У какого из металлов более ярко выражены свойства

У какого из металлов более ярко выражены свойства thumbnail

Âñå ïðîñòûå âåùåñòâà ïåðèîäè÷åñêîé ñèñòåìû Ä.È. Ìåíäåëååâà ïîäðàçäåëÿþòñÿ íà òðè êëàññà: ýëåìåíòû ñ ìåòàëëè÷åñêèìè ñâîéñòâàìè (ìåòàëëû), ýëåìåíòû ñ íåìåòàëëè÷åñêèìè ñâîéñòâàìè (íåìåòàëëû) è ïîëóìåòàëëû.

Ôèçè÷åñêèå è õèìè÷åñêèå ñâîéñòâà ïðîñòûõ âåùåñòâ, ïðèíàäëåæàùèõ ê ðàçëè÷íûì êëàññàì, ñèëüíî ðàçëè÷àþòñÿ ìåæäó ñîáîé, ÷òî îáóñëàâëèâàåò ðàçëè÷íûå îáëàñòè èõ ïðèìåíåíèÿ â ïðîìûøëåííîñòè è ñïîñîáû äîáû÷è.

Êîðîòêî îñòàíîâèìñÿ íà ìåòàëëàõ: èõ ìåòàëëè÷åñêèõ ñâîéñòâàõ, îñíîâíûõ ñïîñîáàõ äîáû÷è è îáðàáîòêè.

Ñâîéñòâà ìåòàëëè÷åñêèõ ýëåìåíòîâ

Ñ ôèçèêî-õèìè÷åñêîé òî÷êè çðåíèÿ, îñíîâíîå ñâîéñòâî ìåòàëëîâ çàêëþ÷àåòñÿ â ëåãêîñòè îòðûâà èõ âíåøíåãî ýëåêòðîíà îò àòîìà, äðóãèìè ñëîâàìè – ëåãêîñòü èîíèçàöèè àòîìà ìåòàëëà ïî óðàâíåíèþ:

Me=Me++ e-

Îáëàäàÿ äàííûì ñâîéñòâîì, ìåòàëëû â òâåðäîì ñîñòîÿíèè ïðåäñòàâëÿþò ñîáîé êðèñòàëëè÷åñêóþ ðåøåòêó, â óçëàõ êîòîðîé íàõîäÿòñÿ èîíû ìåòàëëîâ, à ìåæäó íèìè ñâîáîäíî äâèãàþòñÿ äåëîêàëèçîâàííûå ýëåêòðîíû, îáðàçóþùèå òàê íàçûâàåìûé ýëåêòðîííûé ãàç. Òàêîé òèï õèìè÷åñêîé ñâÿçè íàçûâàåòñÿ ìåòàëëè÷åñêîé ñâÿçüþ.

Èìåííî ìåòàëëè÷åñêàÿ ñâÿçü ïðèäàåò ýëåìåíòàì îñíîâíûå ìåòàëëè÷åñêèå ñâîéñòâà: âûñîêóþ ýëåêòðè÷åñêóþ ïðîâîäèìîñòü, òåïëîïðîâîäíîñòü, ïëàñòè÷íîñòü, êîâêîñòü, ìåòàëëè÷åñêèé áëåñê.

Ýëåìåíòû ñ íàèáîëåå ÿðêî âûðàæåííûìè ìåòàëëè÷åñêèìè ñâîéñòâàìè

Íàèáîëåå ÿðêî ìåòàëëè÷åñêèå ñâîéñòâà âûðàæåíû ó ùåëî÷íûõ ìåòàëëîâ (Li, Na, K, Rb, Cs, Fr), ÷òî îáóñëîâëåíî íèçêèì çíà÷åíèåì ýíåðãèé èîíèçàöèè èõ àòîìîâ. Ýòî î÷åíü ìÿãêèå ìåòàëëû (ìîæíî ðåçàòü íîæîì), îáëàäàþùèå ÷ðåçâû÷àéíî âûñîêîé õèìè÷åñêîé àêòèâíîñòüþ.

Óæå ïðè êîìíàòíîé òåìïåðàòóðå ìÿãêèå ìåòàëëû áûñòðî îêèñëÿþòñÿ êèñëîðîäîì âîçäóõà, ïîýòîìó èõ õðàíÿò ïîä ñëîåì êåðîñèíà. Ïîä âîäîé ùåëî÷íûå ìåòàëëû õðàíèòü íåëüçÿ.

