Свойства вещества зависят не только от того какие атомы и сколько их
Органическая химия – химия соединений углерода. Состав органических соединений, элементы органогены (С, Н, О, Р, N, S). Многообразие соединений углерода, их роль в природе и практической деятельности человека. Сырьевые источники получения органических соединений.
Органическая химия – химия соединений углерода, точнее – химия углеводородов и их производных, в состав которых могут входить практически все остальные элементы периодической системы. Выделение органической химии в самостоятельную научную дисциплину обусловлено большим числом и многообразием органических соединений углерода, которых в настоящее время известно более 10 миллионов, наличием специфических свойств, отличающих их от соединений других элементов, и, наконец, их основополагающей ролью в жизни на Земле. Органическая химия изучает более высокооганизованную материю, чем неорганическая, органические соединения появились во вселенной позже неорганических, они являются носителями жизнедеятельности живых организмов.Превращения органических соединений управляются общими химическими закономерностями, но в то же время имеется ряд специфических особенностей, присущих только органическим соединениям: они термически менее устойчивы по сравнению с неоганическими, легче окисляются (горят), в подавляющем большинстве органических соединений связи между атомами ковалентные, органические вещества обладают значительно более низкими температурами плавления и кипения по сравнению с неорганическими.
Органогены — химические элементы, играющие ту или иную роль в жизни организмов. К органогенам относится 21 элемент, среди которых Б. Б. Полынов (1968) выделил абсолютные органогены (кислород, водород, углерод, азот, марганец, калий, сера), без которых невозможно существование жизни, и специальные органогены (кремний, натрий, кальций, железо, фтор, магний, стронций, бор, цинк, медь, бром, йод), которые необходимы многим, но не всем организмам.Элементы-органогены, главнейшие четыре элемента, участвующие в построении химич. соединений, входящих в состав организма, а именно: углерод, водород, кислород и азот.Углерод и водород входят во все органические соединения, встречающиеся в организме; в важнейшие соединения, как жиры, углеводы, входит еще кислород, а в белковые вещества кроме того азот.
Атомы углерода способны связываться друг с другом, образуя устойчивые цепочки и циклы, что делает количество соединений углерода в принципе бесконечным. Углерод способен образовывать не только одинарные, но и двойные и тройные связи, и способен образовывать устойчивые связи с другими элементами. Это определяет огромное разнообразие органических соединений. Соединения углерода имеют очень большое значение. Органическая химия – основа биологической химии, молекулярной биологии и фармакологии, и теоретическая основа для производства средств защиты растений, моющих средств, красителей, полимеров, различных нефтепродуктов и т.д. Современную цивилизацию без достижений органической химии представить невозможно.
Сырьевыми источниками органических соединений служат нефть и природный газ, каменный и бурый угли, горючие сланцы, торф, продукты сельского и лесного хозяйства.
Основные положения теории химического
строения органических соединений А.М. Бутлерова.Структурные принципы в органической химии. Понятие об углеродном скелете, радикале и функциональной группе.
Многообразие органических соединений и их строения объясняется теорией строения, которую предложил Бутлеров. Суть этой теории состоит из 7 основных положений:
1.Атомы входящие в состав молекул органического вещества, не находятся в беспорядочном состоянии, а соединены между собой в определенной последовательности химическими связями. Порядок и последовательность соединения атомов в молекуле Бутлеров назвал химическим строением.
2.Соединения атомов в молекуле происходит в соответствии с их валентностью. Свободных валентностей у атомов в молекуле нет.
3.Свойства вещества зависят не только от того какие атомы и сколько их входит в состав молекулы, но и от того в какой последовательности они соединены между собой в молекуле.
4.Атомы и группы атомов входящие в молекулы оказывают влияние на химическое поведение друг друга. Особенно заметно такое влияние в тех случаях, когда эти атомы или группы атомов связаны непосредственно.
5.Зная свойства вещества можно установить его строение и наоборот: химическое строение органических соединения может много сказать о его свойствах.
6.Атомы углерода способны соединятся друг с другом с образованием углеродных связей различных видов. Эти цепи могут быть открытыми или замкнутыми. Цепи могут содержать одинарные, двойные и тройные связи.
