В каких бактериях содержится хлорофилл

Хлорофилл – уникальное вещество, которое присутствует в зеленых растениях. Этот компонент очень полезен для человеческого организма.
Содержание:
Хлорофилл: что это
В чем польза хлорофилла
В каких формах существует
Как принимать жидкий хлорофилл
Сколько нужно принимать хлорофилла
Как использовать хлорофилл для похудения
В каких продуктах содержится хлорофилл
Вред и противопоказания
Рецепт приготовления полезного напитка
Сколько стоит хлорофилл
Хлорофилл: что это
Хлорофилл – пигмент зеленых растений. Именно за счет этого элемента осуществляется фотосинтез. В его составе присутствует магний. Вещество отлично воспринимается организмом человека и несет ему неописуемую пользу.
В чем польза хлорофилла
В результате научных разработок удалось выпустить хлорофилл в жидком виде. Является БАДом и имеет массу положительных свойств. Другой способ добиться, чтобы в организм поступало как можно больше этого вещества – добавить в рацион питания как можно больше зеленых овощей.
Под воздействием жидкого хлорофилла возрастает количество кровеносных клеток. При ежедневном применении улучшается движение кислорода между тканями и клетками организма.
Вещество особенно полезно тем людям, которые склонны к появлению раковых клеток. Составные компоненты позволяют связывать канцерогены, которые способны вызывать раковые новообразования.
К другим не менее важным положительным свойствам можно отнести:
связывает тяжелые металлы и очищает от них организм;
убивает вредоносные микроорганизмы и препятствует их распространению;
оказывает дезинфицирующее действие;
благоприятно воздействует на работу желудка;
убивает резкий запах пота;
показан при туберкулезе и доброкачественных новообразованиях молочных желез.
В каких формах существует
Крем
В аптеке можно встреть крем «Д-пантенол с хлорофиллом». Средство отлично справляется с кожными проблемами, а именно раздражениями и высыпаниями. Крем снимание красноту, способствует быстрому затягиванию ран, убирает шелушение, увлажняет пересушенную кожу. Его можно наносить не только на лицо, но и на все тело. Нужно нанести немного крема на кожу и оставить до полного впитывания.
Каротиновая паста
Это действенное средство на основе хлорофилла. Эффективно борется с кожными высыпаниями, пигментацией и следами после акне. При использовании пасты происходит комплексное воздействие на кожный покров: снимается отек, убирается краснота и сальные пробки. Небольшое количество пасты нанести на поврежденную кожу на 10-15 минут, после чего хорошо промыть под теплой водой.
Порошок
Средство в виде порошка рекомендовано принимать людям, склонным к частым болезням, чей иммунитет ослаблен. Он очищает организм, укрепляет иммунную систему, повышает уровень гемоглобина в крови, улучшает зрение. Также стоит принимать при проблемах с щитовидной железой, в целях профилактики рака. Нужно развести 1 пакетик порошка с 0,5 л питьевой воды и пить на протяжении дня. Хранить нужно не более 24 часов при температуре 18-25 градусов.
Капсулы
После приема отмечаются следующие положительные результаты: укрепляется иммунитет, заживают тяжелые раны, улучшается работа поджелудочной, нормализуется кровеносное давление, организм очищается от токсичных веществ, улучшается работа ЖКТ, оказывается успокаивающее действие на ЦНС.
Перед использованием любой формы лучше проконсультироваться у специалиста, чтобы убедиться в отсутствии противопоказаний.
Как принимать жидкий хлорофилл
Средство в жидкой форме является биологически активной добавкой, поэтому не относится к числу лекарственных препаратов. Взрослому человеку нужно принимать по 1 ст. л. ложке на 200 мл воды. В сутки можно принимать по 2-3 раза. Таким раствором советуют полоскать полость рта.
При внутреннем приеме можно достичь существенного результата для улучшения работы печени. Продолжительность терапии может составлять 3-4 месяца. Принимать нужно по половине стакана 3-4 раза на день.
Сколько нужно принимать хлорофилла
Хлорофилл в натуральных источниках можно принимать по 1 стакану 2 раза на день. Если речь идет о биологически активных добавках в капсулах или таблетках, то будет достаточно 150-250 г в день (разделить на 2-3 приема).