Ñîåäèíåíèå ýëåìåíòîâ ñ âîäîé ïðèâîäèò ê âçðûâó. Ðåàêöèÿ ïðîòåêàåò ñ âûäåëåíèåì âîäîðîäà ïî óðàâíåíèþ:

2Na+2H2O=2NaOH+H2

Ïîñêîëüêó âîäîðîä îáðàçóåò ñ âîçäóõîì âçðûâîîïàñíûå ñìåñè, à ðåàêöèÿ ñîïðîâîæäàåòñÿ âûäåëåíèåì áîëüøîãî êîëè÷åñòâà òåïëà, êàê ïðàâèëî, ïðîèñõîäèò âçðûâ.

Äîáû÷à ìåòàëëè÷åñêèõ ýëåìåíòîâ

Ìíîãèå ìåòàëëû ñóùåñòâóþò â ïðèðîäíûõ óñëîâèÿõ â âèäå ñîåäèíåíèÿ ñ äðóãèìè õèìè÷åñêèìè ýëåìåíòàìè.  ñàìîðîäíîì âèäå, òî åñòü, êàê ïðîñòîå âåùåñòâî, â ïðèðîäå â îñíîâíîì âñòðå÷àþòñÿ òîëüêî çîëîòî (Au) è ïëàòèíà (Pt). Èíîãäà, íî ðåäêî è òîëüêî ÷àñòè÷íî, âñòðå÷àþòñÿ ñàìîðîäíîå ñåðåáðî (Ag), ìåäü (Cu), ðòóòü (Hg), îëîâî (Sn) è íåñêîëüêî äðóãèõ ìåòàëëîâ.

Ïîäàâëÿþùåå áîëüøèíñòâî ìåòàëëîâ äîáûâàþò èç ðóäû. Ñïîñîá äîáû÷è çàâèñèò îò õèìè÷åñêèõ ñâîéñòâ ìåòàëëà.

Îñíîâíûìè ìåòîäàìè ïðîìûøëåííîãî ïîëó÷åíèÿ ìåòàëëîâ èç ðóäû ÿâëÿþòñÿ âîññòàíîâëåíèå èõ ñîåäèíåíèé (íàïðèìåð, óãëåì, ìîíîîêñèäîì óãëåðîäà èëè àëþìèíèåì) è ýëåêòðîëèç.

Òàê, æåëåçî ìîæåò áûòü ïîëó÷åíî ïóòåì âîññòàíîâëåíèÿ ðóäû ïî îäíîìó èç äâóõ óðàâíåíèé:

Fe2O3+3CO=2Fe+3CO2

Fe2O3+2Al=2Fe+Al2O3

Ìåòàëëè÷åñêàÿ ìåäü ìîæåò áûòü ïîëó÷åíà ïðè ýëåêòðîëèçå âîäíîãî ðàñòâîðà äèõëîðèäà (CuCl2) ïî óðàâíåíèþ:

Cu2++2e-=Cu

Ðàçðóøåíèå ìåòàëëè÷åñêèõ è æåëåçîáåòîííûõ ýëåìåíòîâ è êîíñòðóêöèé

Ìåòàëëû è ñïëàâû, èñïîëüçóåìûå â ñòðîèòåëüñòâå, ðàçðóøàþòñÿ ïîä âîçäåéñòâèåì ðàçëè÷íûõ ïðîöåññîâ êîððîçèè:

  • àòìîñôåðíîé;
  • ýëåêòðîõèìè÷åñêîé;
  • ãàçîâîé;
  • êîððîçèÿ â äðóãèõ àãðåññèâíûõ ñðåäàõ.

Íàëè÷èå çàùèòíîãî ñëîÿ óâåëè÷èâàåò ñðîê ñëóæáû ìåòàëëîêîíñòðóêöèé, íî ïðîöåññ êîððîçèè ïîëíîñòüþ íå îñòàíàâëèâàåòñÿ.

Îäíîé èç ïðè÷èí ðàçðóøåíèÿ æåëåçîáåòîííûõ êîíñòðóêöèé ÿâëÿåòñÿ êîððîçèÿ àðìàòóðû.

