У каких животных конечным продуктом белкового обмена является мочевина

У каких животных конечным продуктом белкового обмена является мочевина thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 декабря 2018; проверки требуют 36 правок.

Мочевина
Систематическое
наименование
Диамид угольной кислоты
Традиционные названия Мочевина, карбамид
Хим. формула (NH2)2CO
Состояние белые кристаллы
Молярная масса 60.07 г/моль
Плотность 1,32 г/см³
Температура
 • плавления 132.7 °C
 • кипения с разложением 174 °C
Энтальпия
 • образования -333,3 кДж/моль
Константа диссоциации кислоты 0,18 [1]
Растворимость
 • в воде 51,8 (20 °C)
Рег. номер CAS 57-13-6
PubChem 1176
Рег. номер EINECS 200-315-5
SMILES

NC(=O)N

InChI

InChI=1S/CH4N2O/c2-1(3)4/h(H4,2,3,4)

XSQUKJJJFZCRTK-UHFFFAOYSA-N

Кодекс Алиментариус E927b
RTECS YR6250000
ChEBI 16199
ChemSpider 1143
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Мочеви́на (карбамид) — химическое соединение, диамид угольной кислоты. Белые кристаллы, растворимые в полярных растворителях (воде, этаноле, жидком аммиаке).

Исторические сведения[править | править код]

Впервые была обнаружена в моче. Особое значение мочевине в истории органической химии придал факт её синтеза из неорганических веществ Фридрихом Вёлером в 1828 году[2]:

Это превращение является первым синтезом органического соединения из неорганического. Вёлер получил мочевину нагревом цианата аммония, полученного реакцией взаимодействия цианата калия с сульфатом аммония. Это событие нанесло первый удар по витализму — учению о жизненной силе[3][4].

Свойства и реакционная способность[править | править код]

Физические свойства[править | править код]

Бесцветные кристаллы без запаха, кристаллическая решётка тетрагональная сингония (а = 0,566 нм, b = 0,4712 нм, c = 2); претерпевает полиморфные превращения кристаллов.

Мочевина хорошо растворима в полярных растворителях (воде, жидком аммиаке и сернистом ангидриде), при снижении полярности растворителя растворимость падает. Мочевина нерастворима в неполярных растворителях (алканах, хлороформе).

Растворимость (г в 100 г растворителя):

  • в воде — 40 (0 °C), 45 (10 °C), 51,83 (20 °C), 57,2 (30 °C), 63,8 (40 °C), 67,2(50 °C), 71,9 (60 °C), 79 (80 °C), 88 (100 °C);
  • в жидком аммиаке — 49,2 (20 °C, 709 кПа), 90 (100 °C, 1267 кПа);
  • в метаноле — 22 (20 °C);
  • в этаноле — 5,4 (20 °C);
  • в изопропаноле — 2,6 (20 °C);
  • в изобутаноле — 6,2 (20 °C);
  • в этилацетате — 0,08 (25 °C);
  • в хлороформе — ~0 (не растворяется).

Нуклеофильность[править | править код]

Реакционная способность мочевины типична для амидов: оба атома азота являются нуклеофилами, то есть мочевина образует соли с сильными кислотами, нитрование с образованием N-нитромочевины, галогенируется с образованием N-галогенпроизводных. Мочевина алкилируется, образуя соответствующие N-алкилмочевины , взаимодействует с альдегидами, образуя производные 1-аминоспиртов .

В жёстких условиях мочевина ацилируется хлорангидридами карбоновых кислот с образованием уреидов (N-ацилмочевин):

.

Взаимодействие мочевины с дикарбоновыми кислотами и их производными (сложными эфирами и т. п.) ведёт к образованию циклических уреидов и широко используется в синтезе гетероциклических соединений; так, взаимодействие с щавелевой кислотой ведёт к парабановой кислоте, а реакция с эфирами замещённых малоновых кислот — к 1,3,5-триоксипиримидинам — производным барбитурата, широко применявшимся в качестве снотворных препаратов:

В водном растворе мочевина гидролизуется с образованием аммиака и углекислого газа, что обуславливает её применения в качестве минерального удобрения.

