обычно связана с потребностью уменьшения концентрации молекул газа или частоты их столкновений с поверхностью сосуда. Газовые процессы в вакуумных системах можно, как правило, рассматривать с точки зрения законов идеального газа, а некоторые общие физические процессы вакуумных систем могут быть описаны с помощью статических и динамических свойств газов. Физические процессы, протекающие в газах при низком давлении, а также различные параметры и свойства газового потока рассмотрены ниже.
Параметры состояния газа
Если взять образец газа, то для описания его состояния достаточно знать три из четырех параметров. Этими параметрами являются давление, объем, температура и количество газа.
Давление – это сила, с которой газ воздействует на единицу площади поверхности сосуда. В СИ единицей измерения давления является паскаль, или ньютон на квадратный метр (Н/м2). В вакуумной технике также используется единица измерения миллиметр ртутного столба, или Торр: 1 мм рт. ст. = 133 Па (1 Па = 7,5 мм рт. ст.).
Объем – мера пространства, которое занимает газ; обычно он задается размерами сосуда. Единицей объема в СИ является кубический метр (м3), однако для обозначения быстроты откачки и потока газа, а также других величин широко используются литры.
Температура газа при давлении ниже 1 Торр главным образом определяется температурой поверхностей, с которыми он соприкасается. Как правило, газ находится при комнатной температуре. При выводе уравнений, описывающих состояние газов, для измерения температуры используют Кельвины (К).
Количество газа в данном объеме измеряется в молях.
Моль – число граммов газа (или любого вещества), равное его молекулярной массе. Моль содержит 6,02 х 1023 молекул. Один моль любого газа при 0 °С и давлении 760 Торр занимает объем, равный 22,4 л. Масса 1 моля газа равна его молекулярной массе в граммах.
Молярный объем является универсальной постоянной. Экспериментально установлено, что он составляет 22,414 л при 760 Торр и 0 °С. Поскольку 1 моль любого газа при температуре 0 °С и давлении 760 Торр занимает объем 22,4 л, из этого соотношения можно рассчитать молекулярную концентрацию любого объема газа, если известны его температура и давление. Например, 1 см3 воздуха при 760 Торр и 0 °С содержит 2,7 x 1019 молекул; в то время как при давлении 1 Торр и температуре 0 °С 1 см3 воздуха содержит 3,54 x 1016 молекул.
Газовые законы
Газовые законы устанавливают соотношения между физическими параметрами состояния газа (давление, объем, температура и количество газа) при постоянном значении одного из параметров. Эти законы справедливы для идеального газа в котором объем всех молекул является незначительным по сравнению с объемом газа, и энергия притяжения между молекулами является незначительной по сравнению с их средней тепловой энергией. Это означает, что данное вещество (в данном случае газ) находится в газообразном состоянии при температуре, которая достаточно высока для его конденсации. К газам, по своим свойствам близким к идеальным при комнатной температуре, относятся 02, Ne, Аг, СО, Н2 и NO.
Ниже приведены общие формулировки газовых законов.
Закон Бойля – произведение давления на объем рУ, где р – давление газа, V – его объем, является постоянной величиной для данной массы газа при постоянной температуре.
Закон Гей-Люссака – величина V/T, где Т- абсолютная температура газа, является постоянной для данной массы газа при постоянном давлении.
Закон Авогадро – равные объемы различных газов при одинаковых температуре и давлении содержат одно и то же количество молекул. Из этого закона можно получить важное соотношение между числом молей газа и давлением, которое создает газ.
Основное уравнение состояния идеального газа (уравнение Клапейрона) устанавливает зависимость между давлением, объемом и температурой для данной массы газа, т. е. теми параметрами, которые необходимы для описания состояния газа:
$$pV=MRT, (1.1)$$
где R – универсальная газовая постоянная данного газа, R = 8,31 ДжДмоль К) (62,4 Торр-л/(моль x К)); М – это число молей в объеме V
Данный закон будет справедлив и для большинства газов, которые при низких давлениях ведут себя как идеальные газы.
Закон парциальных давлений Дальтона – общее давление, создаваемое смесью газов, равняется сумме парциальных давлений, создаваемых отдельными компонентами смеси.
Парциальное давление, создаваемое одним компонентом смеси газов, – это давление, создаваемое этим компонентом, если бы он занимал весь объем.
Закон Авогадро – равные объемы идеального газа при постоянных температуре и давлении содержат одно и то же количество молекул.
Число Авогадро – число молекул в 1 моле газа или любого вещества, является универсальной постоянной и составляет 6,023 • 1023.
Число Лошмидта – число молекул в кубическом сантиметре газа при атмосферном давлении и температуре 0 °С. Это универсальная постоянная, равная 2,637 x 1019.