7.Строение молекулы можно выразить при помощи структурной формулы, которая для данного органического соединения является единственно возможной.
Углеродный скелет молекулы — последовательность химически связанных атомов углерода, составляющая основу молекулы. Кроме атомов углерода в состав скелета могут входить и другие атомы, например, кислород, сера, азот, если они связаны, по меньшей мере, с двумя атомами углерода. Некоторые атомы углерода в углеродном скелете могут быть соединены с тремя или даже четырьмя другими атомами углерода, такой углеродный скелет называют разветвлённым.
Типы углеродных скелетов
—ациклические (не содержащие циклов);
—циклические;
—гетероциклические.
В гетероциклическом скелете в углеродный цикл включается одни или несколько атомов, отличных от углерода.
Углеводородный радикал в химии — группа атомов, соединённая с функциональной группой молекулы. Обычно при химических реакциях радикал переходит из одного соединения в другое без изменения. Но радикал и сам может содержать функциональные группы, поэтому с его «неизменностью» нужно быть осторожным: например, аминокислота аспарагиновая кислота содержит в той части молекулы, которая в общем виде рассматривается как остаток аминокислоты, ещё одну карбоксильную группу. Часто углеводородный радикал называют просто радикал, что может вызвать путаницу с таким понятием как свободный радикал. Некоторые углеводородные радикалы могут также являться функциональными группами, например, фенил (−C6H5), винил (−C2H3) и пр. Углеводородными радикалами обычно являются остатки углеводородов, которые входят в состав многих органических соединений.
Функциональная группа — структурный фрагмент органической молекулы (некоторая группа атомов), определяющий её химические свойства. Функциональные группы определяют класс органических соединений.
Функциональные группы, входящие в состав различных молекул обычно ведут себя одинаково в одной и той же химической реакции, однако их химическая активность будет различной.
Известно более 100 функциональных групп.
—Функциональные группы, содержащие атом кислорода: гидроксильная –ОН, карбонильная >С=O, карбоксильная –COOH и др.
—Функциональные группы, содержащие атом азота: аминогруппа –NH2, нитрогруппа –NO2, нитрильная группа или цианогруппа –CN и др.
—Функциональные группы, содержащие атом серы: сульфгидрильная (тиольная) –SH, сульфидная >S, дисульфидная –S–S–, сульфоксидная>S=O и др.
—Функциональные группы, содержащие ненасыщенные углерод-углеродные связи: двойные и тройные связи (в том числе сопряжённые диеновые системы), ароматические фрагменты и др.
—Функциональные группы, содержащие прочие атомы: атомы металлов, атомы галогенов и др.
Молекулы, в состав которых входит больше чем одна функциональныая группа называются полифункциональными.
При построении названия органического соединения, согласно номенклатуры ИЮПАК, отталкиваются от наличия в данном соединении функциональных групп.
2. Классификация органических соединений по углеродному скелету и функциональным группам. Гомология и гомологические ряды в органической химии. Понятие и виды изомерии.Принципы химической номенклатуры ИЮПАК.
Классификация органических веществ по строению углеводородного радикала:
—Ациклические (нециклические):
Предельные (атомы углерода связаны друг с другом только одинарными ϭ-связями)
Непредельные (молекулы этих соединений содержат двойные или тройные связи между атомами углерода)
—Циклические:
Карбоциклические (в состав циклов входят только атомы углерода)
Гетероциклические (в состав циклов кроме атомов углерода входят атомы других элементов)
Классификация органических веществ по функциональным группам (X)
Гомологический ряд — это ряд органических соединений, в котором каждый следующий член ряда отличается от предыдущего на группуСН2. Сходные по химическим свойствам соединения, образующие гомологический ряд, называются гомологами. Группа СН2 называется гомологической разСостав всех членов гомологического ряда может быть выражен общей формулой.
Изомеры — это вещества, которые имеют одинаковый состав, но разное строение молекул и различные свойства.Изомерия — явление существования изомеров.
Изомеры имеют одинаковую эмпирическую формулу и разные структурные формулы. С увеличением числа атомов углерода в молекуле число изомеров резко возрастает.
Типы изомерии:
1.Структурная изомерия:
-изомерия цепи;
-изомерия положения кратной связи;
-изомерия положения функциональной группы.