Ðàçðóøåíèå ñòàëüíûõ è æåëåçîáåòîííûõ êîíñòðóêöèé óñêîðÿåòñÿ ïîä íàãðóçêîé, ïðè ðåçêèõ êîëåáàíèÿõ òåìïåðàòóðû îêðóæàþùåé ñðåäû, è îñîáåííî ïðè ñîâìåñòíîì äåéñòâèè ýòèõ ôàêòîðîâ. Óâåëè÷åíèå óñòîé÷èâîñòè ìåòàëëîêîíñòðóêöèé ê ïðîöåññàì êîððîçèè ÿâëÿåòñÿ âàæíåéøåé çàäà÷åé ñîâðåìåííîãî ìàòåðèàëîâåäåíèÿ.

Áîëüøå îá îáðàáîòêå ìåòàëëè÷åñêèõ ýëåìåíòîâ íà âûñòàâêå

Ìåòàëëû è ñïëàâû ïîäâåðãàþòñÿ ðàçíûì âèäàì îáðàáîòêè òàêèõ, êàê:

  • äàâëåíèå (êîâêà);
  • ðåçàíèå;
  • ëèòüå;
  • òåðìè÷åñêîå âîçäåéñòâèå;
  • ñâàðêà;
  • ýëåêòðîèñêðîâûå è ýëåêòðîõèìè÷åñêèå ìåòîäû;
  • âîçäåéñòâèå óëüòðàçâóêà.

Òåõíîëîãèÿ îáðàáîòêè ìåòàëëîâ è ñïëàâîâ ïîñòîÿííî ðàçâèâàåòñÿ. Ýòà îòðàñëü ïðîìûøëåííîñòè îòíîñèòñÿ ê íàóêîåìêîé ñôåðå, ãäå ïîñòîÿííî ïðîèñõîäÿò èçìåíåíèÿ.

Ïîñåùåíèå ñïåöèàëèçèðîâàííîé âûñòàâêè «Ìåòàëëîîáðàáîòêà»
– îäèí èç ëó÷øèõ ñïîñîáîâ íàõîäèòüñÿ â êóðñå ïîñëåäíèõ äîñòèæåíèé. Ýêñïîçèöèè ïðåäïðèÿòèé ñî âñåãî ìèðà äàþò âîçìîæíîñòü îçíàêîìèòüñÿ ñ ãëàâíûìè òåíäåíöèÿìè ðàçâèòèÿ îòðàñëè è óâèäåòü òåõíîëîãèè ñîâðåìåííîé îáðàáîòêè ìåòàëëè÷åñêèõ èçäåëèé.

Äîðîæíîå ìåòàëëè÷åñêîå îãðàæäåíèå
Îêðàñêà è ïîêðàñêà ìåòàëëè÷åñêèõ èçäåëèé
Êîìïëåêòóþùèå äëÿ ìåòàëëè÷åñêèõ ëåñòíèö

Источник

Такие свойства атомов, как их размер, энергия ионизации, сродство к электрону, электроотрицательность, степень окисления, связаны с электронной конфигурацией атома. В их изменении с увеличением порядкового номера элемента наблюдается периодичность.

Атомы не имеют строго определенных границ, что обусловлено волновой природой электронов. В расчетах пользуются так называемыми эффективными или кажущимися радиусами, т. е. радиусами шарообразных атомов, сближенных между собой при образовании кристалла. Обычно их рассчитывают из рентгенометрических данных.

Читайте также:  Какие из свойств характеризуют время

Радиус атома — важная его характеристика. Чем больше атомный радиус, тем слабее удерживаются внешние электроны. И, наоборот, с уменьшением атомного радиуса электроны притягиваются к ядру сильнее.

В периоде атомный радиус в общем уменьшается слева направо. Это объясняется ростом силы притяжения электронов с ростом заряда ядра. В подгруппах сверху вниз атомный радиус возрастает, так как в результате прибавления дополнительного электронного слоя увеличивается объем атома, а значит, и его радиус.

Энергия ионизации — это энергия, необходимая для отрыва наиболее слабо связанного электрона от атома. Она обычно выражается в электрон-вольтах. При отрыве электрона от атома образуется соответствующий катион.