Для 1 моля газа при атмосферном давлении и температуре 0 °С (273,2 К), занимающего объем V = 22,414 л, R= 8.31 Дж/(моль x К) или в тепловых единицах R/J= 1,99 кал/К (У – механический эквивалент теплоты, J = 4,182 Дж кал). Следовательно, количество теплоты 1,99 кал будет повышать температуру 1 моля любого идеального газа на 1 К, или после повышения температуры 1 моля любого идеального газа на 1 К увеличение энергии газа составит 8,31 Дж.
Неидеальные газы
Примерами некоторых распространенных неидеальных газов являются аммиак, этан, бензол, диоксид углерода (углекислый газ), пары ртути, SO и S02. Газовые законы должны описывать физические процессы, протекающие в любом газе при температуре выше критической. При критической температуре, Тс, газ начинает конденсироваться. Ниже этой критической температуры имеет место давление паров над жидким конденсатом, которое называется давлением пара. Если газ конденсируется (его объем уменьшается), давление изменяться не будет, но большее количество газа будет переходить в жидкую фазу. По мере снижения температуры над жидкостью будет присутствовать меньшее количество молекул, при этом давление паров также будет снижаться.
Источник
Насыщенные и ненасыщенные пары.
Рассмотрим процессы, происходящие в закрытом сосуде:
- процесс испарения, скорость которого постепенно уменьшается
- конденсации, скорость которого постепенно возрастает
С течением времени в сосуде закрытом крышкой между жидкостью и её паром устанавливается состояние динамического (подвижного) равновесия, когда число молекул, вылетающих из жидкости, равно числу молекул, возвращающихся в жидкость из пара, то есть когда скорости процессов испарения и конденсации одинаковы. Такую систему называютдвухфазной.
Пар, находящийся в динамическом равновесии со своей жидкостью, называютнасыщенным.
Название «насыщенный» подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара.
Ненасыщенный пар – это пар, не достигший динамического равновесия со своей жидкостью. При данной температуре давление ненасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому жидкости в сосуде с течением времени становится все меньше и меньше.
Рассмотрим некоторые свойства насыщенного пара:
1. Концентрация молекул насыщенного пара не зависит от его объёма при постоянной температуре. Если уменьшить объем насыщенного пара, то сначала концентрация его молекул увеличится и из газа в жидкость начнет переходить больше молекул до тех пор, пока опять на установится динамическое равновесие.
2. Давление насыщенного пара при постоянной температуре не зависит от его объёма.
p = n*k*T, т.к. n не зависит от V , то и р не зависит от V.
Независимое от объёма давление пара, при котором жидкость находится в равновесии со своим паром, называется давлением насыщенного пара. Это наибольшее давление, которое может иметь пар при данной температуре.
3. Давление насыщенного пара зависит от температуры. Чем выше будет температура жидкости, тем больше молекул будет испаряться, динамическое равновесие нарушится, но концентрация молекул пара будет расти до тех пор, пока равновесие не установится опять, а значит, больше станет и давление насыщенного пара. С увеличением температуры давление насыщенных паров возрастает.
В атмосферном воздухе всегда присутствуют пары воды, которая испаряется с поверхности морей, рек, океанов и т.п.
Воздух, содержащий водяной пар, называют влажным.
Влажность воздуха оказывает огромное влияние на многие процессы на Земле: на развитие флоры и фауны, на урожай сельхоз. культур, на продуктивность животноводства и т.д. Влажность воздуха имеет большое значение для здоровья людей, т.к. от неё зависит теплообмен организма человека с окружающей средой. При низкой влажности происходит быстрое испарение с поверхности и высыхание слизистой оболочки носа, гортани, что приводит к ухудшению состояния.
Значит, влажность воздуха надо уметь измерять. Для количественной оценки влажности воздуха используют понятия абсолютной и относительной влажности.
Абсолютная влажность – величина, показывающая, какая масса паров воды находится в 1 м³ воздуха. Она равна парциальному давлению пара при данной температуре.
Парциальное давление пара – это давление, которое оказывал бы водяной пар, находящийся в воздух , если бы все остальные газы отсутствовали.
Относительная влажность воздуха – это величина, показывающая, как далек пар от насыщения. Это отношение парциального давления p водяного пара, содержащегося в воздухе при данной температуре, к давлению насыщенного пара p0 при той же температуре, выраженное в процентах:
Если воздух не содержит паров воды, то его абсолютная и относительная влажность равны 0.
Если влажный воздух охлаждать, то находящийся в нем пар можно довести до насыщения, и далее он будет конденсироваться.
Примеры:
выпадение росы под утро,
запотевание холодного стекла, если на него подышать,
образование капли воды на холодной водопроводной трубе,
сырость в подвалах домов.
Точка росы – это температура, при которой водяной пар, содержащийся в воздухе, становится насыщенным.
Точка росы также характеризует влажность воздуха.
