В каких молекулах рнк содержатся интроны

Не следует путать с интронизацией — общественным богослужением.

Интроны – участки ДНК, копии которых удаляются из первичного транскрипта и отсутствуют в зрелой РНК.

Схема нуклеотидной последовательности пре-мРНК гена CDK4 человека. Большую часть последовательности занимают интроны (показаны серым цветом)

После транскрипции последовательности нуклеотидов, соответствующие интронам, вырезаются из незрелой мРНК (пре-мРНК) в процессе сплайсинга. Интроны характерны для генов эукариот. Интроны также найдены в генах, кодирующих рибосомальные РНК (рРНК), транспортные РНК (тРНК) и некоторые белки прокариот, эти интроны вырезаются на уровне РНК за счёт автосплайсинга. Число и длина интронов очень различны в разных видах и среди разных генов одного организма. Например, геном дрожжей Saccharomyces cerevisiae содержит в целом 293 интрона, в то время как в человеческом геноме можно насчитать свыше 300 тысяч интронов[1]. Обычно интроны длиннее экзонов[2].

Классификация интронов[править | править код]

Существует четыре группы интронов:

  • Ядерные интроны
  • Интроны группы I
  • Интроны группы II
  • Интроны группы III

Иногда интроны группы III также относят к группе II, потому что они похожи по структуре и функции.

Ядерные, или сплайсосомные интроны подвергаются сплайсингу при помощи сплайсосомы и малых ядерных РНК (snRNA). В последовательности РНК, содержащей ядерные интроны, есть специальные сигнальные последовательности, которые узнаются сплайсосомой.

Интроны I, II и III группы способны к автосплайсингу и встречаются реже, чем сплайсосомные интроны. Интроны II и III группы похожи друг на друга и обладают консервативной вторичной структурой. Они обладают свойствами, похожими на свойства сплайсосомы и, вероятно, являются её эволюционными предшественниками. Интроны I группы, которые встречаются у бактерий, животных и простейших — единственный класс интронов, который требует присутствие несвязанного гуанилового нуклеотида. Их вторичная структура отличается от вторичной структуры интронов II и III группы.

Эволюция[править | править код]

Существуют две альтернативные теории, объясняющие происхождение и эволюцию сплайсосомных интронов: так называемые теории ранних интронов (РИ) и поздних интронов (ПИ). Теория РИ утверждает, что многочисленные интроны присутствовали в общих предках эу- и прокариот и, соответственно, интроны являются очень старыми структурами. Согласно этой модели, интроны были потеряны из генома прокариот. Также она предполагает, что ранние интроны способствовали рекомбинации экзонов, представляющих домены белков. ПИ утверждает, что интроны появились в генах относительно недавно, и инсерция интронов в геном произошла после разделения организмов на про- и эукариоты. Эта модель основывается на наблюдении, что сплайсосомные интроны есть только у эукариот.

Идентификация[править | править код]

Почти все эукариотические ядерные интроны начинаются с GU и оканчиваются AG (правило AG-GU).

Примечания[править | править код]

Литература[править | править код]

  • Gilbert, Walter (1978): Why genes in pieces. Nature 271(5645): 501. doi:10.1038/271501a0
  • Roy, Scott William & Walter Gilbert (2006): The evolution of spliceosomal introns: patterns, puzzles and progress. Nature Reviews Genetics 7: 211—221. doi:10.1038/nrg1807 PDF fulltext
  • Gogarten, J. Peter & Hilario, Elena (2006): Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BioMed Central|BMC Evolutionary Biology 6: 94 doi:10.1186/1471-2148-6-94 PDF fulltext
  • Yandell, Mark; Mungall, Chris J.; Smith, Chris; Prochnik, Simon; Kaminker, Joshua; Hartzell, George; Lewis, Suzanna & Rubin, Gerald M. (2006): Large-Scale Trends in the Evolution of Gene Structures within 11 Animal Genomes. |PLoS Comput. Biol.’ 2(3): 113—125. doi:10.1371/journal.pcbi.0020015 PDF fulltext (недоступная ссылка) Supporting Information (недоступная ссылка)

См. также[править | править код]

  • Экзоны
  • Сплайсинг

Источник

Существуют две альтернативные теории, объясняющие происхождение и эволюцию сплайсосомных интронов: так называемые теории ранних интронов (РИ), которую высказал Джилберт (Gilbert), и поздних интронов (ПИ). Теория РИ утверждает, что многочисленные интроны присутствовали в общих предках эу- и прокариот и, соответственно, интроны являются очень старыми структурами. Согласно этой модели, интроны были потеряны из генома прокариот. Также она предполагает, что ранние интроны способствовали рекомбинации экзонов, представляющих домены белков. ПИ утверждает, что интроны появились в генах относительно недавно, и были инсертированы (вставлены) в геном после разделения организмов на про- и эукариоты. Эта модель основывается на наблюдении, что сплайсосомные интроны есть только у эукариот.