Энергия ионизации для элементов одного периода возрастает слева направо с возрастанием заряда ядра. В подгруппе она уменьшается сверху вниз вследствие увеличения расстояния электрона от ядра. Изменение энергии ионизации атомов с ростом заряда ядра графически представлено на рис.

Энергия ионизации связана с химическими свойствами элементов. Так, щелочные металлы, имеющие небольшие энергии ионизации, обладают ярко выраженными металлическими свойствами. Химическая инертность благородных; газов связана с их высокими j значениями энергии ионизации.

Атомы могут не только отдавать, но и присоединять электроны. При этом образуется соответствующий анион. Энергия, которая выделяется при присоединении к атому одного электрона, называется сродством к электрону. Обычно сродство к электрону, как и энергия ионизации, выражается в электрон-вольтах. Значения сродства к электрону известны не для всех элементов; измерять их весьма трудно. Наиболее велики они у галогенов, имеющих на внешнем уровне по 7 электронов. Это говорит об усилении неметаллических свойств элементов по мере приближения к концу периода.

Определение электроотрицательности дал американский’ ученый Л. Полинг в 1932 г. Он же предложил и первую шкалу элёктроотрицательности. Согласно Полингу, электроотрицательность есть способность атома в соединении притягивать к себе электроны.

Имеются в виду валентные электроны, т. е. электроны, которые участвуют в образовании химической связи. Очевидно, у благородных газов электроотрицательность отсутствует, так как внешний уровень в их атомах завершен и устойчив.

Сопоставляя значения электроотрицательностей элементов от франция (0,86) до фтора (4,10), легко заметить, что относительная электроотрицательность подчиняется периодическому закону: в периоде она растет с увеличением номера элемента, в группе — уменьшается. Ее значения служат мерой неметалличности элементов. Очевидно, чем больше относительная электроотрицательность, тем сильнее элемент проявляет неметаллические свойства.

Li 0.97, Na 1,01; К 0,91; Rb 0.89; Cs 0.86; Fr 0.86
то есть наиболее типичным представителем металла будет элемент обладающей наименьшей электроотрицательностью что и определяет свойства металлов nxj они Химически очень активны, причем их активность возрастает от Li к Fr

Источник

Периодическая таблица Дмитрия Ивановича Менделеева очень удобна и универсальна в своём использовании. По ней можно определить некоторые характеристики элементов, и что самое удивительное, предсказать некоторые свойства ещё неоткрытых, не обнаруженных учёными, химических элементов (например, мы знаем некоторые свойства предполагаемого унбигексия, хотя его ещё не открыли и не синтезировали).

Что такое металлические и неметаллические свойства

Эти свойства зависят от способности элемента отдавать или притягивать к себе электроны. Важно запомнить одно правило, металлы – отдают электроны, а неметаллы – принимают. Соответственно металлические свойства – это способность определённого химического элемента отдавать свои электроны (с внешнего электронного облака) другому химическому элементу. Для неметаллов всё в точности наоборот. Чем легче неметалл принимает электроны, тем выше его неметаллические свойства.

Металлы никогда не примут электроны другого химического элемента. Такое характерно для следующих элементов;

  • натрия;
  • калия;
  • лития;
  • франция и так далее.

С неметаллами дела обстоят похожим образом. Фтор больше всех остальных неметаллов проявляет свои свойства, он может только притянуть к себе частицы другого элемента, но ни при каких условиях не отдаст свои. Он обладает наибольшими неметаллическими свойствами. Кислород (по своим характеристикам) идёт сразу же после фтора. Кислород может образовывать соединение с фтором, отдавая свои электроны, но у других элементов он забирает отрицательные частицы.

Список неметаллов с наиболее выраженными характеристиками:

  1. фтор;
  2. кислород;
  3. азот;
  4. хлор;
  5. бром.
Читайте также:  Какие свойства у высокопрочного чугуна

Неметаллические и металлические свойства объясняются тем, что все химические вещества стремятся завершить свой энергетический уровень. Для этого на последнем электронном уровне должно быть 8 электронов. У атома фтора на последней электронной оболочке 7 электронов, стремясь завершить ее, он притягивает ещё один электрон. У атома натрия на внешней оболочке один электрон, чтобы получить 8, ему проще отдать 1, и на последнем уровне окажется 8 отрицательно заряженных частиц.