2.Пространственная изомерия (геометрическая изомерия, цис-транс- изомерия)
Порядок соединения атомов в этих изомерах одинаковый, но расположение атомов в пространстве различно.
3.Межклассовая изомерия – изомерия веществ, принадлежащих к разным классам органических соединений:
-алкены и циклоаканы (CnH2n);
-алкины и алкадиены (CnH2n-2);
-алканолы и простые эфиры (CnH2n+2О);
-одноосновные карбоновые кислоты и сложные эфиры карбоновых кислот (CnH2nО2);
-альдегиды и кетоны (CnH2nО).
Химическая номенклатура — совокупность названий индивидуальных химических веществ, их групп и классов, а также правила составления этих названий.
Источник
Органическая химия – это химия углеводородов и их производных.
Углеводороды (УВ) – это простейшие органические вещества, молекулы которых состоят из атомов только двух элементов: С и Н. Например: СН4, С2Н6, С6Н6 и т.д.
Производные УВ – это продукты замещения атомов «Н» в молекулах УВ на другие или группы атомов. Например:
Название «органическая химия» появилось в начале XIX в., когда было установлено, что углеродсодержащие вещества являются основой растительных и животных организмов.
До 20-х годов XIX в. многие ученые считали, что органические вещества нельзя получить в лаборатории из неорганических веществ, что они образуются только в живой природе при участии особой «жизненной силы». Учение о «жизненной силе» называется витализмом.
А.М. Бутлеров
Это учение просуществовало недолго, потому что уже в начале и середине XIX в. были синтезированы многие органические вещества:
1828 г. – Велер синтезирует мочевину CO(NH2)2, которая является одним из продуктов, образующихся в организме;
1850-е гг. – Бертло синтезирует жиры;
1861 г. – Бутлеров синтезировал один из углеводов.
Сейчас известно более 10 млн органических веществ; многие из них не существуют в природе, а получены в лаборатории. Промышленный синтез различных органических веществ является одним из основных направлений химической промышленности.
Кроме С и Н, в состав многих органических веществ входят следующие элементы: O, N, S, P, Cl, Br и др.
Принципиального различия между органическими и неорганическими веществами нет. Однако типичные органические вещества имеют ряд свойств, которые отличают их от типичных неорганических веществ. Это объясняется различием в характере химической связи:
Основные положения теории химического строения органических соединений
Эту теорию разработал русский ученый А.М. Бутлеров (1858 – 1861).
I положение. Атомы в молекулах органических веществ соединяются друг с другом в определенной последовательности согласно их валентности.
Последовательность соединения атомов в молекуле называется химическим строением (структурой).
В органических соединениях атомы углерода могут соединяться друг с другом, образуя цепи (углеродный скелет). В зависимости от наличия тех или иных атомов углерода цепи бывают:
а) прямые (неразветвленные) – содержат два первичных атома углерода (крайние в цепи), остальные атомы – вторичные; например:
б) разветвленные – содержат хотя бы один третичный или хотя бы один четвертичный атом углерода; например:
в) замкнутые (циклы) – не содержат первичных атомов углерода; например:
II положение. Свойства веществ зависят не только от состава, но и от строения их молекул.
Например, существуют 2 различных вещества, которые имеют одинаковый состав, выражаемый эмпирической формулой С2Н6О:
Изомеры – это вещества, которые имеют одинаковый состав, но разное строение молекул и различные свойства.
Изомерия – явление существования изомеров.
Изомеры имеют одинаковую эмпирическую формулу и разные структурные формулы. С увеличением числа атомов углерода в молекуле число изомеров резко возрастает; например:
С4Н10 – 2 изомера,
С10Н22 – 75 изомеров.
Типы изомерии
1. Структурная изомерия
2. Пространственная изомерия (геометрическая изомерия, цис-транс-изомерия)
Порядок соединения атомов в этих изомерах одинаковый, но расположение атомов в пространстве различно.
3. Межклассовая изомерия – изомерия веществ, принадлежащих к разным классам органических соединений:
III положение. В молекулах органических веществ атомы и группы атомов влияют друг на друга. Это взаимное влияние определяет свойства веществ.