Электрофильность[править | править код]

Карбонильный атом углерода в мочевине слабоэлектрофилен, однако спирты способны вытеснять из мочевины аммиак, образуя уретаны:

.

К этому же классу реакций относится взаимодействие мочевины с аминами, ведущее к образованию алкилмочевин:

.

и реакция с гидразином с образованием семикарбазида:

образование при нагревании биурета .

Комплексообразование[править | править код]

Мочевина образует комплексы — включения (клатраты) со многими соединениями, например с перекисью водорода , используемой как удобная и безопасная форма «сухого» пероксида водорода (гидроперит). Способность мочевины образовывать комплексы включения с алканами используется для депарафинизации нефти. Причём мочевина образует комплексы только с Н-алканами, ибо разветвлённые углеводородные цепи не могут пройти в цилиндрические каналы кристаллов мочевины[5].

Недавно обнаружена способность мочевины образовывать глубокоэвтектические растворы[en] при смешении с хлоридом холина, хлоридом цинка и некоторыми другими веществами[6]. Такие смеси имеют температуру плавления заметно ниже по сравнению с исходными веществами (часто даже ниже комнатной температуры).

Биологическое значение[править | править код]

Мочевина является конечным продуктом метаболизма белка у млекопитающих и некоторых рыб.

Производные нитрозомочевин находят применение в фармакологии в качестве противоопухолевых препаратов.

Концентрация мочевины определяется в биохимическом анализе крови и мочи. Нормы для сыворотки крови человека:

  • дети до 14 лет — 1,8—6,4 ммоль/л
  • взрослые до 60 лет — 2,5—8,32 ммоль/л
  • взрослые старше 60 лет — 2,9—7,5 ммоль/л

Экскреция мочевины с мочой у здорового взрослого человека составляет 26–43 г/сут (430–720 ммоль/сут)[7]. Данное исследование используется для оценки азотистого баланса и суточной потребности в белке и энергии.

Промышленный синтез и использование[править | править код]

Ежегодное производство мочевины в мире составляет примерно 100 миллионов тонн[8].

В промышленности мочевина синтезируется реакцией Базарова из аммиака и углекислого газа при температуре 130—140 °C и давлении 200 атм.[9]:

.

По этой причине производства мочевины совмещают с аммиачными производствами.

Мочевина является крупнотоннажным продуктом, используемым, в основном, как азотное удобрение (содержание азота 46 %) и выпускается, в этом качестве, в устойчивом к слёживанию гранулированном виде.

Другим важным промышленным применением мочевины является синтез мочевино-альдегидных (в первую очередь мочевино-формальдегидных) смол, широко использующихся в качестве адгезивов в производстве древесно-волокнистых плит (ДВП) и мебельном производстве. Производные мочевины — эффективные гербициды.

Читайте также:  Какой продукт наиболее богат кальцием

Мочевина также применяется для очистки дымовых газов тепловых электростанций, котельных, мусоросжигательных заводов, дизельных двигателей внутреннего сгорания[10] и т. п. от оксидов азота:

,
.

Карбамид зарегистрирован в качестве пищевой добавки E927b. Используется, в частности, в производстве жевательной резинки.

В медицинской практике в косметологии входит в состав крема для ног.[11]

Удобрение[править | править код]

Мочевина содержит 46,63 % азота по массе. Бактерии выделяют фермент уреазу, который катализирует превращение мочевины в аммиак и углекислый газ.

.

Аммиак далее окисляется бактериями рода Nitrosomonas в нитрит:

.

Далее бактерии рода Nitrobacter окисляют нитрит в нитрат:

.

Растения поглощают из почвы ионы аммония и нитрат-ионы.