Как использовать хлорофилл для похудения
Не нужно думать, что хлорофилл является волшебным средством, которое позволит быстро похудеть. Он принимает косвенное участие в этом процессе, а именно улучшает работу почек, печени и всего организма. При регулярном приеме хлорофилла через время можно заметить следующие результаты: уменьшение количество жиров в организме, снижение холестерина и глюкозы в крови.
В каких продуктах содержится хлорофилл
Хлорофилл в больших количествах содержится в продуктах зеленого цвета, а именно: брокколи, морские водоросли, шпинат, салат, зелень.
Вред и противопоказания
Несмотря на всю полезность, хлорофилл имеет некоторые противопоказания. Не стоит принимать лицам, у которых отмечается повышенная чувствительность к хлорофиллу и прочим составным добавкам.
При приеме могут проявляться следующие негативные реакции:
болезненные ощущения в грудной клетке;
аллергические реакции;
затруднительное дыхание;
дерматологические заболевания;
расстройство желудка.
Рецепт приготовления полезного напитка
Взять любую листовую зелень, огурец либо брокколи. Все ингредиенты добавить в блендер или соковыжималку. Залить небольшим количеством питьевой воды и запустить блендер. Процедить содержимое через ситечко. Выжимки поместить в морозилку или можно засушить и потом можно добавлять в любую еду. В готовый напиток стоит добавить пару капель любого жира, чтобы хлорофилл хорошо усвоился. Никаких углеводов не должно присутствовать в коктейле.
Сколько стоит хлорофилл
Жидкий хлорофилл можно приобрести в любой аптеке. Цены варьируются в пределах 700-1500 рублей.
Источник
Строение хлорофилла c1 и c2
Хлорофи́лл (от греч. χλωρός, «зелёный» и φύλλον, «лист») — зелёный пигмент, окрашивающий хлоропласты растений в зелёный цвет. При его участии происходит фотосинтез. По химическому строению хлорофиллы — магниевые комплексы различных тетрапирролов. Хлорофиллы имеют порфириновое строение и близки гему.
Хлорофилл зарегистрирован в качестве пищевой добавки Е140.
История открытия[править | править код]
В 1817 году Жозеф Бьенеме Каванту и Пьер Жозеф Пеллетье выделили из листьев растений зелёный пигмент, который они назвали хлорофиллом[1]. В 1900-х годах Михаил Цвет[2] и Рихард Вильштеттер независимо обнаружили, что хлорофилл состоит из нескольких компонентов. Вильтштеттер очистил и кристаллизовал два компонента хлорофилла, названные им хлорофиллами а и b и установил брутто-формулу хлорофилла а. В 1915 году за исследования хлорофилла ему была вручена Нобелевская премия. В 1940 Ханс Фишер, получивший в 1930 Нобелевскую премию за открытие структуры гема, установил химическую структуру хлорофилла a. Его синтез был впервые осуществлен в 1960 Робертом Вудвордом[3], а в 1967 была окончательно установлена его стереохимическая структура[4].
В природе[править | править код]
Цвет листвы фотосинтезирующих растений обусловлен высокой концентрацией хлорофилла
Хлорофилл присутствует во всех фотосинтезирующих организмах — высших растениях, водорослях, синезелёных водорослях (цианобактериях), фотоавтотрофных простейших (протистах) и бактериях.
Некоторые растения, в том числе ряд высших растений, утратили хлорофилл (как, например, петров крест).
Синтез[править | править код]
Синтезирован Робертом Вудвордом в 1960 году.
Синтез включает в себя 15 реакций, которые можно разделить на 3 этапа. Исходными веществами для синтеза хлорофилла являются глицин и ацетат. На первом этапе образуется аминолевулиновая кислота. На втором этапе происходит синтез одной молекулы протопорфирина из четырёх пиррольных колец. Третий этап представляет собой образование и превращение магнийпорфиринов.