Благородные газы не взаимодействуют с другими веществами именно из-за того, что у них завершён энергетический уровень, им не нужно ни притягивать, ни отдавать электроны.

Почему металлические свойства

Как изменяются металлические свойства в периодической системе

Периодическая таблица Менделеева состоит из групп и периодов. Периоды располагаются по горизонтали таким образом, что первый период включает в себя: литий, бериллий, бор, углерод, азот, кислород и так далее. Химические элементы располагаются строго по увеличению порядкового номера.

Группы располагаются по вертикали таким образом, что первая группа включает в себя: литий, натрий, калий, медь, рубидий, серебро и так далее. Номер группы указывает на количество отрицательных частиц на внешнем уровне определённого химического элемента. В то время, как номер периода указывает на количество электронных облаков.

Металлические свойства усиливаются в ряду справа налево или, по-другому, ослабевают в периоде. То есть магний обладает большими металлическими свойствами, чем алюминий, но меньшими, нежели натрий. Это происходит потому, что в периоде количество электронов на внешней оболочке увеличивается, следовательно, химическому элементу сложнее отдавать свои электроны.

В группе все наоборот, металлические свойства усиливаются в ряду сверху вниз. Например, калий проявляется сильнее, чем медь, но слабее, нежели натрий. Объяснение этому очень простое, в группе увеличивается количество электронных оболочек, а чем дальше электрон находится от ядра, тем проще элементу его отдать. Сила притяжения между ядром атома и электроном в первой оболочке больше, чем между ядром и электроном в 4 оболочке.

Сравним два элемента – кальций и барий. Барий в периодической системе стоит ниже, чем кальций. А это значит, что электроны с внешней оболочки кальция расположены ближе к ядру, следовательно, они лучше притягиваются, чем у бария.

Сложнее сравнивать элементы, которые находятся в разных группах и периодах. Возьмём, к примеру, кальций и рубидий. Рубидий будет лучше отдавать отрицательные частицы, чем кальций. Так как он стоит ниже и левее. Но пользуясь только таблицей Менделеева нельзя однозначно ответить на этот вопрос сравнивая магний и скандий (так как один элемент ниже и правее, а другой выше и левее). Для сравнения этих элементов понадобятся специальные таблицы (например, электрохимический ряд напряжений металлов).

Почему металлические свойства

Как изменяются неметаллические свойства в периодической системе

Неметаллические свойства в периодической системе Менделеева изменяются с точностью до наоборот, нежели металлические. По сути, эти два признака являются антагонистами.

Неметаллические свойства усиливаются в периоде (в ряду справа налево). Например, сера способна меньше притягивать к себе электроны, чем хлор, но больше, нежели фосфор. Объяснение этому явлению такое же. Количество отрицательно заряженных частиц на внешнем слое увеличивается, и поэтому элементу легче закончить свой энергетический уровень.

Неметаллические свойства уменьшаются в ряду сверху вниз (в группе). Например, фосфор способен отдавать отрицательно заряженные частицы больше, чем азот, но при этом способен лучше притягивать, нежели мышьяк. Частицы фосфора притягиваются к ядру лучше, чем частицы мышьяка, что даёт ему преимущество окислителя в реакциях на понижение и повышение степени окисления (окислительно-восстановительные реакции).

Сравним, к примеру, серу и мышьяк. Сера находится выше и правее, а это значит, что ей легче завершить свой энергетический уровень. Как и металлы, неметаллы сложно сравнивать, если они находятся в разных группах и периодах. Например, хлор и кислород. Один из этих элементов выше и левее, а другой ниже и правее. Для ответа придётся обратиться к таблице электроотрицательности неметаллов, из которой мы видим, что кислород легче притягивает к себе отрицательные частицы, нежели хлор.

Читайте также:  Какие существуют свойства занятий

Металлические свойства

Периодическая таблица Менделеева помогает узнать не только количество протонов в атоме, атомную массу и порядковый номер, но и помогает определить свойства элементов.

Видео

Видео поможет вам разобраться в закономерности свойств химических элементов и их соединений по периодам и группам.