Качественная реакция[править | править код]

Для обнаружения мочевины используют появление жёлто-зелёного окрашивания при взаимодействии определяемого раствора с п-диметил-аминобензальдегидом в присутствии соляной кислоты. Предел обнаружения 2 мг/л.

См. также[править | править код]

  • Цикл мочевины
  • Карбодиимиды
  • Гидроксикарбамид

Примечания[править | править код]

  1. ↑ Химическое равновесие. Свойства растворов. Раздел 1. chemanalytica.com. Дата обращения 21 февраля 2016.
  2. Nicolaou, K.C., Montagnon, T. Molecules That Changed The World. — Wiley-VCH, 2008. — С. 11. — ISBN 978-3-527-30983-2.
  3. ↑ Galatzer-Levy, R. M. (1976) «Psychic Energy, A Historical Perspective.» Ann Psychoanal 4:41-61 [1]
  4. ↑ Витализм и его опровержение
  5. ↑ Нейланд О. Я. Органическая химия: Учебник для химических специальностей вузов.— Москва: Высшая школа, 1990. — с. 645—646.
  6. Emma L. Smith, Andrew P. Abbott, Karl S. Ryder. Deep Eutectic Solvents (DESs) and Their Applications // Chemical Reviews. — 2014-11-12. — Т. 114, вып. 21. — С. 11060—11082. — ISSN 0009-2665. — doi:10.1021/cr300162p.
  7. ↑ Urea – DiaSys Diagnostic Systems GmbH
  8. J. H. Meessen, H. Petersen. “Urea” // Ullmann’s Encyclopedia of Industrial Chemistry. — Weinheim: Wiley-VCH, 2002. — doi:10.1002/14356007.a27_333.
  9. Мельников Б.П., Кудрявцева И.А. Производство мочевины. — М.: Химия, 1965. — P. 61.
  10. ↑ Чем грозит автоиндустрии череда топливных скандалов: Мировой бизнес: Бизнес: Lenta.ru
  11. ↑ Крем для ног с мочевиной — виды, как выбрать. Журнал NAILS (9 августа 2019). Дата обращения 18 июля 2020.

Источники[править | править код]

Рабинович В. А., Хавин З. Я. Краткий химический справочник: Справ. изд./ Под ред. А. А. Потехина и А. И. Ефимова. — 3-е изд., перераб. и доп. — Л.: Химия, 1991. — 432 с. ISBN 5-7245-0703-X

Источник

Виды конечных продуктов азотистого обмена у животных разных групп. В чем причины, определяющие их различия При расщеплении белков, нуклеиновых кислот и других азотсодержащих соединений образуются токсичные вещества — аммиак, мочевина и мочевая кислота, токсический эффект которых соответственно снижается в приведенном ряду. В зависимости от того, в какой из этих трех форм преимущественно выделяется азот, животных подразделяют на три группы: аммониотелические (выделяющие свободный аммиак),уреотелические (выделяющие мочевину) и урикотелические (выделяющие мочевую кислоту).
Форма выделения продуктов азотистого обмена тесно связана с условиями жизни животного и обеспеченностью водой. Аммиак весьма токсичен даже в малых концентрациях. Благодаря хорошей растворимости и небольшому молекулярному весу, он легко диффундирует через любую поверхность, соприкасающуюся с водой. Аммиак является конечным продуктом азотистого обмена у водных беспозвоночных, костных рыб, личинок и постоянно живущих в воде земноводных.

Наземные животные ограничены в воде: чтобы избежать накопления аммиака в тканях и жидкостях тела, они должны преобразовать его в конечные продукты, нетоксичные для организма. Наземные ресничные черви, земноводные, млекопитающие выделяютмочевину.

Низкая растворимость мочевой кислоты, выпадение ее в осадок делает ее осмотически неактивной. Для ее выведения из организма вода практически не нужна. Урикотелия в основном характерна для животных, освоивших наземную, в том числе и засушливую, среду (наземные насекомые, чешуйчатые пресмыкающиеся, птицы).