Предположение об эволюционной функции разорванных генов высказал Джилберт (Gilbert). Интронами часто разделяются кодирующие последовательности, с которых транслируются функциональные домены внутри белков. Так, например, глобиновые гены разделены двумя интронами на три кодирующих участка. Центральный участок кодирует домен, связывающий гем. Если, как полагает Джилберт, интроны создают возможность для «перетасовки ДНК путем незаконных рекомбинаций», то в таком случае кодирующие последовательности для отдельных доменов могут вступать в новые комбинации друг с другом. Так, участок глобина, связывающий гем, возможно, первоначально составлял часть другого разорванного гена. Для эволюции будущего глобинового гена, возможно, не понадобилось дупликации гена и дивергенции: простой перетасовки существующих доменов могло оказаться достаточным для создания нового белка из уже существовавших частей.

Лизоцимы фага Т4 и куриного яйца содержат структуры, к которым по мнению Артымюка и др. применимо подобного рода эволюционное объяснение. Лизоцимы куриного яйца содержат два таких же домена как в лизоциме фага Т4. Один из них – это домен, содержащий каталитический центр, а другой – соседний – домен, по-видимому, участвует в определении субстратной специфичности. N-концевой домен лизоцима куриного яйца, который, как установили Янг и др. , содержит сигнальный пептид прелизоцима и начальные аминокислоты молекул зрелого белка, не имеет эквивалента в лизоциме фага Т4. Точно так же четвертые, С-концевые, домены этих двух белков очень сильно различаются; по мнению Мэтьюза и др. , в фаговом ферменте функция этого домена состоит в том, чтобы обеспечивать прикрепление фаговой частицы к стенке Escherichia coli, тогда как ферменту куриного яйца эта функция вряд ли необходима. Подобный характер строения гомологичных белков, когда к сходным доменам примыкают несходные, явно совместим с предположением о перетасовке соответствующих кодирующих последовательностей путем рекомбинации в пределах интронов.

Джилберт высказал мнение, что если функция интронов сводится к обеспечению эволюционной пластичности, то они могут утрачиваться в результате нейтрального дрейфа. Он считает, что это происходит с исключительно низкой скоростью. Если согласиться с тем, что длительная эволюционная пластичность служит достаточным механизмом для сохранения разорванных генов, то старая теория о старении расы, к которой так часто прибегали в конце XIX в., чтобы объяснить вымирание различных групп (от аммонитов до динозавров), может быть возрождена в новой форме. Постаревшими будут считаться те группы, которые в результате дрейфа потеряли так много интронов, что утратили способность противостоять давлению отбора путем возникновения эволюционных новшеств. Однако здесь мы сталкиваемся с той же самой логической ошибкой, которая была присуща старой теории преформизма: все интроны должны были присутствовать изначально, а затем запас их должен медленно истощаться. Представляется более вероятным, что новые интроны могут возникать и что их сохранение связано с какой-то непосредственной функцией, выполняемой ими в клетке. Это не означает, однако, что отрицается возможность дополнительной эволюционной роли интронов в перетасовке ДНК.

Важную роль интронов в регуляции генной экспрессии продемонстрировали Лазовска, Жак и Слонимски (Lazowska, Jacq, Slonimski) в своем  исследовании гена box, который локализован в митохондриальном геноме дрожжей и кодирует цитохром b. Физическая карта гена box и кластеров известных для него мутационных сайтов представлены на рисунке

 В этом гене имеется шесть кодирующих последовательностей и пять интронов; у него обнаружены три различных класса мутаций. Мутации в кодирующих последовательностях, как и следовало ожидать, влияют на строение белка, и все они входят в одну группу комплементации. Мутации двух других классов необычны. Три кластера локализованы в интронах. Они в свою очередь образуют три различные группы комплементации и блокируют процессинг транскрипта гена цитохрома b. Они оказывают также воздействие на экспрессию гена oxi-3 – еще одного разорванного митохондриального гена, который кодирует субъединицу 1 цитохромоксидазы. Мутации третьего класса локализованы на границах между интронами и кодирующими последовательностями.