Свойства и функция при фотосинтезе[править | править код]
В процессе фотосинтеза молекула хлорофилла претерпевает изменения, поглощая световую энергию, которая затем используется в фотохимической реакции взаимодействия углекислого газа и воды с образованием органических веществ (как правило, углеводов):
После передачи поглощенной энергии молекула хлорофилла возвращается в исходное состояние.
Хотя максимум непрерывного спектра солнечного излучения расположен в «зелёной» области 550 нм (где находится и максимум чувствительности глаза), поглощается хлорофиллом преимущественно синий, частично — красный свет из солнечного спектра (чем и обуславливается зелёный цвет отражённого света).
Растения могут использовать и свет с теми длинами волн, которые слабо поглощаются хлорофиллом. Энергию фотонов при этом улавливают другие фотосинтетические пигменты, которые затем передают энергию хлорофиллу. Этим объясняется разнообразие окраски растений (и других фотосинтезирующих организмов) и её зависимость от спектрального состава падающего света.
Химическая структура[править | править код]
Хлорофиллы можно рассматривать как производные протопорфирина — порфирина с двумя карбоксильными заместителями (свободными или этерифицированными). Так, хлорофилл a имеет карбоксиметиловую группу при С10, фитоловый эфир пропионовой кислоты — при С7. Удаление магния, легко достигаемое мягкой кислотной обработкой, дает продукт, известный как феофитин. Гидролиз фитоловой эфирной связи хлорофилла приводит к образованию хлорофиллида (хлорофиллид, лишенный атома металла, известен как феофорбид a).
Все эти соединения интенсивно окрашены и сильно флуоресцируют, исключая те случаи, когда они растворены в органических растворителях в строго безводных условиях. Они имеют характерные спектры поглощения, пригодные для качественного и количественного определения состава пигментов. Для этой же цели часто используются также данные о растворимости этих соединений в соляной кислоте, в частности для определения наличия или отсутствия этерифицированных спиртов. Хлороводородное число определяется как концентрация HCl (%, масс./об.), при которой из равного объёма эфирного раствора пигмента экстрагируется 2/3 общего количества пигмента. «Фазовый тест» — окрашивание зоны раздела фаз — проводят, подслаивая под эфирный раствор хлорофилла равный объём 30%-го раствора KOH в MeOH. В интерфазе должно образовываться окрашенное кольцо. С помощью тонкослойной хроматографии можно быстро определять хлорофиллы в сырых экстрактах.
Хлорофиллы неустойчивы на свету; они могут окисляться до алломерных хлорофиллов на воздухе в метанольном или этанольном растворе.
Хлорофиллы образуют комплексы с белками in vivo и могут быть выделены в таком виде. В составе комплексов их спектры поглощения значительно отличаются от спектров свободных хлорофиллов в органических растворителях.
Хлорофиллы можно получить в виде кристаллов. Добавление H2O или Ca2+ к органическому растворителю способствует кристаллизации.
Хлорофилл a | Хлорофилл b | Хлорофилл c1 | Хлорофилл c2 | Хлорофилл d | Хлорофилл f | |
---|---|---|---|---|---|---|
Формула | C55H72O5N4Mg | C55H70O6N4Mg | C35H30O5N4Mg | C35H28O5N4Mg | C54H70O6N4Mg | C55H70O6N4Mg |
группа C2 | -CH3 | -CH3 | -CH3 | -CH3 | -CH3 | -CHO |
группа C3 | -CH=CH2 | -CH=CH2 | -CH=CH2 | -CH=CH2 | -CHO | -CH=CH2 |
группа C7 | -CH3 | -CHO | -CH3 | -CH3 | -CH3 | -CH3 |
группа C8 | -CH2CH3 | -CH2CH3 | -CH2CH3 | -CH=CH2 | -CH2CH3 | -CH2CH3 |
группа C17 | -CH2CH2COO-Phytyl | -CH2CH2COO-Phytyl | -CH=CHCOOH | -CH=CHCOOH | -CH2CH2COO-Phytyl | -CH2CH2COO-Phytyl |
связь C17-C18 | Одинарная | Одинарная | Двойная | Двойная | Одинарная | Одинарная |