C° | Точка россы при относительной влажности воздуха в % | |||||||||||||
30% | 35% | 40% | 45% | 50% | 55% | 60% | 65% | 70% | 75% | 80% | 85% | 90% | 95% | |
30 | 10,5 | 12,9 | 14,9 | 16,8 | 18,4 | 20 | 21,4 | 22,7 | 23,9 | 25,1 | 26,2 | 27,2 | 28,2 | 29,1 |
29 | 9,7 | 12 | 14 | 15,9 | 17,5 | 19 | 20,4 | 21,7 | 23 | 24,1 | 25,2 | 26,2 | 27,2 | 28,1 |
28 | 8,8 | 11,1 | 13,1 | 15 | 16,6 | 18,1 | 19,5 | 20,8 | 22 | 23,2 | 24,2 | 25,2 | 26,2 | 27,1 |
27 | 8 | 10,2 | 12,2 | 14,1 | 15,7 | 17,2 | 18,6 | 19,9 | 21,1 | 22,2 | 23,3 | 24,3 | 25,2 | 26,1 |
26 | 7,1 | 9,4 | 11,4 | 13,2 | 14,8 | 16,3 | 17,6 | 18,9 | 20,1 | 21,2 | 22,3 | 23,3 | 24,2 | 25,1 |
25 | 6,2 | 8,5 | 10,5 | 12,2 | 13,9 | 15,3 | 16,7 | 18 | 19,1 | 20,3 | 21,3 | 22,3 | 23,2 | 24,1 |
24 | 5,4 | 7,6 | 9,6 | 11,3 | 12,9 | 14,4 | 15,8 | 17 | 18,2 | 19,3 | 20,3 | 21,3 | 22,3 | 23,1 |
23 | 4,5 | 6,7 | 8,7 | 10,4 | 12 | 13,5 | 14,8 | 16,1 | 17,2 | 18,3 | 19,4 | 20,3 | 21,3 | 22,2 |
22 | 3,6 | 5,9 | 7,8 | 9,5 | 11,1 | 12,5 | 13,9 | 15,1 | 16,3 | 17,4 | 18,4 | 19,4 | 20,3 | 21,1 |
21 | 2,8 | 5 | 6,9 | 8,6 | 10,2 | 11,6 | 12,9 | 14,2 | 15,3 | 16,4 | 17,4 | 18,4 | 19,3 | 20,2 |
20 | 1,9 | 4,1 | 6 | 7,7 | 9,3 | 10,7 | 12 | 13,2 | 14,4 | 15,4 | 16,4 | 17,4 | 18,3 | 19,2 |
19 | 1 | 3,2 | 5,1 | 6,8 | 8,3 | 9,8 | 11,1 | 12,3 | 13,4 | 14,5 | 15,3 | 16,4 | 17,3 | 18,2 |
18 | 0,2 | 2,3 | 4,2 | 5,9 | 7,4 | 8,8 | 10,1 | 11,3 | 12,5 | 13,5 | 14,5 | 15,4 | 16,3 | 17,2 |
17 | -0,6 | 1,4 | 3,3 | 5 | 6,5 | 7,9 | 9,2 | 10,4 | 11,5 | 12,5 | 13,5 | 14,5 | 15,3 | 16,2 |
16 | -1,4 | 0,5 | 2,4 | 4,1 | 5,6 | 7 | 8,2 | 9,4 | 10,5 | 11,6 | 12,6 | 13,5 | 14,4 | 15,2 |
Для измерения влажности воздуха используют приборы гигрометры и психрометры.
1. Конденсационный гигрометр.
Состоит из укрепленной на подставке металлической круглой коробочки с отполированной плоской поверхностью. В коробочке сверху имеются два отверстия. Через одно из них в коробочку наливают эфир и вставляют термометр, а другое соединяют с резиновой грушей. Действие конденсационного гигрометра основано на определении точки росы.
Продувают воздух через эфир (с помощью резиновой груши), при этом эфир быстро испаряется и охлаждает коробочку. При определенной температуре на отполированной поверхности коробочки появляются капельки воды (роса). По термометру определяют эту температуру, это и будет точка росы. В специальной таблице по точке росы находят абсолютную влажность.
Чтобы найти относительную влажность, надо давление насыщенного пара при температуре точки росы разделить на давление насыщенного пара при температуре окружающего воздуха и умножить на 100%.
2. Волосной гигрометр.
Его работа основана на том, что обезжиренный человеческий волос при увеличении влажности воздуха удлиняется, а при уменьшении влажности укорачивается. Волос оборачивают вокруг легкого блока, прикрепив один конец к раме, а к другому подвешивают груз. При изменении длины волоса указатель (стрелка), прикрепленный к блоку, будет двигаться, перемещаясь по шкале. Шкалу градуируют по эталонному прибору.
3. Психрометр. (от греч «психриа» – холод).
Состоит из двух одинаковых термометров. Резервуар одного из них обернут марлей, опущенной в сосуд с водой. Вода смачивает резервуар термометра и при её испарении он охлаждается. По разности температур сухого и влажного термометров по психрометрической таблице определяют влажность воздуха.
Источник