Для того чтобы могла образоваться функциональная мРНК для цитохрома b, интронные последовательности должны быть вырезаны из первичного транскрипта и должен произойти сплайсинг кодирующих последовательностей. Оказалось, однако, что процессинг – сложный многоступенчатый процесс. Мутации в интроне гена bох-3 нарушают процессинг, потому что этот интрон действительно транслируется, чтобы мог образоваться белок, необходимый для процессинга транскрипта гена box. Последовательность в этом интронном участке, определяющем синтез данного белка, известна, так как этот участок гена box был секвенирован.

Первый этап сплайсинга первичного транскрипта гена box, схематически представленного на рисунке, приводит к образованию РНК, содержащей кодирующую последовательность bох-4/5 для цитохрома b, сцепленную с маленьким кодирующим участком у конца интрона box-3. Эта РНК, содержащая кодирующие последовательности для цитохрома b и интронные последовательности, функционирует как мРНК, обеспечивая синтез белка матуразы, необходимого для следующей ступени процессинга. На этом этапе происходит удаление последовательности интрона box-3, с тем чтобы образовалась мРНК, содержащая только последовательности, кодирующие цитохром b. Подобным же образом интрон box-7 также, по-видимому, продуцирует сходную, хотя и другую матуразу, поскольку мутации box-3 и box-7 комплементарны друг другу. Гипотетическая матураза box-7, по-видимому, не только участвует в процессинге гена цитохрома b, но необходима также для процессинга транскрипта гена oxi-3, поскольку мутации в интроне bох-7 воздействуют на синтез цитохромоксидазы.

Роль процессинга в регуляции генной экспрессии выявляется также в примерах с α-амилазами из печени и слюнной железы мышей. Хагенбюхль и др.  обнаружили, что последовательности мРНК в ферментах печени и ферменте слюнной железы идентичны по своим кодирующим участкам и нетранслируемым 3′-участкам. Однако нетранслируемые 5′-участки этих мРНК различны. Данные названных авторов позволяют предполагать, что эти белки кодируются одним и тем же геном, но что его экспрессия, возможно, регулируется тканеспецифичным процессингом транскриптов. Очевидно, что разорванные гены играют важную роль в регуляции координированной генной экспрессии у эукариот и что существование подобной организации генов делает возможной значительную эволюционную пластичность.

Источник

Напоминаю, что в гене наряду с информативными участками, которые кодируют информацию о последовательности аминокислот в белке (их называют экзонами), так же содержатся участки и неинформативные, что не несут о белках полезной информации (интроны): “Созрели гены в ядре у дяди Вани…”

При созревании копии гена (матричной РНК) участки, соответствующие интронам, вырезаются и выбрасываются, прямо как мусор, а обрывки копий экзонов сшиваются (этот процесс называется сплайсингом). Теперь вопрос: вы можете поверить, чтобы всегда рачительная природа создала нечто годящееся только в мусор? Я – нет. Вот и учёные, открывшие экзоны и интроны в структуре белка, тут же усомнились в бесполезности последних и давай выяснять, зачем же эти на первый взгляд бессмысленные вставки всё-таки нужны. И выяснили.

Рассказываю, какие функции интронов были открыты:

1. Некоторые интроны содержат участки, способные усиливать активность гена, которому они принадлежат, активируя и ускоряя его копирование (транскрипцию). Химические соединения, способные на такое, называются энхансерами (англ. enhancer – “усилитель, увеличитель”). Энхансер – это часть регуляторной структуры гена (чуть, понимаешь, одного из руководителей в мусор не выбросили!)

2. Наличие интронов в гене делает возможным альтернативный сплайсинг, то есть при созревании матричной РНК обрывки копий экзонов могут склеиваться в различной последовательности. Таким образом создаётся несколько разнообразных изомерных копий одного и того же гена, на каждой из которых собирается свой вариант белка. Один ген – несколько альтернативных белков. Вот это оптимизация-экономия места на носителе при хранении информации!