Источник

А) Характеристика фосфора.
1. Фосфор— элемент пятой группы и третьего периода, Z = 15,
Аr(Р) = 31.
Соответственно, атом фосфора содержит в ядре 15 протонов,
16 нейтронов и 15 электронов. Строение его электронной оболочки
можно отразить с помощью следующей схемы:
 У какого из металлов более ярко выражены свойства
Атомы фосфора проявляют как окислительные свойства (принима-
ют недостающие для завершения внешнего уровня три электрона, получая при этом степень окисления -3, например, в соединениях с менее электроотрицательными элементами— металлами, водородом и т.п.) так и восстановительные свойства (отдают 3 или 5 электронов более электроотрицательным элементам — кислороду, галогенам и т.п., приобретая при этом степени окисления +3 и +5.)
Фосфор менее сильный окислитель, чем азот, но более сильный, чем мышьяк, что связано с ростом радиусов атомов от азота к мышьяку. По этой же причине восстановительные свойства, наоборот, усиливаются.
2.    Фосфор — простое вещество, типичный неметалл. Фосфору свойственно явление аллотропии. Например, существуют аллотропные модификации фосфора такие, как белый, красный и черный фосфор, которые обладают разными химическими и физическими свойствами.
3.     Неметаллические свойства фосфора выражены слабее, чем у азота, но сильнее, чем у мышьяка (соседние элементы в группе).
4.    Неметаллические свойства фосфора выражены сильнее, чем у
кремния, но слабее, чем у серы (соседние элементы в периоде).
5.    Высший оксид фосфора имеет формулу Р2O5. Это кислотный оксид.
Он проявляет все типичные свойства кислотных оксидов. Так, например, при взаимодействии его с водой получается фосфорная кислота.
Р2O5 + 3Н2O => 2Н3РO4.
При взаимодействии его с основными оксидами и основаниями он
дает соли.
Р2O5 + 3MgO = Mg3(PO4)2; Р2O5 + 6КОН = 2К3РO4+ 3Н2O.
6.    Высший гидроксид фосфора— фосфорная кислота Н3РO4, рас-
твор которой проявляет все типичные свойства кислот: взаимодействие с основаниями и основными оксидами:
Н3РO4 + 3NaOH = Na3PO4 + 3Н2O. 2Н3РO4 + 3СаО = Са,(РO4)2↓ + 3Н2O.
7. Фосфор образует летучее соединение Н3Р — фосфин.
 
Б) Характеристика калия.
1.     Калий имеет порядковый номер 19, Z = 19 и относительную атомную массу Аr(К) = 39. Соответственно заряд ядра его атома +19 (равен числу протонов). Следовательно, число нейтронов в ядре равно 20. Так как атом электронейтрален, то число электронов, содержащихся в атоме калия, тоже равно 19. Элемент калий находится в четвертом периоде периодической системы, значит, все электроны располагаются на четырех энергетических уровнях. Таким образом, строение атома калия записывается так:
 У какого из металлов более ярко выражены свойства
Исходя из строения атома, можно предсказать степень окисления
калия в его соединениях. Так как в химических реакциях атом калия отдает один внешний электрон, проявляя восстановительные свойства, следовательно, он приобретает степень окисления +1.
Восстановительные свойства у калия выражены сильнее, чем у на-
трия, но слабее, чем у рубидия, что связано с ростом радиусов от Na к Rb.
2.     Калий— простое вещество, для него характерна металлическая
кристаллическая решетка и металлическая химическая связь, а отсюда — и все типичные для металлов свойства.
3.     Металлические свойства у калия выражены сильнее, чем у на-
трия, но слабее, чем у рубидия, т.к. атом калия легче отдает электрон, чем атом натрия, но труднее, чем атом рубидия.
4.     Металлические свойства у калия выражены сильнее, чем у кальция, т.к. один электрон атома калия легче оторвать, чем два электрона
атома кальция.
5.     Оксид калия К2O является основным оксидом и проявляет все типичные свойства основных оксидов. Взаимодействие с кислотами и кислотными оксидами.
К2O + 2НСl = 2КСl +Н2O;                К2O + SO3 = K2SO4.
6.     В качестве гидроксида калию соответствует основание (щелочь) КОН, которое проявляет все характерные свойства оснований: взаимодействие с кислотами и кислотными оксидами.
KOH+HNO3 = KNO3+H2O;          2KOH+N2O5 = 2KNO3+H2O.
7.     Летучего водородного соединения калий не образует, а образует гидрид калия КН.
 
 
            

Источник