Водно-солевой обмен рыб

Почки рыб выводят аммиак, соли, воду; почки наземных позвоночных — мочевину, мочевую кислоту, соли, воду.Выделительная система рыб служит для выведения из организма продуктов обмена и обеспечения его водно-солевого состава. Она включает:

Основную массу туловищной почки заполняют нефроны. Нефрон состоит из:

1) мальпигиева тельца (клубочек капиллярных сосудов, заключенный в боуменову капсулу);

2) выделительного канальца.

Артериальная кровь по почечным артериям поступает в сосудистые клубочки, где фильтруется и образуется первичная моча. В средней части выделительных канальцев происходит обратное всасывание полезных для организма веществ (сахара, витамины, аминокислоты, вода) и образуется вторичная, или окончательная, моча. У хрящевых рыб основным компонентом мочи является мочевина, у костистых – аммиак (аммиак намного токсичнее мочевины).

Выделение продуктов распада тесно связано с водно-солевым обменом рыб. У морских и пресноводных рыб эти процессы протекают различно.

When a fish eats protein, like the peel of an orange part of it goes unused and becomes waste. As Dave McShaffrey, professor of biology at Marietta College in Ohio, explains on the college website, “When proteins are converted to carbohydrates to provide energy, the amino group is removed and must be dealt with.” In saltwater fish, this nitrogen-rich waste is usually converted to either ammonia or urea, which is one of the main excretory products of saltwater fish. Ammonia is easier to produce, but urea is less toxic, requires less water and gets rid of twice as much nitrogen. Theword “urine” is related to “urea.”

Читайте также:  Быстрый белок какие продукты

Морские хрящевые рыбы живут в изотоничной среде (т.е. осмотическое давление крови и тканевых жидкостей равно давлению окружающей среды). У них изотоничность внутренней и внешней среды обеспечивается за счет удержания в крови и тканевых жидкостях мочевины и солей (концентрация мочевины в крови у них достигает 2,6%). Через почки наружу у них выводятся лишь излишки мочевины, солей и воды, количество выделяемой мочи невелико (2-50 мл на 1 кг массы тела в сутки). У морских хрящевых рыб для выведения избытка солей сформировалась особая ректальная железа, открывающаяся в прямую кишку.

Все пресноводные рыбы живут в гипотонической среде (т.е. осмотическое давление крови и тканевых жидкостей выше, чем в окружающей среде), поэтому вода постоянно проникает в организм через кожу, жабры, с пищей. Чтобы избежать обводнения пресноводные рыбы имеют хорошо развитый фильтрационный аппарат почек, что позволяет им выделять большое количество мочи (50-300 л на 1 кг массы тела в сутки). Потеря солей с мочой компенсируется активной их реабсорбцией в почечных канальцах и поглощением солей жабрами из воды, часть солей поступает с пищей.

Морские костистые рыбы живут в гипертонической среде (т.е. осмотическое давление крови и тканевых жидкостей ниже, чем в окружающей среде), поэтому вода выходит из организма через кожу, жабры, с мочой и фекалиями. Во избежание иссушения они пьют соленую воду (от 40 до 200 мл на 1 кг массы в сутки), которая из кишечника всасывается в кровь. У морских костистых рыб уменьшается число клубочков в почках, а у некоторых рыб исчезают совсем (морская игла, морской черт). Таким образом, почки выводят небольшое количество мочи (0,5—20 мл на 1 кг массы тела в сутки).

Проходные рыбы при переходе из одной среды в другую могут изменять способ осморегуляции: в морской среде она осуществляется как у морских рыб, а в пресной – как у пресноводных. Такие адаптации водно-солевого обмена позволили костистым рыбам широко освоить пресные и соленые водоемы.