Рассмотрим, например, влияние ОН-группы на подвижность атомов «Н» в цикле бензола:
В бензольном ядре замещается один атом водорода.
При наличии группы – ОН в бензольном ядре замещаются три атома водорода.
С другой стороны, углеводородный радикал влияет на подвижность атома водорода в ОН-группе:
Если группа – ОН связана с бензольным кольцом, атом водорода в ней является подвижным и может замещаться на атом металла при взаимодействии со щелочью.
Если группа – ОН связана с алкильным радикалом, подвижность атома водорода в ней невелика, и он не может замещаться на металл при действии щелочи.
Гомологический ряд. Гомологи
Гомологический ряд – это ряд органических соединений, в котором каждый следующий член ряда отличается от предыдущего на группу СН2. Сходные по химическим свойствам соединения, образующие гомологический ряд, называются гомологами. Группа СН2 называется гомологической разностью.
Например: СН4, С2Н6, С3Н8, С4Н10 …CnH2n+2.
Состав всех членов гомологического ряда может быть выражен общей формулой.
Классификация органических веществ
Большинство органических соединений можно представить формулой: R – X, где R – углеводородный радикал; Х – функциональная группа.
Функциональные группы – это группы атомов, которые определяют наиболее характерные химические свойства органических соединений. Углеводородные радикалы – остатки УВ, связанные с функциональными группами.
1. Классификация органических веществ по строению углеводородного радикала (R)
2. Классификация органических веществ по функциональным группам (Х)
Типы органических реакций
1. Реакции присоединения
2. Реакции замещения
3. Реакции отщепления
4. Реакции разложения
5. Реакции изомеризации
6. Реакции окисления
Источник
Химия – наука о веществах, их свойствах, превращениях и явлениях, сопровождающих эти превращения.
Вещества – это то, из чего состоят предметы (физические тела) окружающего мира. Вещества, существующие в природе, постоянно претерпевают различные изменения.
Явления – различные изменения, которые происходят с веществами.
Физические явления – явления, не сопровождающиеся превращениями одних веществ, в другие (обычно изменяется агрегатное состояние веществ или их форма).
Химические явления – явления, в результате которых из данных веществ образуются другие.
Иначе химические явления называют химическими реакциями.
Каждое вещество обладает строго определёнными свойствами.
Свойства веществ – признаки, позволяющие отличить одни вещества от других, или установить сходство между ними.
Физические свойства:
m – масса, V – объём, ρ – плотность.
Масса может быть выражена в граммах, объем в миллилитрах (если это жидкость) или литрах (если это газ).
1 мл = 1 см3, 1 л = 1 дм3, 1000 л = 1 м3
Поэтому плотность измеряют в г/мл, г/см3 (если это жидкость), или в г/л, г/дм3 (если это газ).
Если принять V = 1, то плотность – это масса единичного объёма вещества.
Химические свойства – это те химические реакции, в которые вступает данное вещество.
Так же можно сказать, что химические свойства – это те химические реакции, которые характеризуют группу веществ (класс веществ). Например, мы будем в дальнейшем изучать свойства воды, свойства класса оксидов, свойства класса алканов и т.д.
ООсновы атомно – молекулярного учения
Идея о том, что вещества состоят из мельчайших частиц возникла в Древней Греции в философских учениях Левкиппа и его ученика Демокрита. Эти частицы они назвали атомами (неделимые).
Существование атомов было доказано эмпирическим путём в конце 16 – начале 17 века Джоном Дальтоном и М. В. Ломоносовым. Ими же были заложены основы атомно – молекулярного учения.
В настоящее время, в связи с открытием делимости атома и появлением теории химической связи, основные положения атомно – молекулярного учения существенно изменились. Его суть можно свести к ряду важных положений, которые необходимо запомнить.
Все вещества, существующие в природе, представляют собой совокупность очень большого числа частиц (атомов, молекул или ионов). В зависимости от типа частиц все вещества условно подразделяют на две группы: вещества молекулярного строения и вещества немолекулярного строения (атомного или ионного).
Вещества молекулярного строения – вещества, основной структурной единицей которых является молекула.
Вещества немолекулярного строения – вещества, основными структурными единицами которых являются атомы или ионы.