Распространение | Везде | Большинство наземных растений | Некоторые водоросли | Некоторые водоросли | Цианобактерии | Цианобактерии |
Общая структура хлорофилла a, b и d
Структура хлорофилла c1, c2
Структура хлорофилла f
Оптический спектр поглощения хлорофиллов a (голубой) и b (красный)
Хроматограмма зелёного пигмента растений
Применение[править | править код]
Хлорофилл находит применение как пищевая добавка (регистрационный номер в европейском реестре E140), однако при хранении в этанольном растворе, особенно в кислой среде, неустойчив, приобретает грязно-коричнево-зеленый оттенок, и не может использоваться как натуральный краситель. Нерастворимость нативного хлорофилла в воде также ограничивает его применение в качестве натурального пищевого красителя. Но хлорофилл вполне успешно используется в качестве натуральной замены синтетических красителей при изготовлении кондитерских изделий.[источник не указан 3248 дней]
Производное хлорофилла — хлофиллин медный комплекс (тринатриевая соль) получил распространение в качестве пищевого красителя (Регистрационный номер в европейском реестре E141). В отличие от нативного хлорофилла, медный комплекс устойчив в кислой среде, сохраняет изумрудно-зеленый цвет при длительном хранении и растворим в воде и водно-спиртовых растворах. Американская (USP) и Европейская (EP) фармакопеи относят хлорофиллид меди к пищевым красителям, однако вводят лимит на концентрацию свободной и связанной меди (тяжелый металл).
Хлорофилл придаёт листьям зелёный цвет и поглощает свет при фотосинтезе
В клетках эукариотов хлорофилл обычно находится в хлоропластах
Карта распределения хлорофилла по поверхности мирового океана в период с 1998 по 2006 по данным спутникового прибора SeaWiFS
Примечания[править | править код]
- ↑ Pelletier and Caventou (1817) «Notice sur la matière verte des feuilles» («Замечания о зелёном материале листьев»), Journal de Pharmacie, 3 : 486—491.
- ↑ M. Tswett (1906) Physikalisch-chemische Studien über das Chlorophyll. Die Adsorptionen. (Физико-химические исследования хлорофилла. Адсорбция.) Ber. Dtsch. Botan. Ges. 24, 316—323 .
- ↑ R. B. Woodward, W. A. Ayer, J. M. Beaton, F. Bickelhaupt, R. Bonnett. THE TOTAL SYNTHESIS OF CHLOROPHYLL (англ.) // Journal of the American Chemical Society. — 1960. — Vol. 82, iss. 14. — P. 3800–3802. — doi:10.1021/ja01499a093.
- ↑ Ian Fleming. Absolute Configuration and the Structure of Chlorophyll (англ.) // Nature. — 1967-10-14. — Vol. 216, iss. 5111. — P. 151–152. — doi:10.1038/216151a0.
Ссылки[править | править код]
- Монтеверде Н. А., Любименко В. Н. Исследования над образованием хлорофилла у растений // Известия Императорской Академии наук. VII серия. — СПБ., 1913. — Т. VII, № 17. — С. 1007–1028.
- Speer, Brian R. (1997). «Photosynthetic Pigments» на сайте UCMP Glossary (online). University of California, Berkeley Museum of Paleontology. Verified availability August 4, 2005. (англ.)
- Chlorophyll d: the puzzle resolved (англ.)
- Билич Г. Л., Крыжановский В. А. Биология. Полный курс: В 4 т. — издание 5-е, дополненное и переработанное. — М.: Издательство Оникс, 2009. — Т. 1. — 864 с. — ISBN 978-5-488-02311-6
Источник
Бактериохлорофи́ллы — гетерогенная группа фотосинтетических тетрапиррольных пигментов, которые синтезируются различными аноксигенными фототрофными бактериями, осуществляющими фотосинтез без выделения кислорода.
Спектральные свойства бактериохлорофиллов в клетках значительно отличаются от растворов, и определяются нековалентными взаимодействиями их молекул с содержащими их белками, а также друг с другом.
Химическая структура бактериохлорофиллов[править | править код]
Сравнение химических структур порфина, хлорина и бактериохлорина На каждую связь в макроцикле приходится два пи-электрона.