Адаптации наземных животных к выделению веществ

According to New World Encyclopedia, reptiles use two small kidneys as tools for excretion. The kidneys serve to filter the nitrogen from the animal’s bloodstream, then turn it into waste. The nitrogen then exits the body in dry form as uric acid crystals along with the feces. According to Stanford University, the kidneys in a bird also function as a means to remove nitrogen from the blood. The white substance found in bird droppings is actually uric acid, which is not water soluble. In both reptiles and birds, eliminating the nitrogen requires that the body exerts a great deal of energy. Both species are able to efficiently remove the nitrogen while losing very little water in the waste product.

Адаптации пустынных животных к выделению веществ
Обитатели полупустынных биотопов большую часть воды получают, поедая сочные части суккулентных растений. Их кожно-легочные потери воды минимальны. Так, при температуре 20°С они достигают у относительно влаголюбивого вида – гребенщиковой песчанки 170 см3, а у сухолюбивой большой песчанки – только 50 см3 на 1 кг массы за 1 ч. Настоящие пустынные млекопитающие способны поедать почти сухие корма и практически не пить в течение всей жизни, удовлетворяя свои потребности лишь за счет образующейся в организме метаболической воды. Верблюды в кормные и влажные сезоны запасают жир, расходуемый в малокормное и сухое время – при этом образуется некоторое количество воды; наконец, во время отдыха и сна они снижают температуру тела, что также сокращает расход воды.
Desert Animals

Coping with water loss is a particular problem for animals that live in dry conditions. Some, like the camel, have developed great tolerance for dehydration. For example, under some conditions, camels can withstand the loss of one third of their body mass as water. They can also survive wide daily changes in temperature. This means they do not have to use large quantities of water in sweat to cool the body by evaporation.Smaller animals are more able than large ones to avoid extremes of temperature or dry conditions by resting in sheltered more humid situations during the day and being active only at night.The kangaroo rat is able to survive without access to any drinking water at all because it does not sweat and produces extremely concentrated urine. Water from its food and from chemical processes is sufficient to supply all its requirements.

hello_html_m599ba24d.jpghello_html_66ebb6ad.jpghello_html_5f59b325.jpg

Какой из нефронов принадлежит верблюду, а какой – рептилии? Почему вы сделали такой выбор?

Fresh Water Fish

Although the skin of fish is more or less waterproof, the gills are very porous. The body fluids of fish that live in fresh water have a higher concentration of dissolved substances than the water in which they swim. In other words the body fluids of fresh water fish are hypertonic to the water (see chapter 3). Water therefore flows into the body by osmosis. To stop the body fluids being constantly diluted fresh water fish produce large quantities of dilute urine.

Читайте также:  Какой продукт богатая цинком

Marine Fish

Marine fish like the sharks and dogfish have body fluids that have the same concentration of dissolved substances as the water (isotonic) have little problem with water balance. However, marine bony fish like red cod, snapper and sole, have body fluids with a lower concentration of dissolved substances than seawater (they are hypotonic to seawater). This means that water tends to flow out of their bodies by osmosis. To make up this fluid loss they drink seawater and get rid of the excess salt by excreting it from the gills.

Marine Birds

Marine birds that eat marine fish take in large quantities of salt and some only have access to seawater for drinking. Bird’s kidneys are unable to produce very concentrated urine, so they have developed a salt gland. This excretes a concentrated salt solution into the nose to get rid of the excess salt.

2. Using the words/phrases in the list below fill in the blanks in the following statements.

| cortex | amino acids | renal | glucose | water reabsorption | large proteins |

| bowman’s capsule | diabetes mellitus | secreted | antidiuretic hormone (ADH) | blood cells |

| glomerulus | concentration of the urine | medulla | nephron |

a) Blood enters the kidney via the ……………………. artery.

b) When cut across the kidney is seen to consist of two regions, the outer………….. and the inner…………..

c) Another word for the kidney tubule is the………………………….

d) Filtration of the blood occurs in the…………………………

e) The filtered fluid (filtrate) enters the………………………..