3. И ещё одна важная функция – копии интронов, входящие в состав незрелой матричной РНК, способны участвовать в процессах авторегуляции в клетке. Как это происходит, могу показать на примере регуляции синтеза двух белков L30 и S14:

L30 и S14 – это белки, которые клетка использует для создания своих органоидов – рибосом. Когда этих белков синтезируется избыточное количество, они начинают путаться под ногами не отправляются на создание новых рибосом, а вступают в химическое взаимодействие с интронами тех самых незрелых матричных РНК (пре-м-РНК), которые являются копиями генов, отвечающими за образование таких же, как и они, белков L30 и S14. Заблокировав таким образом интронные участки своих пре-м-РНК, белки L30 и S14 препятствуют дальнейшему сплайсингу, а значит и образованию новых белков их типа. Что может снять подобную блокировку? Только ситуация, при которой белков L30 и S14 вновь окажется недостаточно. Вот тогда все они будут призваны на сборку очередной партии рибосом, отлепятся от своих незрелых матричных РНК, открыв для них возможность созреть и стать наконец матрицами для новых L30 и S14 .

Что ещё можно почитать о генетическом коде и его свойствах:

«На роду написано». А точнее – где это написано и как?

Если ДНК кодирует исключительно белки, то где же в ней информация о нас?

Действительно ли наши гены на 50% совпадают с генами банана? – об универсальности генетического кода

Всего четыре буквы в алфавите. Что за язык? – об избыточности (вырожденности) генетического кода

О комплИментах, комплЕментах и заданиях ЕГЭ по биологии на генетический код – о комплементарности генетического кода

Скованные двойной цепью… Зачем ДНК нужна вторая цепь?

На концах цепей ДНК есть “этикетки”. Зачем? – об антинаправленности цепей ДНК

Дорожная карта для… нуклеотида

Собрались как-то… промотор, оператор и терминатор

Источник

РНК (рибонуклеиновая кислота), так же как и ДНК, относится к нуклеиновым кислотам. Молекулы-полимеры РНК намного меньше, чем у ДНК. Однако в зависимости от типа РНК количество входящих в них нуклеотидов-мономеров различается.

В состав нуклеотида РНК в качестве сахара входит рибоза, в качестве азотистого основания — аденит, гуанин, урацил, цитозин. Урацил по строению и химическим свойствам близок к тимину, который обычен для ДНК. В зрелых молекулах РНК многие азотистые основания модифицированы, поэтому в реальности разновидностей азотистых оснований в составе РНК намного больше.

Рибоза в отличие от дезоксирибозы имеет дополнительную -ОН-группу (гидроксильную). Это обстоятельство позволяет РНК легче вступать в химические реакции.

Главной функцией РНК в клетках живых организмов можно назвать реализацию генетической информации. Именно благодаря разным типам рибонуклеиновой кислоты генетический код считывается (транскрибируется) с ДНК, после чего на его основе синтезируются полипептиды (происходит трансляция). Итак, если ДНК в основном отвечает за хранение и передачу из поколения в поколение генетической информации (основной процесс – репликация), то РНК реализует эту информацию (процессы транскрипции и трансляции). При этом транскрипция происходит на ДНК, так что этот процесс относится к обоим типам нуклеиновых кислот и тогда с этой точки зрения можно сказать, что и ДНК отвечает за реализацию генетической информации.

При более подробном рассмотрении функции РНК намного разнообразнее. Ряд молекул РНК выполняют структурную, каталитическую и другие функции.

Существует так называемая гипотеза РНК-мира, согласно которой вначале в живой природе в качестве носителя генетической информации выступали только молекулы РНК, при этом другие молекулы РНК катализировали различные реакции. Данная гипотеза подтверждена рядом опытов, показывающих возможную эволюцию РНК. На это указывает и то, что ряд вирусов в качестве нуклеиновой кислоты, хранящей генетическую информацию, имеют молекулу РНК.

Согласно гипотезе РНК-мира ДНК появилась позже в процессе естественного отбора как более устойчивая молекула, что важно для хранения генетической информации.

Выделяют три основных типа РНК (кроме них есть и другие): матричная (она же информационная), рибосомальная и транспортная. Обозначаются они соответственно иРНК (или мРНК), рРНК, тРНК.

Информационная РНК (иРНК)

Почти все РНК синтезируются на ДНК в процессе транскрипции. Однако часто транскрипция упоминается как синтез именно информационной РНК (иРНК). Связано это с тем, что последовательность нуклеотидов иРНК в последствии определит последовательность аминокислот синтезируемого в процессе трансляции белка.