Бактериохлорофиллы a, b и g являются бактериохлоринами, то есть содержат в своём составе бактериохлориновый макроцикл с двумя восстановленными пиррольными кольцами (II и IV).
Бактериохлорофиллы с-f, как и хлорофиллы, имеют хлориновое макроцикловое кольцо с единственным полностью восстановленным пиррольным кольцом IV. В отличие от всех остальных хлорофиллов и бактериохлорофиллов, у них отсутствует остаток -COOCH3 в положении R5, характерный для всех прочих хлорофиллов и бактериохлорофиллов. Каждый из этих бактериохлорофиллов имеет несколько форм, отличающихся радикалами R3 и R4, a также этерифицирующим спиртом R5[1][2].
Название | Структура | R1 | R2 | R3 | Связь С7-С8 | R4 | R5 | R6 | R7 |
---|---|---|---|---|---|---|---|---|---|
Бактериохлорофилл a | –CO–CH3 | –CH3a | –CH2CH3 | одинарная | -CH3 | -CO-O-CH3 | -фитил -геранилгеранил | -H | |
Бактериохлорофилл b | -CO-CH3 | -CH3a | =CH-CH3 | одинарная | –CH3 | –CO–O–CH3 | –фитил | –H | |
Бактериохлорофилл c | –CHOH–CH3 | –CH3 | –C2H5b –C3H7 –C4H9 | двойная | –CH3 –C2H5 | –H | –фарнезил и др. | –CH3 | |
Бактериохлорофилл d | –CHOH–CH3 | –CH3 | –C2H5b –C3H7 –C4H9 | двойная | –CH3 –C2H5 | –H | –фарнезил и др. | –H | |
Бактериохлорофилл e | –CHOH–CH3 | –CHO | –C2H5b –C3H7 –C4H9 | двойная | –CH3 –C2H5 | –H | –фарнезил и др. | –CH3 | |
Бактериохлорофилл f | –CHOH–CH3 | –CHO | –C2H5b –C3H7 –C4H9 | двойная | ––CH3 –C2H5 | –H | –фарнезил и др. | –H | |
Бактериохлорофилл g | –CH=CH2 | –CH3a | =СH-CH2 | одинарная | –CH3 | –CO–O–CH3 | –геранилгеранил | –H |
Химические свойства[править | править код]
Бактериохлорофиллы неустойчивы к действию света, кислот и окислителей. В полярных растворителях (например, в метаноле) они легко подвергаются алломеризации; в присутствии кислот – теряют центральный атом магния (феофитинизируются) и/или этерифицирующий остаток (фитол/фарнезол/геранилгериниол и др.)[3].
Бактериохлорофиллы b и g, имеющие этилиденовый остаток при С-8, в слабокислой среде изомеризуются с образованием хлоринов. Особенно легко изомеризуется бактериохлорофилл g, превращающийся в результате в хлорофилл аG[4].
Под действием кислорода в молекулах бактериохлорофиллов происходит окислительный разрыв пятичленного кольца V; в дальнейшем образовавшиеся кислотные остатки у атомов с-13 и С-14 могут вновь замкнуться в шестичленное ангидридное кольцо с образованием бактериопурпуринов или пурпуринов[3][5].
Биосинтез[править | править код]
Cхема биосинтеза бактериохлорофиллидов.
Упрощенная схема биосинтеза бактериохлорофиллидов a, b и g, а также (E,M)-бактериохлорофиллидов с-e[6][7], показана на рисунке.
Ранее предполагалось, что первая стадия биосинтеза бактериохлорофиллов с-e, образование кольца V без карбоксиметильного заместителя при С132, может происходить еще до образования 3,8-дивинил-протохлорофиллида a[8]. В настоящее время это считается маловероятным[6][9].
Последняя ступень биосинтеза, превращение бактериохлорофиллидов в бактериохлорофиллы, осуществляется с помощью эстераз, кодируемых генами BchG у бактериохлорофиллов a, b и g и BchK у хлоробиум-хлорофиллов. В синтезе метилированных форм бактериохлорофиллов с-e принимают участие также метилаза С121-углерода BchR и С82-метилаза BchQ. Их субстратами, по-видимому, служат любые хлорофиллиды с гидроксиметильным остатком при С3, то есть метилирование может происходить на любом этапе после образования 8-этил-12-метил-бактериохлорофиллида d.