f) The filtrate entering the e) above is similar to blood but does not contain……………… or………………..

g) As the fluid passes along the first coiled part of the kidney tubule……………… and……………….. are removed.

h) The main function of the loop of Henle is…………………………………………………….

i) Hydrogen and potassium ions are………………………… into the second coiled part of the tubule.

j) The main function of the collecting tube is…………………………………………..

k) The hormone……………………………….. is responsible for controlling water reabsorption in the collecting tube.

l) When the pancreas secretes inadequate amounts of the hormone insulin the condition known as…………………………. results. This is most easily diagnosed by testing for………………………….. in the urine.

Источник

Мочевина – главный конечный продукт белкового обмена. Она синтезируется в печени в результате обезвреживания высокотоксичного аммиака, образуемого в результате бактериального брожения в желудочно-кишечном тракте, дезаминирования аминокислот, пуриновых и пиримидиновых оснований, биогенных аминов и прочих азотсодержащих органических соединений. Синтез сопровождается поглощением энергии, источником которой является АТФ. Выделяется почками.

Показания к назначению исследования:

  • Исследование функции почек и печени;
  • Почечная недостаточность;
  • Печеночная недостаточность

Единица измерения: ммоль /л (mmol/l)
Референтные интервалы:

Собаки

Кошки

Лошади

Человек

3,1-9,2

5,5-11,1

3,7-8,8

2,5-6,4

Принцип метода.

Мочевина образца, благодаря сопряженным реакциям, описанным ниже, взаимодействует с NADH, оптическая плотность которого может быть измерена спектрофотометрически.

Мочевина + H2O → 2NH4+ + CO2

 NH4+ + NADH + H+ + 2-оксоглютарат → Глютамт + NAD+

Факторы, искажающие результат:

  • Гемолиз образца;
  • Высокое содержание аммиака

Интерпретация результатов:

Образование мочевины у здоровых животных зависит от характера кормления: при преобладании в рационе белковых продуктов (мясо, рыба, яйца, сыр, творог) концентрация мочевины может повышаться до верхних границ нормы, а при растительной диете – снижаться. При патологии печени вследствие нарушения ее синтетической способности уровень мочевины в крови может снижаться. У животных раннего возраста, при беременности у самок в связи с повышенным синтезом белка уровень мочевины несколько снижен по сравнению с нормой для взрослых. С возрастом уровень мочевины повышается.

Повышение

Понижение

  • почечная ретенционная азотемия (недостаточное выделение мочевины с мочой при нормальном поступлении в кровь, ослаблена выделительная функция почек): гломерулонефрит; амилоидоз почек; пиелонефрит; туберкулёз почек; приём нефротоксичных препаратов (тетрациклин и др.);
  • внепочечная ретенционная азотемия: (нарушение почечной гемодинамики): сердечная недостаточность; сильные кровотечения; шок; кишечная непроходимость; ожоги; нарушение оттока мочи (опухоль мочевого пузыря, аденома простаты, камни в мочевом пузыре);
  • дегидратация (рвота, понос);
  • продукционная азотемия (избыточное поступление мочевины в кровь при усиленном катаболизме белков): кахексия; лейкоз; злокачественные опухоли; приём глюкокортикоидов; андрогенов; лихорадочные состояния; усиленная физическая нагрузка;
  • диета с избыточным содержанием белка;
  • острая гемолитическая анемия.
  • нарушение функции печени (нарушается синтез мочевины);
  • гепатит, цирроз, острая гепатодистрофия;
  • печеночная кома;
  • отравление фосфором, мышьяком;
  • беременность (за счет повышения скорости клубочковой фильтрации);
  • низкобелковая диета, голодание;
  • акромегалия;
  • синдром нарушенного кишечного всасывания (мальабсорбция);
  • гипергидратация.

Клинический диагноз не должен основываться на результатах отдельного теста, он должен согласовываться  с результатами клинических и лабораторных данных.

Источник