Перед транскрипцией нити ДНК расплетаются, и на одной из них с помощью комплекса белков-ферментов синтезируется РНК по принципу комплементарности, так же как это происходит при репликации ДНК. Только напротив аденина ДНК к молекуле РНК присоединяется нуклеотид, содержащий урацил, а не тимин.

На самом деле на ДНК синтезируется не готовая информационная РНК, а ее предшественник — пре-иРНК. Предшественник содержит участки последовательности нуклеотидов, которые не кодируют белок и которые после синтеза пре-иРНК вырезаются при участии малых ядерных и ядрышковых РНК («дополнительные» типы РНК). Эти удаляющиеся участки называются интронами. Остающиеся части иРНК называются экзонами. После удаления интронов экзоны сшиваются между собой. Процесс удаления интронов и сшивания экзонов называется сплайсингом. Усложняющей жизнь особенностью является то, что можно вырезать интроны по-разному, в результате получатся разные готовые иРНК, которые будут служить матрицами для разных белков. Таким образом, вроде бы один ген ДНК может играть роль нескольких генов.

Следует отметить, что у прокариотических организмов сплайсинга не происходит. Обычно их иРНК сразу после синтеза на ДНК готова к трансляции. Бывает, что пока конец молекулы иРНК еще транскрибируется, на ее начале уже сидят рибосомы, синтезирующие белок.

После того как пре-иРНК созревает в информационную РНК и оказывается вне ядра, она становится матрицей для синтеза полипептида. При этом на нее «насаживаются» рибосомы (не сразу, какая-то оказывается первой, другая — второй и т. д.). Каждая синтезирует свою копию белка, т. е. на одной молекуле РНК могут синтезироваться сразу несколько одинаковых белковых молекул (понятно, что каждая будет находиться на своей стадии синтеза).

Рибосома, передвигаясь от начала иРНК к ее концу, считывает по три нуклеотида (хотя вмещает шесть, т. е. два кодона) и присоединяет соответствующую транспортную РНК (имеющую соответствующий кодону антикодон), к которой присоединена соответствующая аминокислота. После этого с помощью активного центра рибосомы ранее синтезированная часть полипептида, соединенная с предшествующей тРНК, как-бы «пересаживается» (образуется пептидная связь) на аминокислоту, прикрепленную к только что пришедшей тРНК. Таким образом, молекула белка постепенно увеличивается.

Когда молекула информационной РНК становится не нужна, клетка ее разрушает.

Транспортная РНК (тРНК)

Транспортная РНК — это достаточно маленькая (по меркам полимеров) молекула (количество нуклеотидов бывает разным, в среднем около 80-ти), во вторичной структуре имеет форму клеверного листа, в третичной сворачивается в нечто подобное букве Г.

Функция тРНК – присоединение к себе соответствующей своему антикодону аминокислоты. В дальнейшем соединение с рибосомой, находящейся на соответствующем антикодону кодоне иРНК, и «передача» этой аминокислоты. Обобщая, можно сказать, что транспортная РНК переносит (на то она и транспортная) аминокислоты к месту синтеза белка.

Живая природа на Земле использует всего около 20-ти аминокислот для синтеза различных белковых молекул (на самом деле аминокислот куда больше). Но поскольку, согласно генетическому коду, кодонов больше 60-ти, то каждой аминокислоте может соответствовать несколько кодонов (на самом деле какой-то больше, какой-то меньше). Таким образом, разновидностей тРНК больше 20, при этом разные транспортные РНК переносят одинаковые аминокислоты. (Но и тут не так все просто.)

Рибосомная РНК (рРНК)

Рибосомную РНК часто также называют рибосомальной РНК. Это одно и то же.

Рибосомная РНК составляет около 80% всей РНК клетки, так как входит в состав рибосом, коих в клетке бывает достаточно много.

В рибосомах рРНК образует комплексы с белками, выполняет структурную и каталитическую функции.

В состав рибосомы входят несколько разных молекул рРНК, отличающиеся между собой как по длине цепи, вторичной и третичной структуре, выполняемым функциям. Однако их суммарная функция — это реализация процесса трансляции. При этом молекулы рРНК считывают информацию с иРНК и катализируют образование пептидной связи между аминокислотами.

Источник