Частицы, из которых состоит данное вещество, взаимодействуют между собой посредством электромагнитных (кулоновских) сил и находятся в постоянном движении. Движение частиц ограничено силами взаимодействия между ними.Каждое вещество, в зависимости от условий (температуры, давления) может находиться в определённом агрегатном состоянии.
В твёрдом агрегатном состоянии вещества, составляющие его частицы находятся относительно упорядоченно (кристаллическое состояние), их кинетическая энергия (энергия движения) существенно меньше чем потенциальная (энергия покоя). В газообразном состоянии, частицы свободно движутся в предоставленном им объёме и их кинетическая энергия существенно выше чем потенциальная.
В жидкости же потенциальная энергия частиц примерно равна их кинетической энергии. Это связано с тем, что часть частиц жидкости находится относительно упорядоченно в составе так называемых кластеров(англ. cluster— скопление). Другие же частицы свободно перемещаются по объёму жидкости. Чем ниже температура жидкости, тем больше в ней кластеров и наоборот.
Рис. Кластеры воды, где число молекул 20-220
Следует отметить, что существуют еще два дополнительные “состояния”. Это жидкокристаллическое состояние и состояние плазмы.
Цитоплазматическая мембрана клетки – типичный пример жидкого кристалла. Молекулы фосфолипидов в биологической мембране относительно упорядоченно распределяются в двух слоях, но при этом могут в пределах слоя свободно перемещаться, а также “перескакивать” из одного слоя в другой.
Жидкие кристаллы имеют широкое применение в технике (напр., ЖК-мониторы компьютеров).
Плазма (от греч. πλάσμα «вылепленное», «оформленное») — ионизованный газ.
Плазма в своём составе содержит свободные электроны, катионы (положительно заряженные ионы) и анионы (отрицательно заряженные ионы).
Так как плазма содержит заряженные частицы, то она проводит электрический ток и на неё можно воздействовать внешним магнитным полем. Различают низкотемпературную и высокотемпературную плазму.
Изучает свойства плазмы наука физика.
Вещество из одного агрегатного состояния может переходить в другие агрегатные состояния при изменении внешних условий – температуры (T) и давления (P). Такие переходы принято называть фазовыми переходами.
Так, при повышении температуры, твердое вещество превращается в жидкость, а жидкость при ещё большей температуре превращается в газ. Дальнейшее повышение температуры переводит газ в плазму. При таких переходах вещество в другие вещества не превращается. Напомним, что такие явления мы называем физическими. Поэтому фазовые переходы – это физические явления.
При понижении температуры происходят обратные фазовые переходы – газ превращается в жидкость, а жидкость переходит в твердое состояние.
Фазовые переходы имеют названия.
Твердое —> Жидкое (плавление, обратный переход – кристаллизация)
Жидкое —> Газообразное (испарение, обратный переход – конденсация)
Газообразное —> Плазма (ионизация, обратный переход – деионизация)
Твердое —> Газообразное (сублимация или возгонка, обратный переход – десублимация)
Вещество – совокупность большого числа частиц, находящаяся в определённом агрегатном состоянии в зависимости от условий (температуры и давления).
Поэтому, например, такая фраза как: “Вода – жидкое вещество”, является некорректной. Если мы говорим об агрегатном состоянии вещества, то следует обязательно уточнить условия в которых находится вещество – температуру и давление. Такая фраза как: “При нормальном атмосферном давлении и комнатной температуре, вода – жидкое по агрегатному состоянию вещество”, является правильной.
С точки зрения физики, что более точно, вещество – это форма материи, состоящая из частиц, обладающих массой покоя. Существуют частицы, не обладающие массой покоя, например, фотоны. Материя, состоящая из частиц, не обладающих массой покоя называется поле.
Протоны, нейтроны, электроны – это частицы, обладающие массой покоя, следовательно это частицы вещества. Но химия не изучает вещество, состоящее, к примеру, из электронов (электронный газ), или вещество, состоящее из нейтронов (нейтронный газ). Это удел физики.
Химия изучает вещества, состоящие из атомов, молекул или ионов.
Ввиду этого вещество условно можно подразделить на физическое (электронный газ в проводнике, нейтронный газ и т.д.) и химическое (состоящее из атомов, молекул, ионов, свободных радикалов).
Источник