Распространение[править | править код]
Наиболее широко распространенный пигмент аноксигенных фототрофных бактерий – бактериохлорофилл а. Он является преобладающим хлориновым пигментом в реакционных центрах большинства фототрофных протеобактерий, у всех зеленых серобактерий (Сhlorobiaceae) и нитчатых аноксигенных фототрофов (Chloroflexiа). У немногих фототрофных протеобактерий бактериохлорофилл а полностью замещается бактериохлорофиллом b. Бактериохлорофилл g обнаружен только у одной небольшой по количеству видов и распространению группы бактерий, гелиобактерий.
Бактериохлорофиллы с-f присутствуют исключительно в хлоросомах, особых фотосинтетических антенных комплексах, имеющихся у всех зелёных серных бактерий (Chlorobiales), некоторых нитчатых аноксигенных фототрофов (Chloroflexia), а также у недавно обнаруженной фотогетеротрофной ацидобактерии Chloracidobacterium thermophilum[10].
Примечания
- ↑ Scheer, H. (2006). An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications In: B. Grimm et al. (eds): Chlorophylls and Bacteriochlorophylls. Springer Netherlands. (pp. 1-26)
- ↑ Orf, G. S., Blankenship, R. E. (2013). Chlorosome antenna complexes from green photosynthetic bacteria. Photosynthesis research, 116 (2-3), p. 15-331.
- ↑ 1 2 Keely, B. J. (2006). Geochemistry of chlorophylls. In Chlorophylls and Bacteriochlorophylls (pp. 535-561). Springer Netherlands.
- ↑ Kobayashi, M., Hamano, T., Akiyama, M., Watanabe, T., Inoue, K., Oh-oka, H., Amesz J., Yamamura M., Kise, H. (1998). Light-independent isomerization of bacteriochlorophyll g to chlorophyll a catalyzed by weak acid in vitro. Analytica chimica acta, 365(1), 199-203.
- ↑ Grin, M. A., & Mironov, A. F. (2008). Synthetic and Natural Bacteriochlorins: Synthesis, Properties and Applications. In: Chemical Processes with Participation of Biological and Related Compounds: Biophysical and Chemical Aspects of Porphyrins, Pigments, Drugs, Biodegradable Polymers and Nanofibers, 5.
- ↑ 1 2 Liu, Z., & Bryant, D. A. (2011). Identification of a gene essential for the first committed step in the biosynthesis of bacteriochlorophyll c. Journal of Biological Chemistry, 286(25), 22393-22402.
- ↑ Tsukatani Y., Yamamoto H., Harada J., Yoshitomi T., Nomata J., Kasahara M., Mizoguchi T., Fujita Y., Tamiaki H. (2013). An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Scientific reports, 3.
- ↑ Frigaard, N. U., Chew, A. G. M., Maresca, J. A., & Bryant, D. A. (2006). Bacteriochlorophyll biosynthesis in green bacteria. In Chlorophylls and Bacteriochlorophylls (pp. 201-221). Springer Netherlands.
- ↑ Harada, J., Teramura, M., Mizoguchi, T., Tsukatani, Y., Yamamoto, K., & Tamiaki, H. (2015). Stereochemical conversion of C3‐vinyl group to 1‐hydroxyethyl group in bacteriochlorophyll c by the hydratases BchF and BchV: adaptation of green sulfur bacteria to limited‐light environments. Molecular microbiology, 98(6), 1184-1198.
- ↑ Bryant, Donald A.; Costas, AM; Maresca, JA & Chew, AG (2007-07-27), Candidatus Chloracidobacterium thermophilum: An Airobic Phototrophic Acidobacterium, Science Т. 317 (5837): 523–526, PMID 17656724, doi:10.1126/science.1143236, <https://www.sciencemag.org/cgi/content/abstract/317/5837/523>
Источник